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Abstract 
 

In this paper, we developed a technique to detect a 
special kind of shot, namely establishment shot, which is 
used to introduce a new scene to the audience or remind 
the audience of a known environment. The detection of 
establishment shot aids in various middle-level issues 
such as analyzing the story units of a movie. An 
establishment shot is usually realized by using camera 
motions such as panning, tilting or lateral translation. As 
it possesses similar motion features to those of another 
kind of shot called object-tracking shot, the two can be 
easily confused. An object-tracking shot is important for 
indexing on its own; it keeps the target of interest in the 
field of view. In this paper, we developed a technique to 
differentiate these two kinds of shots. The technique 
developed does not require accurate egomotion 
estimation, and can handle arbitrary camera movement 
including zoom as well as multiple independent motions.  
 
1. Introduction 
 

Motion is a rich information source that can 
potentially extend the limited capabilities of current 
solutions in identifying content. However, the use of 
motion in multimedia nowadays has been restricted to the 
extraction of a few simple types of camera motion, such as 
pan, tilt and zoom [1]. Complete recovery of the 
egomotion parameters is a notoriously ill-posed problem  
[2, 3, 4]. This, coupled with the view that the egomotion 
parameters must be computed before any of the motion-                                                                                                                             
based competence can be accomplished, has seriously 
obscured the potential for using motion directly for 
multimedia applications. 

Recent research in computational vision emphasizes 
the fact that, often, appropriate spatio-temporal 
representations, that are directly relevant to the tasks at 
hand, can be computed from the imagery without going 
through the ill-posed process of egomotion computation. 
Thus instead of one strict hierarchy, a variety of visual 
processes, computed in parallel and using motion features 
of varying amount of complexity, may be constructed. Our 
research efforts subscribe to this philosophy. We argue 
that through a variety of such motion competencies each 

having different computational requirement, a multi-
faceted usage of motion information for video indexing 
can be effected. 

In particular, we suggest that from the point of view of 
a producer, the video is purposive, in that it is trying to 
convey the story content in a script to the viewer. In order 
to tell a story, a number of tasks need to be routinely 
accomplished by the cameraman or the producer. Some of 
these tasks include the introduction to a scene, the 
unfolding of an event, tracking of an object and the 
directing of attention. Often, motion is needed to 
accomplish the aforementioned tasks. In this paper, we 
focus on recovering, via motion cues, what are known as 
establishment shots; some of the object tracking shots are 
also recovered as a by-product. These two types of shots 
often result in similar camera motion and this paper 
develops a technique to distinguish the two. The technique 
we developed is qualitative in the sense that accurate 
camera rotation and translation estimates are not needed; 
it is also general in that it can deal with arbitrary camera 
movement, including zoom component as well as multiple 
independent motions. From the shots thus extracted, 
indexes can be formed based on the intentions of these 
shots often resulting in high level indexes.  

The rest of this paper is organized as follows. In 
section 2, we discuss the semantics and the motion 
attributes of both the establishment shot and the object 
tracking shot. In section 3, we introduce the method of 
global motion estimation. In section 4, we put forth a 
method of detecting establishment shot. Section 5 deals 
with the problem of differentiating object-tracking shots 
from establishment shots. Section 6 presents experiment 
results and we conclude this paper with section 7. 
 
2. Establishment shot vs object tracking shot 

 
In movie-making industry, it is known that it is best if 

every story unit starts with an establishment shot or a re-
establishment shot. Establishment shots have the intention 
of bringing the audience to a new environment while re-
establishment shots have the intention of reminding the 
audience of the known environment. Normally 
establishment shot has a longer duration to acquaint the 
audience with the new environment whereas re-



establishment shot tends to be shorter because the purpose 
is to remind the audience about this environment, which 
has been visited before. For the purpose of this paper, we 
content ourselves with lumping both establishment shot 
and re-establishment shot together in one category and 
call them establishment shot.  

Establishment shot can be achieved using several ways. 
One way is to use the long shot if the scene allows itself to 
be captured with a wide-angle lens. Another way is to use 
panning or tilting shot, normally used if the environment 
involves scenery that cannot be covered by a static shot. 
What this paper is interested in is the establishment shot 
that is achieved using panning or tilting shot. Knowing the 
location of these establishment shots helps a lot in 
analyzing the story units of the movies and in providing a 
hierarchical structure to a video. 

