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Abstract

3D reconstruction from an unordered set of images may

fail due to incorrect epipolar geometries (EG) between

image pairs arising from ambiguous feature correspon-

dences. Previous methods often analyze the consistency be-

tween different EGs, and regard the largest subset of self-

consistent EGs as correct. However, as demonstrated in

[14], such a largest self-consistent set often corresponds to

incorrect result, especially when there are duplicate struc-

tures in the scene. We propose a novel optimization crite-

ria based on the idea of ‘missing correspondences’. The

global minimum of our optimization objective function is

associated with the correct solution. We then design an ef-

ficient algorithm for minimization, whose convergence to a

local minimum is guaranteed. Experimental results show

our method outperforms the state-of-the-art.

1. Introduction

Structure-from-motion (SFM) algorithms estimate both

camera poses and 3D structures of a scene from images.

SFM with unordered image sets such as internet images is

a challenging task. Typical algorithms such as ‘Bundler’

[17] start with epipolar geometries (EG) (e.g. essential ma-

trices) computed between image pairs, and integrate them

into some global reference frame in subsequent stages. In-

correct EGs could result in catastrophic failure and incor-

rect reconstruction. Therefore, it is critical to identify and

remove them.

Erroneous EGs could arise from: 1) degenerate config-

uration in relative pose computation, 2) matching failure

due to feature descriptors, or 3) duplicate structures in the

scene. In the first two cases, the incorrect EGs are often in-

dependent and inconsistent from each other. Hence, previ-

ous methods often detect them by local geometric verifica-

tion such as trifocal tensor fitting among image triplets [7].

When the percentage of the incorrect EGs is small, Martinec

and Pajdla [11] identified them by checking the residual in

global rotation and translation registration. Alternatively,

loop consistency analysis of camera rotation [19], [3] can

be applied. When there are duplicate structures in the scene,
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Figure 1. The middle of first row shows the true configuration in

which multiple images are captured around a cup. We highlight a

pair of correct and incorrect image matches in the green and red

rectangles respectively. The second row are the reconstructions

obtained using [17] and [19] respectively. All cameras are incor-

rectly reconstructed on one side of the cup.

they could generate a large set of incorrect EGs that are con-

sistent with each other, which makes the aforementioned

consistency checks fail. Such an example is provided in

Figure 1, where multiple images are captured around a cup.

In the top of Figure 1, we connect two cameras by a line

segment, if an EG can be computed between them.1 (Note

that we do not exhaustively draw all these line segments to

make the picture clear.) Images of the two different sides of

the cup can match and generate many incorrect EGs. One

of such image pair is shown in the red rectangle on the left.

The green rectangle on the right shows a correctly matched

image pair. The incorrect image pairs overwhelm the cor-

rect ones in number, and as a result, previous methods such

as [17, 19] will generate incorrect results as shown in the

bottom row, where all the cameras are reconstructed on one

side of the cup.

This problem was solved in [14] by using image times-

tamps and ‘missing correspondences’ in local image neigh-

borhood. However, image timestamps can only be ap-

1We apply [12] to compute EGs. We consider an EG exists if at least

30 points with reprojection error less than 4 pixels can be reconstructed.



plied to sequentially captured data. Missing correspon-

dences analysis in image triplets was first introduced in [18]

to locally identify incorrect image pairs from a third im-

age. However, as the authors acknowledged in their paper

[18, 14], incorrect pairs may also pass this local verification.

In this paper, we argue that the ‘missing correspon-

dences’ suffices to solve the visual ambiguity when ana-

lyzed in a more holistic fashion. Instead of analyzing lo-

cally within a triplet as in [18], we propose a novel objective

function that evaluates the overall quality of a 3D recon-

struction by using the missing correspondences. We first

demonstrate the global minimum of this objective function

is associated with the correct 3D reconstruction. We then

design an efficient method to optimize this objective func-

tion.

We construct a match graph based on pairwise image

matches, where each vertex is a camera and two cameras are

connected if an EG can be computed between them. Each

edge is weighted by the reciprocal of the number of corre-

spondences between its image pairs. A spanning tree of the

graph determines a 3D reconstruction. Hence, we search

in the space formed by all spanning trees. We start from

the minimum spanning tree, and iteratively identify possi-

ble problematic edges and replace them by favorable ones to

minimize our objective function. The algorithm stops when

no spanning tree with better score can be found. In our al-

gorithm, each iteration always decreases the non-negative

objective function; thus convergence is guaranteed. The

convergence is also typically fast, because the number of

iteration required is bounded by the number of different 3D

reconstructions arising from the ambiguous EGs, which is

often not too large in real data.

