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Abstract

There have been relatively little works to shed light on the effects of errors in the intrinsic

parameters on motion estimation and scene reconstruction. Given that the estimation of the

extrinsic and intrinsic parameters apts to be imprecise, it is important to study the resulting

distortion on the recovered structure. By making use of the iso-distortion framework, we ex-

plicitly characterize the geometry of the distorted space recovered from 3D motion with freely

varying focal length. This characterization allows us: (1) to investigate the effectiveness of the

visibility constraint in disambiguating errors in calibration parameters by studying the nega-

tive distortion regions and (2) to make explicit those ambiguous error situations under which

the visibility constraint is not effective. An important finding is that under these ambiguous

situations, the direction of heading can be accurately recovered and the structure recovered

experienced a well-behaved distortion. The distortion is given by a relief transformation which

preserves ordinal depth relations. Thus in the case where the change in focal length is not well

estimated, structure information in the form of depth relief can be obtained. Experiments were

presented to support the use of the visibility constraint in obtaining such partial motion and

structure solutions.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Many a time, in the solving of motion estimation problems, it is common to

assume that the camera has been pre-calibrated off-line and that the intrinsic
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parameters of the camera remain fixed throughout its operation. However, in actual

camera operation, the focal length of a moving camera often changes. Some varia-

tions may be intentional. For instance, the use of a zoom lens in an active vision sys-

tem. Other variations may be accidental, due to the camera undergoing small

mechanical or thermal changes. In many situations, it is not practical to interrupt
the operation of the camera to calibrate it with a calibration apparatus. These

considerations establish the need to perform on-line calibration, also known as

self-calibration [22,24].

Despite the various works focusing on the self-calibration problem, most imple-

mentations face difficulties in estimating the intrinsic parameters accurately. One

way to circumvent this problem is to enforce special camera displacements to obtain

better estimate of the intrinsic parameters [1,7,13,29,37]. For example, a pure rotat-

ing camera can lead to a more accurate calibration parameters estimation [13]. Con-
versely, the recovery of the intrinsic parameters can be rendered ambiguous when

certain motion, commonly known as critical motion, is employed [18,31,32]. In par-

ticular, Hayman et al. [15] presented ill-conditioned configurations that resulted in

near-ambiguities when rotating cameras undergo self-calibration. Instances whereby

the Kruppa equations used to solve self-calibration become degenerate and ill-con-

ditioned have also been identified [23].

While the mainstay of the research efforts in self-calibration adopts the discrete

approach, recent works in [3,37] have formulated the problem in the continuous do-
main. Most of the schemes presented assume that the intrinsic parameters across the

frames are constant and does not change over time. However, with the common and

extensive use of zooming camera, this restrictive assumption can no longer holds true

under many situations. A zooming camera changes its focal length and is likely to

bring about a shift in the position of its principal point. A more general treatment

of the problem, allowing for varying intrinsic parameters, is given in [2,3,12,16,

25,30,37]. Nevertheless, such formulation imposes new constraints or more frames

are usually required.
Despite the difficulty in obtaining calibration parameters, many researchers argue

that as far as scene reconstruction is concerned, several structures (Projective, Affine)

can be obtained without the need to recover the intrinsic parameters completely or

accurately [26,35]. Accurate intrinsic parameters are necessary for the attainment

of Euclidean reconstruction. A highly debatable question is whether Euclidean re-

construction is a must. Many recent findings had demonstrated that only partial

or qualitative scene reconstruction is required for many robotic tasks. The properties

of these partial scene structures have been well studied in [8,19].
There have been relatively little works to shed light on the effects of errors in the

intrinsic parameters on motion estimation and scene reconstruction. Florou and

Mohr [10] used the statistical approach to study reconstruction errors with respect

to calibration parameters. Svoboda and Sturm [34] studied how uncertainty in the

calibration parameters gets propagated to the motion parameters. Vi�eville and Faug-

eras studied the partial observability of rotational motion, calibration, and depth

map in [37]. Bougnoux [2] offered a critique of the self-calibration problem, finding

that the estimation of various intrinsic parameters are unstable. However, it was
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observed, partly empirically, that despite uncertainty in the focal length estimation,

the quality of the reconstruction does not seem to be affected. Certain geometrical

properties such as parallelism seemed to be preserved.

Aside from these observations, there has not really been an in-depth geometrical

characterization of the errors in the reconstructed depth given some errors in both
the intrinsic and the extrinsic parameters. In a recent work, Cheong and Xiang [6]

studied the aforementioned depth distortion under specific motion scene configura-

tion whereby the translation is either in the forward or in the lateral direction. In this

paper, we consider the more general situation of a camera moving arbitrarily in a 3D

environment with the added possibility of zoom operation. Thus, the focal length of

the camera can be freely varying across frames, resulting in a zoom field (considering

infinitesimal motion) which is difficult to separate from that of a translation along

the optical axis. This, together with the perennial problem of the coupling between
translation and rotation, means that distortion in the recovered structure is likely

to be present.

This paper attempts to make the geometry of this distortion explicit by using the

iso-distortion framework introduced in [4]. The analysis is completely general and

valid for any algorithm or any scene structure. As it is a purely geometrical analysis,

it also does not contain the usual assumptions entailed in statistical error analyses

[28,38]. The motivation for performing such distortion-oriented geometrical analysis

is twofold. First, by gaining a deeper understanding of the geometry of depth distor-
tion, we can have a better notion of what the proper space representation should be.

Compared with the usual stratified viewpoint of space [8]—Projective, Affine, and

Euclidean—such a distortion-oriented viewpoint represents an alternative look at

the problem of space representation. Via this alternative look, we showed that the

stratification should be extended, as, in general, we can only recover depth up to a

transformation which is even more general than the projective transformation [5].