We turn now to another common technique in 
cinematography, the so-called object-tracking shot, where 
the camera is following an object of interest. The resulting 
camera movement is often similar to that of the 
establishment shot, although it does not have the intention 
of introducing the surrounding environment to the 
audience but rather to indicate the region where the 
director wants the audience to focus upon. Since the 
establishment shot is liable to be confused with the 
tracking shot, it is necessary to formulate some measures 
to disambiguate the two.  

Before doing so, it is well to distinguish the slightly 
different meaning of the term “tracking” used here as 
compared to that used in traditional computational vision. 
Here, a tracking shot means that the director indeed has 
the intention of tracking the target. The fact that the target 
in question is more or less tracked does not necessarily 
mean that it is a tracking shot from the point of view of 
the director. For instance, there is a type of shot called the 
intermittent pan [5], which comprises of a sequence of 
rotation around the vertical axis that covers intermittent 
activity by various groups of people (see Fig. 1).  

 

 
Figure 1 Intermittent panning  

The camera begins by following a group of soldiers 
moving in double line (1). As they move away they meet 
an onlooking group turning to the left (2). The camera 
follows them. The soldiers then stop in front of a gardener 

(3) pushing a wheelbarrow. The camera follows him. The 
gardener stops as a man on horseback (4) passes in front 
of him. The camera moves with the rider. As he exits 
screen to the left, the camera stops and finally focus on a 
group of persons talking to each other (5). This type of 
shot can be considered as a form of establishment shot 
because the intermittent, overlapping actions give a sense 
of place as well as the activity going on in it, while at the 
end the central characters (5) are introduced naturally as 
part of the whole ensemble. The brief tracking episodes of 
characters 1, 2, 3 and 4 do not denote real interest in these 
characters as such (except in their being part of the whole 
ensemble) but are primarily used to lead up to the central 
characters in a smooth manner. 

 
Figure 2 Flow-chart of our algorithm 

 
Figure 2 summarizes the various blocks in our 

algorithm for establishment shot detection, which are 
presented in details in the next few sections.  
 
3. Global motion estimation and outlier 
localization 
 

The first step in our algorithm is to estimate the camera 
motion even with the presence of multiple motions. We 
assume that the dominant motion, which by definition 
covers half or more of the image, is only due to camera 
motion. Then an approach based on robust estimation of 
multiple motions by M.J. Black [6] is used to remove the 
flow fields at the motion boundaries of independently 
moving bodies. The approach first estimates a dominant 
motion in the scene and detects points that are not moving 
consistently with the dominant motion. These points are 
known as motion outliers. Adopting the affine motion 
model as in [6], the optical flow can be written as 
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where ][ 543210 a a a a a aa =�  are the parameters of the 
affine motion model. A robust estimation method is then 



used to find the best affine motion model through 
minimizing the error term 
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for all the possible values of a� . In the above formula, ρ is 
a robust function, R represents the whole image, the 
subscripts x, y and t denote the derivatives of the gray 
value I with respect to x, y and t respectively. Using the 
robust function, the effect of those pixels not conforming 
to the affine motion model can be reduced. 

After obtaining the global affine motion model, the 
motion error energy  e(x, y) at each pixel is computed by 
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If the error e(x, y)is larger than a constant threshold 
TRe=10, this pixel is identified as a global motion outlier. 
Finally, we obtained a binary value mask representing the 
motion outliers. We refer to this mask as energy map.  
 
4. Establishment Shot Detection 

 
The input to the establishment shot detection module 

consists of the motion parameters obtained by the global 
motion estimation module. Our method of detection is 
based primarily on the observation that an establishment 
shot should exhibit motion with significant a0 and a3 
component for a sustained period. From a computational 
point of view, this formulation has the advantage of 
bypassing the need to decouple the translational and the 
rotational terms (a0 and a3 lump them together). From a 
cinematic point of view, we also argue that these lumped 
quantities are the relevant categories since it seldom 
matters in practice whether say, a pan or a horizontal 
translation is used to effect a lateral camera movement.  

The preceding observation can be formulated in terms 
of the following descriptors. 