Our main contributions are twofold. First, we design an

objective function that correctly describes the optimality of

a reconstruction. Second, we design an efficient optimiza-

tion of this objective function, and demonstrate the superi-

ority of our approach compared to the state-of-the-art.

2. Related Work

Detection of incorrect epipolar geometries (EGs) is cru-

cial for SFM algorithms. Recent methods used local heuris-

tics to determine the ordering of images for incremental

SFM [17]. Schaffalitzky et al. [15] combined image in-

variants/covariants and geometric relations to organize un-

ordered image sets of multiple non-overlapping scenes for

image browsing in 3D. Martinec and Pajdla [11] and Sinha

et al. [16] both addressed this problem implicitly in a global

registration framework. The former iteratively discarded

the image pair with the highest residual, while the latter

weighted different epipolar constraints using the number of

triplet-consistent points. Li et al. [9] used maximum span-

ning tree on the match graph to determine the order of image

registration, where match graph edges were weighted by the

number of correspondences. All these methods only work

when the percentage of incorrectly matched image pairs is

small.

To handle more incorrect EGs, both Havlena et al. [7]

and Klopschitz et al. [8] performed reconstruction with

submodels obtained from view triplets. Zach et al. [19] in-

ferred the validity of EGs by evaluating loop consistency in

the match graph. Govindu [6] adopted a sampling approach

in the spirit of RANSAC to sample spanning trees and se-

lect the largest set of self-consistent EGs. All these methods

implicitly assume that the erroneous EGs are statistically in-

dependent and inconsistent, and are relatively few in num-

ber compared to the correct EGs. Thus, these methods fail

on data with a large number of incorrect EGs arising from

duplicate scene structures. Recent work [2] incorporated

GPS data as addtional constraint to initialize the SFM prob-

lem globally. EGs inconsistent with the global motion were

identified as outliers and removed from subsequent compu-

tation.

Zach et al. [18] first proposed to analyze ‘missing corre-

spondences’ among image triplets to identify wrong image

matches. Roberts et al. [14] incorporated this cue to assist

an Expectation-Maximization based estimation of the cor-

rectness of each image pair. However, both of them only

analyze missing correspondences locally, and cannot iden-

tify all incorrect EGs. While Roberts et al. [14] resorted

to image timestamps to solve the problem, their approach is

not applicable to unordered images.

Data association problem is also extensively studied in

simultaneous localization and mapping (SLAM) [5, 13, 1].

SLAM algorithms must detect reoccurrence of previously

observed scenes, and decide whether it is due to loop clo-

sure or duplicate scene structures. Due to the sequential na-

ture of SLAM images, this decision is much easier to make

than our problem.

3. Quantitative Reconstruction Evaluation

Intuitively, in a correct reconstruction, a 3D point should

have similar appearance in images where it is visible. An

approximate surface normal can be computed for each 3D

point according to [4]. We define a SIFT descriptor[10] for

a reconstructed 3D point as the SIFT descriptor of the image

feature point in its most front parallel image (with respect to

the normal associated with the point). If a 3D point is vis-

ible in an image, its SIFT descriptor should match with the

SIFT descriptor evaluated at its image projection. There-

fore, the validity of a 3D reconstruction can be defined as

ER =
1

M

M
∑

p=1

P̂missing(p) =
1

M

M
∑

p=1

1

N

N
∑

i=1

Pmissing(p, i). (1)

where M is the total number of reconstructed 3D points,

and N is the total number of images. P̂missing(p) is the av-

erage of Pmissing(p, i) over all images, and Pmissing(p, i)
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Figure 2. Missing correspondence analysis, where ‘missing points’

are marked in red. Shown is a view of a cup that forms a triplet

with the cameras pair (Caml, Camr) highlighted in red in Fig-

ure 1. (a) In our formulation, we check all the reconstructed 3D

points in all images. A large amount of ‘missing correspondences’

can be identified for the 3D reconstruction corresponding to a

spanning tree containning (Caml, Camr) as the only erroneous

pair; (b) Local triplet analysis according to [18] fails to identify

the incorrect image pair.