The other motivation, which is the main focus of this paper, is that such character-

ization of depth distortion allows us to understand how depth distortion in turn in-
teracts with the motion (including zoom) estimation process, thereby revealing the

additional constraint that can be imposed on motion estimation. So far, in the struc-

ture from motion literature, motion estimation and depth estimation are very much

treated as two independent sub-problems. Indeed, we usually eliminate the depth

component first so as to make the dimensionality of the motion estimation problem

manageable. The result of such elimination is that we are often ignorant of how dif-

ferent types of scene structure may affect the motion estimation process. For in-

stance, it is not clear how we can use the depth-is-positive constraint (also known
as the visibility constraint) under different scene types to constrain the estimation

of both the intrinsic and the extrinsic motion parameters. To address these problems,

this paper investigates the effectiveness of the visibility constraint in disambiguating

calibration errors and describes those ambiguous error situations under which the

visibility constraint is not effective.

This paper is structured along the following lines. First comes some preliminaries

regarding the iso-distortion framework in Section 2, followed by an extension of this

framework to the self-calibration problem. Several major features of the resulting
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distortion are then made explicit. The main goals of Section 3 are: (1) to elaborate

the relations between the depth distortion and the estimation of both the intrinsic

and extrinsic parameters and (2) to study certain well-behaved depth distortion re-

sulting from ambiguous solutions. Section 4 presents experiments to support the

use of the visibility constraint in obtaining partial solutions to the estimation of both
motion and structure. The paper ends with a summary of the work.
2. Iso-distortion framework

2.1. Optical flow equations with varying focal length

Let ðx; yÞ be the image location resulting from the projection of a point in the 3D
world onto the 2D image plane by a real camera. Due to the imperfect imaging pro-

cess and depending on the actual operation (e.g., zooming), the coordinate system of

a real camera may deviate slightly from the ideal. We use ðxs; ysÞ to represent an im-

age pixel location in the latter coordinate system with its origin located at the lower-

left corner of the image. If the principal point of the camera is situated at ðOx;OyÞ in
this new coordinate system, the relationship between the two coordinate systems can

then be represented by ðx; yÞ ¼ ðxs � Ox; ys � OyÞ. In this paper, we shall assume the

common situation that the skew angle is equal to 90� (i.e., the pixel are rectangular)
and that this condition does not change over a long period of time. The effect of ra-

dial distortion is also assumed to be negligible.

When the camera moves rigidly with respect to its 3D world with a translation

ðU ; V ;W Þ and a rotation ða; b; cÞ, together with a zooming operation that results

in a change in the focal length and a shift in the principal point, the resulting optical

flow u ¼ ðux; uyÞ at a local point in the image plane can be represented as follows un-

der the two different coordinate systems:
ux ¼
W
Z
ðx� x0Þ þ

xy
f
a� f 1

�
þ x2

f 2

�
bþ cy þ

_f
f
xþ _Ox

¼ W
Z
ððxs � OxÞ � x0Þ � fbþ cðys � OyÞ þ

_f
f
ðxs � OxÞ þ _Ox þO2

u; ð1Þ

uy ¼
W
Z
ðy � y0Þ �

xy
f
bþ f 1

�
þ y2

f 2

�
a� cxþ

_f
f
y þ _Oy

¼ W
Z
ððys � OyÞ � y0Þ þ f a� cðxs � OxÞ þ

_f
f
ðys � OyÞ þ _Oy þO2

v ; ð2Þ
where

f is the focal length of the camera with its rate of change with respect to time de-

fined by _f ;
Z is the depth of scene point;

ðx0; y0Þ ¼ ðf U
W ; f V

W Þ is the Focus of Expansion (FOE) of the flow field;
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ð _Ox; _OyÞ is the shift in the principal point location;
ðO2
u;O

2
vÞ ¼

ðxs�OxÞðys �OyÞ
f

a

 
�ðxs�OxÞ2

f
b;�ðxs�OxÞðys �OyÞ

f
bþðys �OyÞ2

f
a

!

contains the second-order terms in ðxs; ysÞ.
2.2. Space distortion arising from calibration errors

In a recent work [4], the geometric laws under which the recovered scene is dis-

torted due to some errors in the viewing geometry is represented by a distortion

transformation. It was called the iso-distortion framework whereby distortion in

the perceived space can be visualized by families of iso-distortion lines. In the present

study, this framework has been extended to characterize the types of distortion ex-

perienced by a visual system where a change in the focal length and principal point
location may result in further difficulties and errors in the estimation of its intrinsic

parameters.

From the two motion Eqs. (1) and (2), one can recover the relative depth of a

scene point using several possible schemes. For instance, in the normal flow

approach [9,17], one can choose to reconstruct depth along the normal flow direc-

tion, given by ðnx; nyÞ. In general, ðnx; nyÞ can be any other direction, in which case

Z (i.e., the scaled depth) can be obtained from the flow un projected along that

direction
un ¼ u � ðnx; nyÞ

un ¼
W
Z
ðx

�
� x0; y � y0Þ þ ur þ uf

�
� ðnx; nyÞ;
and expressed as
Z ¼ ðx� x0; y � y0Þ � ðnx; nyÞ
ðun � ður þ uf Þ � ðnx; nyÞÞ

¼ ðxs � Ox � x0; ys � Oy � y0Þ � ðnx; nyÞ
ðun � ður þ uf Þ � ðnx; nyÞÞ

; ð3Þ
where ur is the rotational flow and uf is the zoom flow caused by a change in the focal

length.

If there are some errors in the estimation of the intrinsic and/or the extrinsic pa-

rameters, this will in turn cause errors in the estimation of the scaled depth, and thus

a distorted version of space will be computed. We denote the estimated parameters

with the hat symbol (̂ ). Hence
Ẑ ¼ ðx� bx0 ; y � by0Þ � ðnx; nyÞbun � ð bur þcuf Þ � ðnx; nyÞ� � ¼
xs � cOx � bx0 ; ys � cOy � by0� �

� ðnx; nyÞ

bun � ð bur þcuf Þ � ðnx; nyÞ� � ; ð4Þ
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where bun ¼ un þ ðNx;NyÞ � ðnx; nyÞ and ðNx;NyÞ is the noise in the optic flow along the

x- and y-direction.
If we represent errors in the estimated parameters with the subscript e (where er-

ror of any estimate p is defined as pe ¼ p � p̂), upon substituting Eq. (3) into Eq. (4),

the estimated relative depth Ẑ may be expressed in terms of the actual depth Z as
follows:
Ẑ¼Z
xs�cOx � bx0� �

nxþ ys�cOy � by0� �
ny

ðxs�Ox� x0;ys�Oy � y0Þ � ðnx;nyÞþure � ðnx;nyÞZþufe � ðnx;nyÞZþN :ðnx;nyÞZ

0@ 1A;