 
Table. 1 Summary of establishment shot descriptors 
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The lcm descriptor measures in a shot the longest 
period during which there is continual and large lateral 
movement. Its computation can be summarized by the 
following pseudocodes:   

 

Let lcmi =1, if mag > magth at frame i,  
               0, otherwise 
for i :=1 to len do
if lcmi = 1 then x++
else {

if lcm < x then lcm := x
x :=0}

 
To overcome problems caused by inaccuracy in motion 

estimation, which often results in the motion estimates 
momentarily dropping below the threshold and thus 
causing the system to underestimate the lcm value, we 
incorporate a hysteresis threshold test for the mag 
descriptor. That is, we introduce two thresholds for the 
mag value, magth1 and magth2, with magth2 > magth1. The 
mag value is allowed to drop below magth1 for 10 frames 
without terminating the count for lcm. However, if the 
mag value drops below magth2 but above magth1, the drop 
is allowed for 20 frames. 

 
Figure 3 Flow chart of establishment shot detection 

 
The flow chart in Fig. 3 describes the usage of all the 

descriptors and thresholds, where xxxth denotes the 
threshold value for the descriptor xxx. 
 
5. Object-tracking shot detection 
 

The method we put forth in section 4 cannot 
distinguish an establishment shot from an object tracking 
shot since these two kind of shots exhibit similar motion 
attributes. In this section, we introduce a scheme to detect 
those object-tracking shots which exhibit same motion 
features as the establishment shot and are thus liable to 
confusion. Our method has to first extract the target being 
tracked. It is quite obvious that the motion outlier 
detection scheme mentioned in section 3 alone will not 



produce an accurate mask for the moving object due to the 
lack of texture in the interior of a region and therefore no 
reliable motion flow can be computed in this region. Our 
extraction method is based on the fusion of the motion 
segmentation result and a set of regions obtained from 
color segmentation. The main advantage is that they 
produce a better segmentation as a result. We already 
discussed the problem of global motion estimation in 
section 3. Here we discuss the other two components: 
color image segmentation and generating the final mask 
for the moving object. 

 
5.1 Color image segmentation 
 

In this paper, we used a recent color image 
segmentation technique, namely JSEG developed in [7], 
which has the capability to deal with both homogeneous 
texture regions and homogeneous color regions. JSEG 
defines a J value at each pixel of the original image, from 
which a J image was constructed .  

This J value is based on the concept of between class 
variance and within class variance [8]. Assume Z is the set 
of N data points in the region R, each data point has a 
class label i  (i=1, 2, 3…C) where C is the total number of 
classes. For a color image, the L, U, V components of each 
pixel are quantized into several classes so that each pixel 
has a class label. Denote (x,y) by z and let Zi be the set of 
Ni data points belonging to the ith class, the mean of the 
data points belonging to the ith class and the mean of all 
the data points are respectively: 
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Clearly, the within class variance and the total variance of 
the data set Z are given by respectively: 
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The J value of the region R is defined as 
TWT SSSJ /)( −=  

To calculate the corresponding J value at the pixel 
z=(x, y), a local circular window centered at this pixel is 
chosen as the region R referred to in the above discussion. 
The size of the local window determines the resolution of 
the region boundary detection. To locate region 
boundaries in different details, the radius of the local 
window we used ranged from 4 to 18 [7]. The J image 
thus obtained is then finally segmented into different 
regions to obtain a region map using region-growing 
method [9]. 

 

5.2 Generating the final mask 
 
Motion segmentation provides us with an energy map, 

whose values indicate the locations of motion outliers. 
However, the motion outliers obtained are not enough to 
fully delineate a region. On the other hand, the color 
segmentation produces a number of closed regions but the 
object itself might be split into several regions. We now 
fuse the two results to obtain a better segmentation. 

We collect from the energy map the motion error 
energy values of all the pixels at the region boundaries in 
the region map. We also propagate the motion error 
energy of all the pixels in the vicinity of the boundary 
pixels. After that, we identify those regions having big 
motion error energy on their boundaries.  