is the probability that the SIFT descriptor of p does

not match with that of its image projection in view i.
Pmissing(p, i) equals to 0/1 if p can/cannot be matched to

image feature points within 50 pixels of its projection (our

image resolution is about 1200 × 800) 2. To account for

matching failures and mismatches, we also penalize p being

invisible in the image i by setting Pmissing(p, i) = α (we

use α = 0.05 in all our experiments). We assume p is visi-

ble in image i if it is within the field of view of the camera

and the angle between its surface orientation and the line-

of-sight is less than 60◦ (occlusion is not considered). For

easy reference, we refer p as a ‘consistent’/‘inconsistent’

point respectively when a match can/cannot be found. An

example is illustrated in Figure 2 (a), where consistent and

inconsistent points are marked in green and red respectively.

Intuitively, ER evaluates the average likelihood that a re-

constructed 3D point is missing in the images. Ideally, in a

correct reconstruction, this probability should be zero. In

real data, it is often a small positive value because of the

imperfect feature registration. In comparison, incorrect 3D

reconstruction with erroneous image matches will result in

a large positive ER. Thus, intuitively, the global minimum

of ER should correspond to a correct 3D reconstruction.

The definition ofER is similar to the ‘missing correspon-

dences’ in [18]. The key difference is that we evaluate ER

comprehensively over all reconstructed points and all im-

ages. In comparison, Zach et al. [18] evaluated ‘missing

correspondences’ triplet by triplet to identify incorrect im-

age pairs locally. Local triplet verification cannot identify

some incorrect image pairs. For example, the image in Fig-

ure 2 (b) forms a triplet with the incorrectly matched image

pairs in the red rectangle in Figure 1. These three cameras

are marked by red in Figure 1. However, there is little ‘miss-

2we threshold on the angle between two SIFT descriptors to decide if

there is a match. Since the matching ability of SIFT descriptor decreases

quickly as the view change gets large, we use two thresholds: 50◦ if the

view change is less than 45◦ (with respect to the reference view of the 3D

point), and 60◦ if the view change is between 45◦ to 60◦ . We consider a

point as invisible in images with view change greater than 60◦.
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Figure 3. Objective function evaluation. We check up to 100 dif-

ferent 3D reconstructions for each example in Figure 4, and plot

the objective function values of these reconstructions in ascending

order. The value for ‘ground truth’ is marked by a square. (a) and

(b) show the plotting with Equation 1 and Equation 4 respectively.

ing correspondences’ in Figure 2 (b). Hence, this triplet will

be considered as correct in [18]. In comparison, we evalu-

ate ER on the complete 3D reconstruction (resulting from a

spanning tree with only one erroneous edge as in the triplet).

Many inconsistent points can be identified in Figure 2 (a).

3.1. Objective function validation

We first validate our objective function in Equation 1

with a number of real data to demonstrate that its global

minimum is often associated with the true 3D reconstruc-

tion. For each of the examples in Figure 4, we obtain up to

100 different 3D reconstructions and evaluate the objective

function Equation 1 on these results. To obtain these differ-

ent 3D reconstructions, we randomly sample spanning trees

from the match graph. Each spanning tree gives a 3D recon-

struction of the scene. We further require these 3D recon-

structions to be different from each other (see more details

in Section 5). Besides these randomly sampled spanning

trees, we also manually specify a spanning tree with only

correct EGs to obtain the ‘ground truth’ result. We then

evaluate the objective function for each 3D reconstruction.

We sort these results in ascending order and plot them in

Figure 3 (a). We mark the position of the ground truth re-

construction by a square. Clearly, among these 100 different

3D reconstructions, the ‘ground truth’ result always leads

to the smallest value of the objective function. This gives

a strong indication that the global optimal of Equation 1 is

associated with the true configuration. It suggests that we

can obtain the correct solution by searching the space of all

spanning trees and choosing the one with minimum cost.

4. Initialization

Given the objective function, we minimize it to seek a

correct 3D reconstruction. Starting from EGs computed be-

tween image pairs, we perform triplet verification as in [14].

We only keep EGs that are supported by at least one triplet.