ð5Þ
where
ure ¼ ur � ûr

¼
�
� ðfb� f̂ b̂Þ þ cðys � OyÞ � ĉ ys

�
� cOy

�
þO2

ue;

ðf a� f̂ âÞ � cðxs � OxÞ þ ĉ xs
�
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�
þO2
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�
¼
�
�cbf þ cey � ĉOye þO2

ue;caf � cexþ ĉOxe þO2
ve

�
;cbf ¼ fb� f̂ b̂;caf ¼ f a� f̂ â;

ufe ¼ uf � ûf

¼
_f
f
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� OxÞ �
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f

0@ 1A xs
�

� Ôx

�
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_f
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ðys � OyÞ �

_̂f

f
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�

� Ôy

�
þ _Oy � _̂Oy

!
¼ dex
�

� dOxe þ fxe; dey � dOye þ fye
�
;

d ¼
_f
f
;

de ¼
_f
f
�

_̂f

f

0@ 1A;

O2
ue;O

2
ve

� �
¼ O2

u �
cO2

u ;O
2
v �

cO2
v

� �
;

ðOxe;OyeÞ ¼ Ox � cOx ;Oy � cOy

� �
; and

ðfxe; fyeÞ ¼ _Ox � _̂Ox; _Oy � _̂Oy

� �
:

Eq. (5) shows that errors in the motion estimates distort the recovered relative

depth by a factor D, given by the terms in the bracket:
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D ¼
xs � cOx � bx0� �

nx þ ys � cOy � by0� �
ny

ðxs � Ox � x0; ys � Oy � y0Þ � ðnx; nyÞ þ ure � ðnx; nyÞZ þ ufe � ðnx; nyÞZ þ N � ðnx; nyÞZ

¼ x� bx0ð Þnx þ y � by0ð Þny
x0 � x0; y0 � y0ð Þ � ðnx; nyÞ þ ure � ðnx; nyÞZ þ ufe � ðnx; nyÞZ þ N � ðnx; nyÞZ

;

ð6Þ

where x0 ¼ x� Oxe and y 0 ¼ y � Oye.

Eq. (6) describes, for any fixed direction ðnx; nyÞ and any fixed distortion factor D,
a surface f ðx; y; ZÞ ¼ 0 in xyZ-space, which has been called the iso-distortion surface.

For specific values of the parameters x0; y0; x̂0; ŷ0;caf ;cbf ; ce; d; de;Oxe;Oye; _Oxe; _Oye and

ðnx; nyÞ, this iso-distortion surface has the obvious property that points lying on it are
distorted in depth by the same multiplicative factor D. The distortion of the esti-

mated space can be studied by looking at these iso-distortion surfaces. In this paper,

we choose to reconstruct depth along the estimated epipolar direction. Such a choice

is reasonable because the estimated epipolar direction contains the strongest transla-

tional flow. Henceforth the direction
ðnx; nyÞ ¼
ðx� bx0 ; y � by0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� bx0Þ2 þ ðy � by0Þ2q

will be chosen; and Eq. (6) becomes:
D ¼ x� bx0ð Þ2 þ y � by0ð Þ2
� �

x0 � x0; y0 � y0ð Þ � x� bx0 ; y � by0ð Þð=

þ ure � xð � bx0 ; y � by0ÞZ þ ufe � xð � bx0 ; y � by0ÞZ þ N � xð � bx0 ; y � by0ÞZÞ:
ð7Þ
Now, if we assume that the camera has a small field of view so that ure becomes

ð�cbf þ cy;caf � cxÞ, we have
D ¼
�

xð � bx0Þ2 þ yð � by0Þ2�=ð x0ð � x0; y0 � y0Þ � xð � bx0 ; y � by0Þ
þ ðCe;KeÞ � xð � bx0 ; y � by0ÞZ þ ðdex; deyÞ � xð � bx0 ; y � by0ÞZÞ; ð8Þ
where Ce ¼ �cbf þ ce by0 � ĉOye � dOxe þ fxe þ Nx and Ke ¼caf � ce bx0 þ ĉOxe � dOye þ
fye þ Ny .

Eq. (8) shows that, under any general motion types, a complicated distortion

characteristic may arise. One way to simplify the analysis is to consider only specific

motion types such as lateral and in-depth motion as in [6]. Here, we study the con-

figurations under any general motion types.

The complexity of Eq. (8) can be better understood with a graphical representa-

tion of the equation. In particular, we are interested in deriving iso-distortion sur-

faces (i.e., surfaces that give rise to constant distortion factor D) spanning the
xyZ-space. The simplest form of Eq. (8) reveals that the D ¼ 0 surface exists only

when both conditions x ¼ bx0 and y ¼ by0 are simultaneously satisfied. This constraint

is represented by a line, parallel to the Z-axis, piercing through the xyZ-space at

x ¼ bx0 and y ¼ by0 . Before describing the distortion surface for any general value
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of D, let us first look at the formation of the D ¼ �1 surface in the xyZ-space. This
surface not only defines the distortion characteristics of the whole perceived space

but also delineates the region where the visibility constraint will be violated.

By setting the denominator of Eq. (8) to zero, we get
-6
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The intersection of the surface given by Eq. (9) with any plane Z ¼ k (where k is a

constant) corresponds to a circle. Hence, for a range of Z values, we may generate a

3D volume enclosed by the D ¼ �1 surface, whose intersection with the frontal par-

allel plane is given by a circle with the following parameters:
Radius;R

¼ 1

2ð1þ deZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 � ð1þ deZÞ bx0 þ Oxe � CeZð Þ2 þ y0 � ð1þ deZÞ by0 þ Oye � KeZ

� �2q
;

Center; ðx; yÞ

¼ x0 þ ð1þ deZÞ bx0 þ Oxe � CeZ
2ð1þ deZÞ

;
y0 þ ð1þ deZÞ by0 þ Oye � KeZ

2ð1þ deZÞ

� �
:

ð10Þ
Note that for Z ¼ �1=de, the radius of the circle becomes infinitely large.