The motion error energy at a boundary pixel is 
calculated in the following way. Let emotion(xb, yb) or 
emotion( zb ) be the motion error energy at the boundary 
pixel zb=(xb ,yb), where the subscript b means the pixel is 
at a region boundary. Then identify those non-boundary 
pixels with nonzero motion error energy from the energy 
map. If there is such a pixel z=(x, y) with nonzero motion 
error energy, we propagate the motion error energy of this 
pixel to all the boundary pixels {zb=(xb, yb)}.  The 
propagated value from z to zb is computed as follows: 
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where, in the above equation, d(z, zb) is the Euclidean 
distance between z and zb. The total motion error energy 
of the pixels zb at the region boundaries is 
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There are two parameters: the size of the neighborhood 
and σ . We set the neighborhood as a 77 ×  square area 
centered at the current pixel, and the second parameter as  

We then compute the mean motion error energy )( iRme  
of ith segmented region in the region map: 
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where the summation is over the iN  pixels on the 
boundary of region Ri.  Next, we identify those regions 
conforming to the following conditions as candidates of  
moving objects: 

1. The area of the region A(Ri) ≥  A0. 
2. The mean motion error energy of the region 

me(Ri) ≥ me0. 
A0 and me0 are the thresholds of the region area and mean 
motion error energy respectively. Finally, merge those 
regions of area smaller than A0 but of mean motion error 
energy greater than me0 with the neighboring candidate 
moving objects if there are any.  

when zb is in the 
neighborhood of z 
 
otherwise 



5.3 Markov random field labeling 
 

Since the background may be noisy or not perfectly 
conformed to the affine model assumption, the motion 
segmentation obtained previously can be further refined. 
We have therefore adapted the Markov Random Field 
(MRF) to refine the results of the motion segmentation 
obtained earlier. MRF processes are stochastic models 
having the ability to capture the spatial continuity inherent 
in images. They can be used to more accurately label the 
segmented regions as foreground objects or background. 
The energy functionals defined for the posteriori energy 
function are as proposed by Tsaig and Averbuch [10]. 

To impose temporal coherency on the labeling, Tsaig 
and Averbuch[10] introduced dynamic memory, which 
plays an important role in the energy functionals. This 
memory is a map defined over the image pixels, and 
functions approximately as a record of the resultant 
number of times a pixel belongs to foreground region. It is 
used in conjunction with an optical flow based mechanism 
to shift the memory values according to foreground 
movement. 

However due to the approximating nature of this 
mechanism and the small size of the tracked object 
relative to the background, this scheme is not suitable for 
segmenting tracked objects in object tracking shots, 
especially over long sequences. This is due to minute 
background pixels being misclassified with foreground 
pixels over time, adversely affecting region classification.  

We use a new dynamic memory system that defines a 
piece-wise linear memory function to assign memory 
values according to the function mf  
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where 
bf cc ,  is the number of times it has been classified 

as foreground and background over a predefined number 
of recent frames. The memory values at both ends are 
capped to ensure more responsiveness, with the positive 
end having a higher cap to reflect the fact that there is 
more foreground than background. The higher gradient 
near the end of the positive x axis encourages a high  

bf cc −  to result in higher chances of being classified as 
foreground. The resultant labeling of regions as shown in 
Fig. 4 using the MRF refines the region segmentation to 
produce an accurate segmentation mask.    
 
5.4 Tracking  

 
We use just one criteria to distinguish an object 

tracking shot from an establishment shot, namely the 
independently moving object(s) must be present 
throughout most, if not all of the entire length of the shot. 

This is because the object tracking shot is by definition a 
director’s device to focus the attention of the audience on 
an object(s), without which the shot will not serve the 
purpose. Conversely, the presence of the same 
independently moving object(s) throughout an 
establishment shot is extremely unlikely.  
 

Figure 4 Motion Segmentation Resutls 
 
We exploit certain characteristics unique to object 

tracking shots. As opposed to the traditional problem of 
tracking large numbers of arbitrarily moving points, we 
are corresponding a small number of measurements to a 
similarly small number of objects that may possibly be 
undergoing drastic changes in appearances that make them 
difficult to track. These drastic changes, or “tracking 
transitions”, include sudden and prolonged occlusion, 
merging, splitting and uncovering. Due to the possibly 
severe nature of the tracking transitions of tracked objects, 
an approach that is specifically optimized for these 
situations using ad-hoc heuristics will be simpler, and 
work better. 

For each single frame, the algorithm first uses a 
dilution morphological filter on the motion segmentation 
mask to filter off noise. This is followed by a greedy 
recursive region filling procedure using 8-connectivity. 
Regions below a certain size are eliminated, and 
remaining ones are labeled with a region number. Several 
blob attributes like the area, centroid, moments and color 
statistics of each of the 3 channels are extracted from 
every region. Finally, the area of overlap between the 
present and previous frame’s segmentation mask for every 
possible pair of regions is computed.  