For each image pair with an EG computed, we further re-

construct 3D points with rough orientations from their fea-

ture matches [4]. We represent a pairwise reconstruction by

the depth of feature points in both images.



We define a match graph, where each camera is a ver-

tex and two cameras are connected if an EG can be com-

puted between them. We assume the graph has only one

connected component, though we can process component

by component otherwise. Each edge of the match graph

is then associated with a weight 1

nij
, nij is the number of

reconstructed 3D points between i and j. We look for a

spanning tree of the match graph to minimize our objective

function. We choose the minimum spanning tree to initial-

ize this search, and compute the 3D reconstruction from it

according to [17]. Bundle adjustment is performed to refine

the relative camera poses. After this refinement, the initial

objective function is evaluated.

5. Efficient Optimization

We greedily search for a better spanning tree from a

given starting point. We design a strategy to ensure that

the whole process is efficient. First, we notice that different

spanning trees could lead to the same 3D reconstruction.

To avoid repetitively evaluating equivalent trees, we cache

visited 3D reconstructions and only search trees that lead

to different 3D reconstructions. Second, at each step of the

iterative search, we replace only one edge of the spanning

tree to move to a new tree, such that the two successive trees

are similar and we can reuse the computation in 3D recon-

struction. Third, we further provide an alternative definition

of the objective function to facilitate its evaluation. In the

following, we will introduce these methods in turn.

5.1. 3D reconstruction caching

Given a spanning tree, we can classify all the EGs as

consistent or inconsistent with it. We record all consistent

EGs for each visited spanning tree. Given a new tree, if all

the EGs on its edges are consistent with another tree that

has been previously visited, we consider this new tree as

redundant and skip it.

In the following, we explain how to decide if an EG is

consistent or inconsistent with a given spanning tree. This

is essentially similar to the loop consistency verification in

[19]. Given a spanning tree, the relative motion between

any two cameras can be computed by chaining the relative

motions from pairwise EGs along the tree path. On the other

hand, we can also derive their relative motion from their

own EG. Note that chaining the relative translation requires

knowledge of the baseline length, which is not determined

by the EG (i.e. an essential matrix). We follow [14] to de-

termine baseline lengthes. Specifically, we form a triplet

tree according to the spanning tree, and traverse this tree

of triplets to decide the baselines of child triplets according

to that of their parent. Further, the baseline between each

camera pair is computed only once according to the first vis-

ited triplet containing that camera pair. Hence, we have two

relative motions between camera i, j, namely, (rtij , t
t
ij , s

t
ij)

from chaining the EGs along the tree path, and (rij , tij , sij)
from the direct EG and the baseline length from its rescaled

triplet.

We can then determine an EG as consistent or inconsis-

tent according to the agreement between these two relative

motions.We compute the probability of an edge being in-

consistent as,

Prob(eij ∈ S
c) = e

−βXT
ijΣ

−1Xij , (2)

where Sc indicate the set of inconsistent edges, β is a con-

stant (we set β = 0.1), Σ is the covariance matrix, and

Xij = 1/(max(L/L0, 1))
(
r̂ij , t̂ij , ŝij

)T
is the motion dis-

crepancy vector between camera i, j. r̂ij is the orientation

difference of the two relative rotations (calculated as the av-

erage angular difference between the corresponding rows of

the two relative rotation matrices); t̂ij is the orientation dif-

ference between the two relative translations, and ŝij is the

baseline length difference normalized by the average base-

line length of immediate adjacent cameras on the spanning

tree. The covariance matrixΣ is computed from motion dis-

crepancy vectors X obtained from geometrically consistent

triplets. To account for drifting effects, we further divide

r̂ij , t̂ij and ŝij by L/L0, when L > L0. Here L is the dis-

tance between the two cameras i and j along the spanning

tree, L0 is chosen to be 6 (same as in [19]). All edges with

Prob (eij ∈ Sc) > 0.5 are considered inconsistent and as-

signed to Sc.

5.2. Incremental spanning tree search

At each step we break one edge eoff from the existing

spanning tree, and add another edge eon to connect the two

subtrees Tl and Tr generated by removing eoff. The relative

camera poses within Tl and Tr are unchanged during this

process. Hence, we can reuse the 3D reconstruction in the

previous tree. When searching for the edge eon, we only

consider edges whose EGs are inconsistent with the previ-

ous spanning tree to skip trees leading back to the previous

3D reconstruction.