Figs. 1 and 2 give examples of the D ¼ �1 iso-distortion surface in the xyZ-space
under specific error configurations. Fig. 1 shows the existence of a discontinuity in
the D ¼ �1 surface at the plane Z ¼ �1=de. The volume enclosed by the two sur-

faces on either side of the Z ¼ �1=de discontinuity formed two elongated �cone-like�
structures with one of them orientating in the positive Z direction and the other in

the reverse direction. When de is positive, the plane that separates the two cones lies

in the negative Z region. In this case, the volume enclosed by the D ¼ �1 surface in

front of the image plane forms a single continuous cone structure (Fig. 2).

From here, we may extend our analysis to derive the iso-distortion surfaces for

any real values of D 6¼ 0;�1. The characteristics of the distortion surfaces can be
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better understood from their level curves with depth Z as the �height�. It can be
shown that the level curves for any constant distortion factor D correspond to circles

in the xyZ-space with the following parameters:
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:

For various D values, we obtained circles (i.e., level curves) of different radii, cen-

tered at different location. Figs. 3 and 4 correspond to two particular cases of the

level curves viewed when slicing the xyZ volume with Z ¼ 0 and Z ¼ 200 planes

for de < 0 and de > 0, respectively.
-300 -250 -200 -150 -100 -50 0 50 100 150

0

0

0

0

0

0

Z=0

0.4

0.6

0.7

2

4D=+/-INF

-2

-0.4

x-axis x-axis

y-
ax

is

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

-80

-70

-60

-50

-40

-30

-20

-10

Z=200

0.4
0.7

2
4

D=+/-INF

-4

-2

-0.4

-0.6

B

. Iso-distortion surfaces for de ¼ �0:01 at (A) Z ¼ 0 and (B) Z ¼ 200 with different D: ðx0 ¼ 30;

; bx0 ¼ �50; by0 ¼ �50;Oxe ¼ Oye ¼ 0;Ce ¼ 0:001;Ke ¼ 0:001Þ.



Fig. 4. Iso-distortion surfaces for de ¼ 0:01 at (A) Z ¼ 0 and (B) Z ¼ 200 with different D:
ðx0 ¼ 30; y0 ¼ 30; bx0 ¼ �50; by0 ¼ �50;Oxe ¼ Oye ¼ 0;Ce ¼ 0:001;Ke ¼ 0:001Þ.

230 L.-F. Cheong, C.-H. Peh / Computer Vision and Image Understanding 93 (2004) 221–244
It is shown in Fig. 4 and can be proven in general that for de > 0, the negative

D < 0 surfaces are always enclosed by the D ¼ �1 surface for all Z > 0. That is,

the negative distortion region forms a cone in front of the image plane, defined by

the D ¼ �1 surface. On the other hand, for de < 0, since the asymptotic plane lies

in the Z > 0 region, the negative depth surfaces may or may not be fully enclosed by
the D ¼ �1 surface, depending on the side of the asymptotic plane being consid-

ered. For example, in Fig. 3, the negative depth surfaces are enclosed by the

D ¼ �1 surface in the region 0 < Z < j1=dej. In the region Z > j1=dej, however, it
is the positive depth surfaces that are being enclosed by the D ¼ �1 surface.

Much of the information that Eq. (8) contains can thus be visualized by consid-

ering a family of iso-distortion surfaces on a three-dimensional xyZ-space. Each fam-

ily is defined by 11 parameters: x0, y0 and the nine error terms x0e, y0e, ae, be, de, Oxe,

Oye, fxe, and fye. Within each family, a particular D value defines an iso-distortion
surface. In the next subsection, we shall determine some salient geometrical proper-

ties of the iso-distortion surfaces.
2.3. Salient properties

Several salient features can be identified from the iso-distortion surfaces:

1. The D ¼ 0 line (a degenerate surface) runs parallel to the Z-axis at

ðx ¼ bx0 ; y ¼ by0Þ. It is contained by the intersections of all D 6¼ 0 surfaces (see Figs.
3 and 4) and hence, the distortion factor on this special surface is actually unde-

fined. Any adjustment made to the estimated FOE will move this line perpendic-

ularly in the xyZ-space.
2. The D ¼ �1 surface is discontinuous at the plane Z ¼ �1=de. If the errors Oxe

and Oye are zero, the true FOE location is always found on the intersection of this

surface with the Z ¼ 0 plane. Otherwise, ðx0 þ Oxe; y0 þ OyeÞ is found.
3. As Z tends to infinity, the circles representing the level curves of the surfaces for

all D where D 6¼ 0 decrease in size and approach a circle with radius
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A decreasing value in de shrinks the circles and shifts the circles away from the

optical axis.

4. The horizontal asymptote for each surface where D 6¼ 0 is the plane

Z ¼ ð1� DÞ=Dde. Hence, each surface has a different horizontal asymptotic plane

which is dependent on the values of D. However, the horizontal asymptote for the
surface D ¼ 1 is always the Z ¼ 0 plane, independent of all other parameters. A

diminishing value in de simultaneously moves all the horizontal asymptotes away

from the Z ¼ 0 plane.

5. The noise terms in the optical flow field can be found in Ce and Ke (refer to Eq.

(8)). Hence, in a noisy situation, the �cone-like� structure becomes very fuzzy since

the radii and centers of the level curves are altered by various degree depending on

the noise level at each optical flow vector.

2.4. Effects of large field of view

If we consider errors in the second-order flow (as would be present in a large field

of view setting), the denominator of Eq. (8) (or the distortion function) becomes a

complicated polynomial of third order. This means that the negative volume will

not be entirely enclosed by the level curves as before, especially in the region whereby

the third-order influence is substantial. The conditions for the third-order terms to be

substantial are when the magnitudes of ae, be, and Z are large and when the focal
length is small. Fig. 5 shows an example of the simulated surface for D ¼ �1.
Fig. 5. D ¼ �1 surface with second-order effect for de > 0 ðx0 ¼ 30; y0 ¼ 30; bx0 ¼ 0; by0 ¼ 10;Oxe ¼ Oye

¼ 0;Ce ¼ 0:001;Ke ¼ 0:001). Left: 2D and right: 3D.