Let an object blob be Ok,i, where k is the frame number 
where the object blob is observed and i is the index of the 
blob in its frame. The validation measure we use consists 
of both the centroid distance and area overlap between Ok,i 
and Ok-1,j, where  i, j are blob indices iterating through 
every valid blob in its frame. We find that area overlap is 
a very robust and accurate method to find one-to-one 
correspondence between blobs not undergoing transitions.  

We next detect for merging and splitting transitions. 
However assuming that such transitions only involve two 
blobs, the area overlap measure can once again determine 
the correspondences that give rise to these transitions via 

 

 

 
   

a. Independent object 
segmentation without MRF 

  b. Independent object 
segmentation with MRF 



area checksums. We then detect occlusion and 
unocclusion transitions. If we hypothesize Ok-1,j maps to 
Ok,i via these transitions, then both their area change and 
overlap should be above a threshold. Finally, the 
following criteria should hold true: 

 ),(),( ,,1,,1 ikjkikjk OOSSDOOTSSD −− >  
where OTk-1,j  is Ok-1,j  transposed by centroid differences 
between   Ok-1,j, Ok,i  and SSD is the Sum of Squared 
Difference defined over the pixels in the overlap.  
We use the number of recent frames over which a blob is 
undergoing transition as a measure of blob instability. 
This allows us to constantly save a blob’s attributes while 
it is stable for later matching and identification purposes, 
where the Mahalanobois distance of blob attributes is used 
for matching. We also incorporated the ability to delete 
and initiate new blobs to identify objects that may be 
temporarily merged or occluded in order that an object 
tracking shot can be correctly classified. 
 
6. Experimental Results 

 
For the test, we used 50 video shots (totally 54 

minutes) cut out manually from four VCDs (The 
Bodyguard, The Cliffhanger, The Predator, Walking with 
Dinosaur). In these clips, there are 16 establishment shots, 
7 object-tracking shots and 27 other shots. After the first 
step of establishment detection, there are totally 22 shots 
detected as establishment shots. We called these shots as 
potential establishment shots in table 2. The true class 
labeling of these shots are listed in the last three columns 
in the same table. 

Table 2 Complete results of the experiments 
 No. of clips ES TS Other 

Test Database  50 16 7 27 
Potential ES 22 14 6 2 
Potential TS 6 1 5 0 

Correctly Classified 43 13 5 25 
ES: establishment shot; TS: object-tracking shot 

 
As expected, most of the object-tracking shots were 

falsely detected as establishment shots.  We then passed 
the output of the first step, i.e. a total of 22 potential 
establishment shots, to the module for object-tracking shot 
detection. Five of them were correctly detected as 
potential object-tracking shots, with one false alarm. Due 
to the lack of sustained independent motion in 
establishment shots, the tracking module had no difficulty 
in recognizing most true establishment shots save for one 
false alarm, which was due to violation of the affine 
model assumption. There was one remaining object 
tracking shots that was misidentified as potential 
establishment shots. This is missed by the tracking module 
because the tracked object was too small for the motion 

segmentation module to detect it. Due to the rarity of 
intermittent panning establishment shots, this category of 
shot was not tested. However the tracking mechanics 
involved is exactly equivalent to transitionless tracking, if 
not simpler: these shots are automatically disqualified the 
moment the first tracked object leaves the screen. 
 
7. Conclusion 
 

This work presents an approach to detect establishment 
shots, which is realized by analyzing qualitatively the 
lateral camera movement as described by the global affine 
motion model. Due to the similar motion attributes 
between establishment shots and object-tracking shots, we 
put forth a technique to differentiate the object-tracking 
shots from the establishment shots. The segmentation of 
tracked objects is based on motion and color 
segmentation, which is further refined by a MRF. The 
segmented output is fed into a tracking module to detect 
object tracking shots. The results significantly improve the 
precision rate of establishment shot detection by removing 
these object tracking shots. For better precision, we intend 
in our future work to devise an approach to detect close-
up shots, which can cause errors by violating the 
assumption of the dominant motion being the background 
motion. 
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