We can keep the camera poses in Tl unchanged, and use

a global transformation to update cameras in Tr by

[

Ri
new tinew

]

=
[

Ri
old tiold

]

[

sR t

0 1

]

(3)

To decide s,R, t, we find graph edges that are consistent

with the new spanning tree, i.e. Prob(eij ∈ Sc) < 0.4,

with one camera in Tl and the other camera in Tr. R is

computed as the average of all relative rotations on these

edges. We use corresponding 3D points reconstructed from

Tl and Tr respectively to decide s and T . At least two points

are required for a unique solution. We follow [11] to select

four reliable points on each candidate edge (this is done in

the initialization stage for view pairs). We further check the

reprojection error of these 3D points with the new camera



poses. If the error is greater than 20 pixels, we discard the

current eon and search for the next.

Once the cameras are merged, we update the 3D posi-

tions of the reconstructed feature points. Recall that we

have 3D reconstruction between each image pair during ini-

tialization. Given the camera poses, we use the baseline

length to fix the scale of the pairwise reconstructions whose

EGs are consistent with the new spanning tree. A feature

point in an image has its depth reconstructed from multiple

image pairs, each of which gives it a depth value. We sort

all these depth values of each feature point, and choose the

middle 20% values to compute an average depth for each

image feature point. This approach to 3D reconstruction is

highly efficient, since we only need to scale some existing

pairwise reconstructions and average their resulted depths.

5.3. Fast objective function evaluation

To make the evaluation of Equation 1 efficient, we give

an alternative objective function definition as follows

EF =
1

∑N

i=1
Mi

N
∑

i=1

Mi
∑

p=1

P̂missing(p). (4)

Mi is the number of image features from view i with recov-
ered depth (For computation efficiency, we divide the image

into grid of cells with size 50 × 50 pixels and sample one

feature from each cell). This objective function is slightly

different from Equation 1. In fact, we can see
N
∑

i=1

Mi
∑

p=1

P̂missing(p) =
M
∑

p=1

wpP̂missing(p) (5)

Here, wp is the number of image features from which the
3D point p is reconstructed. Hence, besides the normaliza-

tion factor, the difference between EF and ER is that EF

gives larger weights to 3D points associated with more im-

age features. It is reasonable since these 3D points are more

reliable. We also plot the values of Equation 4 in Figure 3

(b). The correct 3D reconstruction still corresponds to the

global minimum of Equation 4. In fact, we prove the correct

reconstruction should correspond to the global minimum of

Equation 4 in the appendix.
During the search of spanning tree, we need to compute

the change in the new objective function in Equation 4 once
eoff is removed or once eon is added. To save computation,
we do not compute Equation 4 from scratch. When eoff is
removed, the drop in Equation 4 is equivalent to

ED =
1

∑N

i=1
Mi

∑

i∈Tl

Mi
∑

p=1

1

N

∑

j∈Tr

(Pmissing(p, j)− α)

+
1

∑N

i=1
Mi

∑

j∈Tr

Mj
∑

p=1

1

N

∑

i∈Tl

(Pmissing(p, i)− α).

Intuitively, by removing the edge connecting Tl and Tr,

points reconstructed from one subtree will become invisi-

ble in the images of the other subtree. Hence, we will re-

place their likelihood of inconsistency by the constant α.

Further, the same term Pmissing(p, j) appears in the com-

putation of ED for different tree edges. We only compute

each Pmissing(p, j) once and store its value for better run-

time efficiency.

After the insertion of eon, we compute EI , the increase

in Equation 4 using the same expression as for ED. Specif-

ically, we update the probability of a point reconstructed in

Tl (or in Tr) being missing in images in Tr (or in Tl). The

energy of the new spanning tree is now given by Enew =
Eold − ED + EI .

5.4. Iterative search algorithm

To choose the two edges eoff and eon, we sort all edges on

the previous spanning tree according to their drop in Equa-

tion 4 in descending order. We evaluate these edges one by

one. For each edge, we look for eon from the set of edges

that are inconsistent with the previous spanning tree to link

Tl and Tr. Once we find a pair eoff and eon that lead to

a Enew smaller than Eold, we remove eoff and add eon to

swap to a new spanning tree. The iteration stops when no

such pair of eoff and eon with lower energy can be found.