Fig. 6. D ¼ �1 surface with second-order effect for large focal length. Left: 2D and right: 3D.
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As can be seen, the qualitative property of the level curves changes when Z is

large. Specifically, the curves open up and the negative area in the cross-section be-

comes unbounded. Fig. 6 shows the D ¼ �1 surface for a larger focal length (i.e.,

smaller field of view). In this case, the opening up of the level curves only begins

at a much larger Z.
The opening of the level curves represents the important role played by wide angle

view in motion estimation. In order to achieve zero negative volume, the denomina-

tor of the distortion function needs to be positive. In this case, since it is a cubic

curve, we can always find real root for some x and y. Hence, the denominator of

the distortion function (i.e., Eq. (8)) can be positive or negative for a fixed Z. This
makes it hard to satisfy the conditions with no negative depth in the presence of er-

rors. The likelihood of getting ambiguous solutions is thus lessened.
3. What can the distortion contours tell us?

3.1. The visibility constraint

Direct motion algorithms [9,17] often attempt to find the solution by minimiz-

ing the number of negative depth found. This is known as the visibility con-

straint. In particular, Longuet-Higgins [21] showed that any spurious solutions

arising from a moving plane could be ruled out with the constraint. However,
its usage in the estimation of calibration parameters is relatively unexplored.

We would now like to examine this constraint in the light of the negative distor-

tion volume. The geometry of the negative distortion volume allows us to exam-

ine these questions: does the veridical solution have the minimum number of

negative depth? Are there combination of estimation errors such that the visibility

constraint is not sufficient to discriminate them from the true solution? Do these

ambiguous solutions exhibit any peculiar properties in terms of their recovered

structure or their motion estimates?
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3.2. Constraints on motion errors

As observed in Figs. 3 and 4, the intersections of the iso-distortion surfaces with

any Z-plane comprise of a family of circles belonging to different D values. Irrespec-

tive of the actual scene structure, there will be configurations whereby a large num-
ber of negative depth estimates are obtained, thereby furnishing the possibility of

using the visibility constraint to rule out that particular solution.

We consider three cases according to different values of de, and depict these cases

in Fig. 7. In contrast to Figs. 3 and 4, Fig. 7 is obtained by slicing the iso-distortion

volume with the y ¼ 0 plane. Plotted in this way, how the region of negative depth

(all the shaded region) varies as a function of depth is better illustrated. It can be seen

that the negative region is either outside or inside the ‘‘cone’’ formed by the D ¼ �1
surfaces (from this perspective, the cone is manifested as two vertical lines: the ver-
tical asymptotic branch of the D ¼ �1 surface and the D ¼ 0 surface).

• When de > 0, most of the negative distortion region lie behind the image plane (see

Fig. 7A). What remains in front of the image plane is a band of negative distortion

volume, bounded by the D ¼ �1 surface. This is true for all positive values of de.
Clearly, the negative distortion volume can be minimized by letting ð bx0 ; by0Þ ap-

proach ðx0; y0Þ so that the cone vanishes.

• When de < 0 and jdej is small such that Zmax < j1=dej, we also obtain a small vol-

ume of negative distortion region (see darker shaded region in Fig. 7B). As dis-
cussed previously, �1=de is the horizontal asymptotic plane of the D ¼ �1
surface. Similar to the case of de > 0, the number of negative depth can be mini-

mized by letting ð bx0 ; by0Þ approach ðx0; y0Þ so that the cone vanishes.

• When de < 0 and jdej is large (i.e., the asymptotic plane is close to the Z ¼ 0 plane

with Zmax > 1=de), we would then obtain the negative distortion region as shown in

Fig. 7C. Minimizing the negative depth volume does not yield the veridical solu-

tion. In this case, we would need to both minimize and maximize the negative

depth volume in the range Z < 1=jdej and Z > 1=jdej, respectively, to obtain the
veridical solution (i.e., setting the radii of circles forming the D ¼ �1 surface

to zero). Finding this distance to allow both maximization and minimization of

negative volume would be difficult in practice. The negative depth volume would
Fig. 7. 2D representations of iso-distortion volume sliced at y ¼ 10 ðx0 ¼ 30; y0 ¼ 30; by0 ¼ 10;Oxe ¼ Oye ¼
0;Ce ¼ 0:001;Ke ¼ 0:001Þ: (A) de ¼ 0:005, bx0 ¼ 100; (B) de ¼ �0:005, bx0 ¼ �10; and (C)de ¼ �0:01,bx0 ¼ 100 (shaded region represents negative distortion region and darker shaded region represents scene

in view that falls under the negative distortion region).
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also reach a constant value once ð bx0 ; by0Þ lies outside the image plane so that the

right vertical contour of the cone is out of view.

From the above, it follows that if the true FOE is inside the image plane, the con-

dition on the zoom error conducive for ambiguity is such that:
de > 0 or
1

de
< �Zmax: ð11Þ
If de < 0 and jdej is large, large negative distortion region always results. Con-

versely, if the true FOE is out of the image plane, then all values of de can lead to
ambiguity. For example, if de > 0 and both ðx0; y0Þ and ð bx0 ; by0Þ were out of the image

plane (and on the same side), then even if they do not meet, the negative distortion

band would be outside the field of view. Thus, this solution will not yield any neg-

ative depth estimates and would be totally ambiguous too. If de < 0 and both ðx0; y0Þ
and ð bx0 ; by0Þ were out of the image plane (and on different side), we would also obtain

the configuration whereby the negative band is always outside the field of view.

Given condition (11), we shall now derive further conditions on the motion errors

such that the band of negative volume will be minimized (i.e., ambiguity is maxi-
mized). To derive these combinations, we first arbitrarily fix the error de given by

condition (11). The constraint on the other parameters Ĉ; K̂; bx0 , and by0 that will yield
minimum negative distortion region depends on whether an algorithm solves for

these parameters separately or simultaneously:

1. If Ĉ and K̂ are solved first and the estimates contain errors Ce and Ke, then the bx0
and by0 that minimize the negative depth volume, given fixed Ce and Ke, are
bx0 ¼ x0 þ Oxe þ ðCe=deÞð Þ ln ð1þ deZmaxÞ=ð1þ deZminÞ½ �
deðZmax � ZminÞ

� Ce

de
;

by0 ¼ ðy0 þ Oye þ ðKe=deÞÞ ln ð1þ deZmaxÞ=ð1þ deZminÞ½ �
deðZmax � ZminÞ

� Ke

de
;

ð12Þ

where we have assumed that depths in the scene are uniformly distributed between

Zmin and Zmax. A check with the second derivative test reveals that this critical

point is a minimum point for Zmax > Zmin which is always true. Furthermore, in

order for the above two equations to be valid, the terms inside the ln operator

must be positive. It requires that Zmin > �1=de for de > 0 and Zmax < 1=jdej for
de < 0, respectively, which are always satisfied given Eq. (11).

2. If all of the parameters, namely bx0 ; by0 ; Ĉ, and K̂ are solved together, then the so-
lution that minimizes the negative depth volume is given by
x̂0 ¼ �Ce

de
¼ x0 þ Oxe;

ŷ0 ¼ �Ke

de
¼ y0 þ Oye:

ð13Þ

This can be obtained by setting the radii of the circles forming the D ¼ �1
surface to be zero for all Z 6¼ 1=de. In this case, the negative depth volume in front
of the image plane vanishes. The distortion surfaces then become planes with



Fig. 8. Iso-distortion surfaces when x̂0 ¼ �Ce=de ¼ x0 and ŷ0 ¼ �Ke=de ¼ y0 ðx0 ¼ 30; y0 ¼ 30;Oxe ¼ 0;

Oye ¼ 0;Ce ¼ 0:3;Ke ¼ 0:3Þ: when (A) de ¼ 0:01 and (B) de ¼ �0:01.
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positive D. Depending on the sign of de, we obtain either D < 1 or D > 1 dis-

tortion surfaces lying in front of the image plane (see Fig. 8). Also, unless Oxe and

Oye are both zero, the estimated FOE will never be the veridical one.

In the case whereby the negative depth volume in front of the image plane van-

ishes, the distortion factor D reduces itself to
D ¼ 1

1þ deZ
: ð14Þ
This corresponds to a relief transformation 1=ðaþ bZÞ, where a ¼ 1 and b ¼ de.
This relief transformation preserves the ordering of points; its general properties

were recently discussed and analyzed by [11,20]. For instance, it is well known that

depth relief can be reliably recovered from shading cue [20]. In the case of motion

cues, it is believed and psychophysically demonstrated that human subject can re-

cover the tilt—the relief structure of the scene—better than the slant of a planar

scene. Here, we obtain even stronger results: that even with errors in the 3D motion

estimates, the ordinal structure can be correctly recovered as long as the visibility
constraint can be effectively applied.

It is well to note at this point that whilst we have derived the likely conditions for

solutions to be ambiguous, we are not proposing any new algorithm for motion es-

timation. Rather, we are arguing that the visibility constraint can be a possible sup-

plementary method to prune candidates obtained by other motion estimation

algorithms. That is, from a solution set obtained by the latter, we choose those can-

didates that minimize the negative volume as the final solution. In addition, our anal-

ysis also elucidates the types of motion errors still likely to be present in the final
solution even with the application of the visibility constraint. Such a characterization

of the errors is important in view of the imperfect nature of most structure from mo-

tion algorithms and the attendant need to understand the limitations of such algo-

rithms.

3.3. Summary

The preceding analysis shows that the use of the visibility constraint does not lift
the ambiguities that exist among various kinds of motions. However, it does restrict



236 L.-F. Cheong, C.-H. Peh / Computer Vision and Image Understanding 93 (2004) 221–244
the solution set so that those yielding the minimum negative depth estimates pos-

sess certain nice properties. In particular, when the constraint in Eq. (11) is satis-

fied, and both the rotation and translation parameters are simultaneously

estimated, then the direction of heading is correctly estimated (up to an offset term

ðOxe;OyeÞ). Furthermore, as can be seen from Fig. 8, the iso-distortion surfaces be-
come parallel planes lying perpendicular to the optical axis, which would result in

well-behaved distortion. As a result of this distortion, the reconstructed scene may

appear visually perfect even though the depths have been squashed or stretched to

various degrees. It is of interest to compare this result with that demonstrated by

Bougnoux [2]: that the uncertainty on the focal length estimation leads to a Euclid-

ean calibration up to a quasi-anisotropic homothety, which in turn yields visually

good-looking reconstruction.
4. Experiments

This section presents the experiments carried out to support the theoretical

findings established in the preceding section. Specifically, we demonstrate the pos-

sibility of estimating the heading direction of the camera correctly based on min-

imizing the number of negative depth estimates. The distortion effects due to

erroneous motion estimates on simple surfaces were also tested. Both synthetic
and real images were used.

4.1. Synthetic images with slanted planes

A set of noise-free synthetic images with dimension 240 pixels by 320 pixels were

generated. The focal length of the projection was fixed at 600 pixels. This gave a

viewing angle of near 30�. The 3D scene contained three slanted planes orientated

with different slant angles. The slant profiles of the three planes were as shown in
Fig. 9. The true FOE was located at ð30; 30Þ of the image plane and the 3D rota-

tional parameters ða; b; cÞ were ð0:00025; 0:0006; 0Þ. There was no change in the focal

length (i.e., _f =f ¼ 0). The computed optical flow magnitude ranges between

0.000904 and 2.42017.