We then use all the EGs consistent with the final spanning

tree to compute the final 3D reconstruction with bundle ad-

justment. We summarize our algorithm in Algorithm 1.

Algorithm 1: Optimal spanning tree search.

Initialization:

1) Detect and match SIFT features to compute pairwise

EGs. Keep SIFT features for fast objective function

evaluation.

2) Sample a starting tree on the EG graph and compute

camera poses with bundle adjustment.

Iterative search:

3) Classify EGs into consistent/inconsistent set

according to the current spanning tree.

4) Sort tree edges according to ED in descending order.

5) Go through sorted tree edges one by one. For each

eoff, look for an eon from the inconsistent set, and

evaluate the change of objective function.

6) If the objective function can be reduced, replace eoff

by eon to get a new tree and go to step 3)

7) If no result with lower energy can be found, stop.

6. Experiment

We experimented on a PC with Intel-Core2 Quad CPU

that runs at 2.83GHz and 4GB RAM. We evaluated our

algorithm with eight data sets as shown in Figure 4(final

bundle adjustment is performed). In each row, the first

three columns are two of the input images, weight matrix

of the match graph, and binary labeling of the consistent

(blue) and inconsistent (red) EGs upon convergence respec-

tively. The last three columns are the visualizations of our



Dataset N t1 t2 t3
BOOKS 3 19 37/72 919/928 1440/1740

BOXES 25 102/176 15/25 1680/1980

CUP 64 625/826 202/240 2640/3000

DESK 31 92/153 1869/1889 1800/2100

OATS3 23 59/114 1715/1740 1620/1920

HOUSE 19 19/49 6/9 2400/2700

INDOOR 153 1569/2707 369/424 -

FC 150 1792/2533 531/561 -

Table 1. Comparison of runtime efficiency. N is the number of

input images. t1, t2 and t3 are runtime (seconds) of our algorithm,

[19] and [14] respectively.

results, the results from [19] and [17] respectively. As can

be seen from the figure, [17] failed on all examples. [19]

failed on all examples except the ‘Desk’ example in (d) . In

comparison, our method can generate correct reconstruction

among all these examples. Note that we only compare with

[19] and [17] here, since their implementations are publicly

available online. In fact, the examples (a)-(f) are from [14].

As reported in [14], their method failed on (b), (d) and (e)

when timestamps information was not used. Figure 4 (g)

and (h) shows two additional examples with 153 and 150

input images respectively. Both of them have a large num-

ber of repetitive features. Readers can zoom in the pdf file

to see that the cameras are incorrectly reconstructed at one

side by [19] and [17]. In comparison, our method generated

good results on both of them.

We further provide the runtime efficiency for these al-

gorithms in Table 1 (for all the methods we list both the

runtime without/with final bundle adjustment, but exclude

the computation of inidividual EGs). These examples are

sorted in the same order as in Figure 4. Though [19] is

faster than our algorithm when the match graph is relatively

simple, it often generates incorrect result. The running time

of [14] was provied by the authors and obtained on a PC

with a Core 2 Duo 3 GHz processor and 4GB RAM. They

are much slower than our current implementation. The bot-

tleneck of our algorithm is the evaluation of the objective

function. This step could be easily parallelized to achieve

significant speed-up for large scale data.

Convergence analysis During the spanning tree search,

we begin from the minimum spanning tree obtained on

the weighted match graph. In our experiments, this mini-

mum spanning tree often contains only a few (1-2) incor-

rect EGs. From such an initial tree, our method converged

to the correct 3D reconstruction after traveling through 2-3

spanning trees. To test the capability of our greedy search

algorithm, we deliberately chose initial spanning trees with

larger number of incorrect EGs. We did this on the example

in Figure 4 (f) by beginning with a randomly sampled span-

3The duplicate objects in these sequence are created artificially by mov-

ing them around. We remove images with large portion of the duplicate

object missing to prevent the discrepancy that will arise otherwise.

(a)

(b)
Figure 5. Failure cases for our algorithm.

ning tree. We observed that the algorithm still found the

correct solution after traversing 10-20 spanning trees start-

ing from an initial one with 5-8 erroneous edges out of 18

in total.