Recall that the condition on de leading to ambiguity is very loose; thus many val-

ues of de would yield minimum negative volume. To report on some specific numer-

ical values, we first arbitrarily fixed the error de to be some positive number. In this

experiment, we fixed it to be 0.0001. We then solved for the rotational parameter
ðf̂ â; f̂ b̂Þ and the FOE ð bx0 ; by0Þ in the following manner: For each hypothesized

ð bx0 ; by0Þ, we selected the best ðf̂ â; f̂ b̂Þ candidate such that the minimum number of

negative depth estimates was obtained. The search for ðx0; y0Þ ranges from

ð�160;�140Þ to ð160; 140Þ in step of 1 pixel along each direction. This represents

a total of 76,800 hypothesized FOEs. The search range for ðf a; fbÞ is between

ð0:348; 0:134Þ and ð0:372; 0:166Þ in step of 0.001 for each parameter. The hypothe-

sized FOE that gave the global minimum negative depth was chosen as the FOE

estimate.



Fig. 10. Minimum negative depth distribution with coarse sampling of FOE: (A) scatter plot and

(B) contour plot in plane scene.
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Fig. 9. Slant profiles for the three synthetic planes in x–Z-plane: solid lines, original profiles and broken

lines, reconstructed profiles.
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Fig. 10 shows the location of the estimated FOE using the global minimum

negative depth criteria, as well as the distribution of the minimum negative depth
with the hypothesized FOEs. In this case, we have successfully obtained the glo-

bal minimum negative depth position at ð30; 30Þ. Using the erroneous motion es-

timates ð bx0 ; by0Þ, ðf̂ â; f̂ b̂Þ, and de that resulted in the least amount of negative

depth estimates, we attempted to reconstruct the synthetic planes. Fig. 9 shows

the plan view of the three synthetic planes, together with their reconstructed ver-

sions. It can be seen that the relief of the plane remained unchanged after the

transformation, i.e., the ordinal depth were preserved. Note that the metric aspect

of the plane orientations (their slants), however, was altered. This change can be
related to the calibration uncertainties via the complex rational function given by

1=ð1þ dZÞ.
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4.2. Image sequences

We conducted similar analysis on several image sequences, both synthetic (but re-

alistic) and real. Optical flow fields were computed from these sequences using the

Lucas–Kanade algorithm. These sequences, together with their results, are shown
in Figs. 11–14, respectively. Fig. 15 shows the reconstructed depth map for the four

image sequences. The intrinsic and extrinsic motion parameters for the sequences are

tabulated in Table 1, while the search ranges for ð bx0 ; by0Þ and ðf a; fbÞ are shown in

Table 2. The value of de has been fixed at 0.0001 and the FOE is hypothesized at a

regular interval of 3 pixels to reduce computational overload. The estimated FOE for

the four sequences were found to be at ð0;�6Þ, ð�8;�13Þ, ð�8; 124Þ, and ð59; 61Þ,
respectively.
Fig. 11. Image Sequences I. Left: image (�+�, true FOE and �X�, estimated FOE) and right: scatter plot of

minimum negative depth distribution.

Fig. 12. Image Sequences II. Left: image (�+�, true FOE and �X�, estimated FOE) and right: scatter plot of

minimum negative depth distribution.



Fig. 13. Image Sequences III. Left: image (�+�, true FOE and �X�, estimated FOE) and right: scatter plot of

minimum negative depth distribution.

Fig. 14. Image Sequences IV. Left: image (�+�, true FOE and �X�, estimated FOE) and right: scatter plot of

minimum negative depth distribution.
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4.3. Discussions

The results obtained seem to corroborate the various predictions made in this pa-

per. In particular, while the use of visibility constraint cannot be used to effect a full
recovery of all the parameters, minimizing the number of negative depth estimates

do result in certain nice properties of the solutions if certain constraints discussed

in previous section are met. It seems that at least in the case where the only unknown

intrinsic parameter is the zoom flow and that the true FOE is inside the image plane,

structure information in the form of depth relief can be obtained from the motion

cue. The reconstructed depths did look visually alright due to the preservation of

the depth relief in the synthetic image experiment (see Fig. 9). However, the recon-

structed depth maps from real image sequences in Fig. 15 did not appear as good
since the FOEs were not accurately determined in most of these cases.



Fig. 15. Reconstructed depth map. Top left: Image Sequence I; top right: Image Sequence II; bottom left:

Image Sequence III; and bottom right: Image Sequence IV. (Color representation from near to far: red,

magenta, yellow, green and blue, respectively.)

Table 1

Intrinsic and extrinsic parameters

Image

Sequence

ðxc; ycÞ f ðx0; y0Þ ða;b; cÞ _f

I ð0; 0Þ 309 ð0; 0Þ ð0; 0; 0Þ 0

II ð0; 0Þ 309 ð0; 0Þ ð0; 0; 0Þ 0

III ð0; 0Þ 337.5 ð0; 59:5Þ ð0:0002319; 0:001625;�0:0002341Þ 0

IV ð3;�9Þ 620 ð65; 73Þ ð�0:00025;�0:00013; 0Þ 0

Table 2

Boundaries and step-sizes of searched parameters (subscripts i, f, and s denote initial, final, and step-size,

respectively)

Seq. bx0 i bx0 f bx0 s by0 i by0 f by0 s f̂ âi f̂ âf f̂ âs f̂ b̂i f̂ b̂f f̂ b̂s

I )128 128 3 )128 128 3 )0.00128 0.00128 0.001 )0.00128 0.00128 0.001

II )128 128 3 )128 128 3 )0.00128 0.00128 0.001 )0.00128 0.00128 0.001

III )158 158 3 )126 126 3 0.0657 0.0909 0.001 0.5326 0.5642 0.001

IV )163 163 3 )143 143 3 )0.02205 0.00655 0.001 0.0318 0.0008 0.001
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The reliability in the depth reconstruction was greatly hampered by the inherent

noise in the flow vectors. In our theoretical study, we show that when de > 0 and if

the FOE were not correctly estimated, a cone of negative volume (bounded by the true

and estimated FOEs on the image plane) is obtained. Under such configuration, scene

points belonging to the same depth do not necessarily get distorted by the same factor.
For example, in Fig. 7A, for any constant Z, the distortion factor is different on the

left and right of the shaded region. Ordinal depth is only preserved in localized re-

gions that are away from the negative depth band where the contours lie flat. This

characteristic was unanimously observed in our sequences where the FOEs were

not veridically determined. For example, in Image Sequence II, the lower-left region

appears to be nearer than the upper-right region in its reconstruction despite that they

are of rough equivalent distance from the observation point. However, within each

localized region, the ordinal depth relationship was still well preserved except for
the area surrounding the estimated FOE. In Image Sequence III, despite the large er-

ror found in the FOE estimation, the ordinal depth was still well preserved since the

depth values were largely computed in region where the distortion contours were flat

(i.e., the negative depth region enclosed by the estimated and true FOE is close to the

image border). Similarly in Image Sequence IV, the ordinal depth between the three

objects (i.e., coke can, bottle, and table cloth) in the bottom-left region of the image is

preserved. Again, this region is away from the FOEs. Our results suggest that, while

accurate 3D scene reconstruction in the global sense can be difficult, qualitative recov-
ery for localized image region is reliable. Overall, we found that the reconstructed

depth maps for all of the sequences were rather flat; clear distinctions of object dis-

tances showed up only when these were with large separating distance between them.

Since the depth values had been computed from optical flow values, the two impor-

tant criterion for the visibility constraint to work well were adequate number of fea-

ture points and their variations in scene depth. It holds that while the underlying

negative distortion region may have increased in size, there may not be any increase

in the number of negative depth estimates, due to a lack of scene point residing in the
negative distortion regions. Evidently, under such circumstances, the number of neg-

ative depth estimates may not exhibit a monotonic increase as the error in the FOE

increases. The effect is especially dependent on the features in the surrounding regions

of the true FOE. Theoretically, we have established that if de > 0, ðx0; y0Þ and ð bx0 ; by0Þ
both lie on the intersection of D ¼ �1 surface with the image plane. In other words,

the two points lie on the circumference of a circle on the image plane. It can be seen

from Eq. (10) that as ð bx0 ; by0Þ approaches ðx0; y0Þ, the radius of this circle decreases.

Together with other conditions stated in Eq. (11), the entire encompassing negative
volume thins out, finally vanishing when the two points coincide. Nevertheless, if

the region around ðx0; y0Þ is featureless or the noise is such that no negative depth

is computed for this region, we would also obtain several likely possible solutions.

The dependency of solution on scene structure was evidently found in Sequences I

and II. Although both sequences featured a forward moving camera along the opti-

cal axis (i.e., ðx0; y0Þ ¼ ð0; 0Þ), we did not obtain the same FOE estimates (assuming

effect of noise to be minimal). A close observation revealed that the estimates were

slightly biased towards nearby region of the true FOE where feature points were
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sparse. This tendency was also found in Sequence III. In this sequence, the true FOE

was just located near to the boundary of the featureless sky. When searching for the

FOE in the featureless region, the entire negative volume bounded by ðx0; y0Þ and

ð bx0 ; by0Þ might fall into this region. Since no negative depth value was computed in

this region, the amount of negative depth could be minimal as well. In order to sub-
stantiate our claim, we limited our search range for by0 to be from )126 to 57 inclu-

sive. The global minimum negative volume solution was found to be at ð7; 57Þ, which
was indeed close to our true solution.

Besides scene structure, the presence of noise is yet another problem that plagues

most image sequences. The effect of any noise N at a particular image pixel is to alter

the terms Ce and Ke in the numerators of Eq. (13). Thus, to this particular image

point, its effective FOE estimates has shifted and part of the problem lies in that this

shift has different effects on the various solution candidates. For the case of those so-
lutions where the negative distortion region in front of the image plane would have

vanished under noiseless conditions, this noise-induced shift away from x ¼ x0 and

y ¼ y0 may result in that particular depth estimate becoming negative again (depend-

ing on the sign and magnitude of that N ). For the case of other solutions, this shift

may have the contrary effect of moving that point out of the negative distortion re-

gion. It becomes plausible that the ‘‘desired’’ solutions (i.e., those satisfying (11))

may not have the minimum number of negative depth estimates. Thus, the overall

effect of noise is to reduce the effectiveness of the visibility constraint in getting
the ‘‘desired’’ solutions. In the presence of random noise, the net effect of N may

get canceled out. However, the analysis of the equation can be rendered more com-

plicated with noise of anisotropic nature.
5. Conclusions

This paper represents a first look at the distortion in the perceived space resulting
from errors in the estimates of calibration parameters. The geometry of the negative

distortion region allows us to answer questions such as whether the visibility con-

straint is adequate for resolving ambiguity. Specifically, we show that, under small

field of view condition, despite the presence of zoom error, the heading direction

can be recovered with visibility constraint. It is also found that while Euclidean re-

construction is difficult, the resulting distortion in the structure satisfies the relief

transformation, which means that ordinal depth is preserved. The above results were

obtained based on the assumptions that the skew angle remained constant and radial
distortion could be ignored. Whilst the skew angle can be quite stable, we acknowl-

edge that the assumption on radial distortion may not be true over a long period of

time. The latter can be solved by rectifying the radial distortion through a corrective

mapping method as suggested by [14]. Although this rectification may change the ef-

fective focal length of the image, this does not affect our analysis since it allows for

uncertainty in the focal length estimate.

In this paper, we had successfully qualified the effects of zoom estimation error on

structure and heading direction recovery where the visibility constraint has been
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taken into account. However, the overall effects on the recovery of motion parame-

ters in any general motion estimation algorithm is still not adequately explained. For

instance, how do such intrinsic errors affect the residual error surface of a motion

estimation algorithm? Does it result in additional or changed local minima condition

on the residual error surface? This shall form the basis of our future work.
To close this paper, the remark should be added that there are many potential ap-

plications of the results of our research to areas like multimedia video indexing,

searching, and browsing, where it is common practice to use zoom lenses. It is desir-

able to incorporate partial scene understanding capabilities under freely varying fo-

cal length, yet without having to go through elaborate egomotion estimation to

obtain the scene information. The conclusion of this paper is that while it is very dif-

ficult to extract metric scene descriptions from video input, qualitative representa-

tions based on ordinal representation constitute a viable avenue.
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