Limitations We noticed mainly three limitations for our

algorithm. First, the greedy search could get stuck at a lo-

cal minimum. In our algorithm, we implicitly assume that,

given an incorrect spanning tree, one can always find a tree

with a lower score of Equation 4 by replacing ONE edge.

This is however not true in general. Such an example is

given for the ‘cup’ example in Figure 5 (a). Its final span-

ning tree has two incorrect EGs and cannot be improved by

our algorithm. In other words, our method cannot guarantee

to find the global minimum, though its convergence is guar-

anteed. Hence, in practice we might need to start from mul-

tiple different initialization, and choose the result with the

minimum score in Equation 4. Second, our algorithm will

fail on scenes with duplicate structures but little background

features, such as the example in Figure 5 (b). This ‘Temple

of Heaven’ example is rotationally symmetric. There are

little ‘background’ points in the image. Hence, we cannot

identify ‘missing correspondences’, and all the cameras are

incorrectly reconstructed at one side of the building by our

method. Last, our estimation of visibility could be incor-

rect in scenes with complicated occlusion. Better visibility

estimation could improve the performance of our system.

7. Conclusion

We propose a method for robust structure-from-motion

in scenes with large number of incorrect epipolar geome-

tries, mainly caused by repetitive scene structures. We de-

fine a non-negative quantitative measure for the quality of

a 3D reconstruction based on the idea of ’missing corre-

spondences’. We show this function will attain global min-

imum for the correct 3D reconstruction. Hence, we design

a greedy iterative algorithm to search for the correct 3D

reconstruction by minimizing this function. For efficient

search, we cache visited solutions and revise the objective



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
Figure 4. Experiment results on different data sets. From left to right: sample views from image sequence, weighted match graph, binary

labeling upon convergence, 3D reconstruction using our algorithm, [19], and Bundler [17].



function to allow reuse of computation in previous itera-

tions. The result is an efficient structure-from-motion algo-

rithm that works robustly in highly ambiguous scenes.
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A. Proof of Global Minimum

The normalization term 1∑
N
i=1

Mi
in Equation 4 remains

unchanged for different 3D reconstructions. Given a 3D
reconstruction, the objective function evaluated for feature
points in image i is

Mi
∑

p=1

P̂missing(p) =
1

N

Mi
∑

p=1

N
∑

j=1

Pmissing(p, j)

=
1

N

N
∑

j=1

{
∑

p∈S
++

ij

Pmissing(p, j) +
∑

p∈S
−−

ij

Pmissing(p, j)

+
∑

p∈S
−+

ij

Pmissing(p, j) +
∑

p∈S
+−

ij

Pmissing(p, j)}.

Here, we exchange the sequence of the two summation
and partition the feature points in image i into four sets,

S
++

ij ,S−−

ij ,S−+

ij and S
+−

ij according to their evaluation in

each image j. The first plus/minus sign denotes the feature
point is actual visible/invisible in the image j. The sec-
ond plus/minus indicates it is detected as matched/missing
according to our feature matching criteria. Different 3D re-
constructions give different partition of the image features.

In the ground truth reconstruction, points in S
+−

ij (or S−+

ij )

should go to S
++

ij (or S−−

ij ). Both S
+−

ij and S
−+

ij become

empty. Hence, moving from any 3D reconstruction to the
ground truth, the change in the objective function (evalu-
ated in the image i) is

∆i =
1

N

N
∑

j=1

{
∑

p∈S
−+

ij

(α− Pmissing(p, j))

+
∑

p∈S
+−

ij

(

P ′
missing(p, j)− α

)

}.

where P ′

missing(p, j) is evaluated with the ground truth re-

construction. Therefore, the inequality ∆i < 0 will hold, as
long as

P̃ ′
+−

missing < α < P̃
−+

missing .

Here, P̃ ′
+−

missing and P̃−+

missing are the average of

P ′

missing(p, j) and Pmissing(p, j) over all images and

over the two sets S
+−

ij and S
−+

ij respectively. Typically,

P̃ ′
+−

missing is close to 0, while P̃−+

missing is close to the av-

erage percent of non-repetitive ‘background points’ in the

image i. Hence, with an appropriate α the global minimum

of Equation 4 is associated with the ground truth. How-

ever, when there is no non-repetitive ‘background points’

(i.e. P̃−+

missing = 0, as the case in Figure 5 (b)), no suitable

α can be found and our method will fail.


