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Abstract. An important issue concerning the design of any vision system is the choice of a proper space repre-
sentation. In order to search for clues to a suitable representation, we look at the distortion of space arising from
errors in motion or stereo estimates. Understanding this space distortion has important epistemological implications
for the problem of space representation because it tells us what can be and what cannot be computed. This paper is
therefore an enquiry into the nature of space representation through the study of the space distortion, though it is not
a psychophysical or physiological study but rather a computational one. We show that the distortion transformation
is a quadratic Cremona transformation, which is bijective almost everywhere except on the set of fundamental
elements. We identify the fundamental elements of both the direct and the inverse transformations, and study the
behaviour of the space distortion by analyzing the transformation of space elements (lines, planes) that pass through
these fundamental elements.

Keywords: motion analysis, structure from motion, stereopsis, error analysis, shape representation, cremona
transformation

1. Introduction inthe general case is eschewed; the emphasis is on what
should be done with computations in vision. Such rep-
An importantissue concerning the design of any vision resentations include a limited amount of information,
system is the choice of a proper space representation.as required by a particular task. The assumption is that
This representation of space must allow us to abstractthe computation of concise representations requires
essential information in areal-time manner. The classi- less information and fewer assumptions, and may be
calreconstruction theory, as articulated by Marr (1982), therefore potentially more robust.
attempts to recover a metric representation of space The results in this paper suggest that restricting the
which is general-purpose and thus can be used for anyinformation recovered from images alone does not
task. Despite more than a decade of efforts, we still guarantee that itis more reliable. The form of the space
lack robust and real-time algorithms to extract such a representation is also innately constrained by what
3D space representation. This state of affairs has led could be computed. It is at the level of inherent con-
to a re-evaluation as to what constitutes an appropriate straints upon which we wish to focus our enquiry. The
space representation. elucidation of these inherent constraints, and of how
In recent years, there emerged the paradigm of Ac- certain aspects of the 3D scene may be more sensitive
tive Vision or Purposive Vision, which emphasizes to perturbations than others would eventually pave the
visual recovery as part of a perception-action cycle, as way for deriving an appropriate space representation.
opposed to something in isolation (Aloimonos et al., Different visual cues might give rise to different
1988). Recovery of shape and orientation information forms of space representations. Each cue may represent
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a different, partial aspect of the physical space around of space elements (lines, planes) that pass through these
the observer. This paper focuses upon the perceptionfundamental elements.

of space arising from motion and stereo cues, though

the concept proposed has general applicability. Of the 2. Literature Review

two cues, stereo can be treated as a special case of mo-

tion. Thus most of our discussions and analyses willbe 2.1. Estimation of 3D Motion and Structure

dealing with the general case of motion.

Motion and stereo are among the most important Motion is one of the mostimportant cues that gives rise
visual cues used for space perception. In spite of the to space perception and has therefore attracted consid-
often complex mathematical treatment that they re- erable research in the past decade (Fedlien~1995;
ceive, they are perhaps the most intuitive to understand, Heeger and Jepson, 1992; Heel, 1990; Horn, 1987;
and at the same time capable of elegant geometricalLonguet-Higgins, 1981; Maybank, 1993; Spetsakis
characterization. Yet, robust depth estimates have beenand Aloimonos, 1988; Tsai and Huang, 1984; Uras
difficult to obtain. Due to inaccuracies in the way mo- et al., 1988; Weng et al., 1991). Its computational as-
tion is perceived, or in the way parameters of the stereo pects have been studied extensively as two subprob-
apparatus are estimated, the recovered structure fromlems, namely, the measurement of 2D image velocity
motion and to a lesser extent from stereo invariably (also called optical flow), and the extraction of 3D
contains systematic distortion. scene structure and egomotion from the image velocity

A proper representation of space cannot be obtained measurements. These studies have given rise to several
unless one tackles the interaction between the errors inalgorithms for deriving the 3D structure and motion.
motion or stereo estimates and the corresponding dis- Experimentation with these algorithms, however, has
tortion in depth. Understanding the nature of the space revealed the lack of robustness in practice. A small
distortion would have important epistemological impli- amount of error in the image measurements can lead
cations for the problem of space representation becauseto very different solutions (Barron et al., 1987; Dutta
it tells us what can be and what cannot be computed. and Snyder, 1990; Tsai and Huang, 1984; Weng et al.,
The fundamental contribution of this paper is the de- 1991).
velopment of a computational framework showing the  The ill-conditioned nature of the computation has
geometric laws under which the recovered scene is dis- since then prompted many analyses. One problem
torted. The systematic way in which visual space is dis- is due to the inherent ambiguity in determining the
tortedis therefore made explicit; we show thatthe trans- motion (Horn, 1987; Krames, 1940; Maybank, 1993;
formation from physical to perceptual space belongs Negahdaripour, 1987, 1989), that is, different mo-
to the family of Cremona transformations (Hudson, tion/surface pairs (not related through a scaling factor)
1927; Semple and Roth, 1949), which is bijective can give rise to mathematically identical motion fields.
almost everywhere except on the set of fundamental It has been shown that the ambiguity is only possi-
elements. ble if the scene in view lies on certain hyperboloids of

The power of the computational framework intro- one sheet, or their degeneracies, the so-called critical
duced was demonstrated in two companion articles surfaces. In practice, it is rare to encounter configura-
(Cheong et al., 1998; Feutiér et al., 1997). First,  tions that are exactly ambiguous. Nevertheless, when
the framework has allowed us to present a number of the image velocity measurements or the image corre-
geometric arguments regarding the inherent ambigu- spondences contain noise, the instability in reconstruc-
ity in image sequences as far as 3D motion estima- tion and the ambiguity are not unrelated: Maybank
tion is concerned (Cheong et al., 1998). It has also (1993) showed that a small perturbation can be found
been used to explain the psychophysics of the distor- such that the resulting set of image correspondences or
tion of visual space experienced by human observersimage velocities becomes ambiguous.
from stereo or motion (Feruaflér et al., 1997). In this Compounding the aforementioned problem is the
paper, we focus on developing mathematical results on difficulty in computing feature correspondences or op-
the shape distortion transformation. Specifically, we tical flow vectors. The difficulty arises as a conse-
identify the fundamental elements of the direct and quence of the aperture problem. The need to combine
the inverse transformations, and study the behaviour local motion constraints over an area of the image,
of the space distortion by analyzing the transformation or along contours, often leads to errors in the optical
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flow, not to mention its considerable computational re- errors in depth estimation is much less explored. Due
quirement. Several techniques have been proposed tao the complexity of the problem, most of the analyses
address this problem, examples of which are robust on the errors in the depth estimates are of an empiri-
statistics (Black, 1994; Bober and Kittler, 1994), higher cal nature, dealing with specific motions or scene types
order flow constraints (Uras etal., 1988), constraintline (Adiv, 1989; Dutta and Snyder, 1990). For instance, the
clustering (Schunck, 1989), and the phase-based ap-translation involved was restricted to forward motion
proach (Fleet, 1992). Each has different advantages andonly, or the scene in view consisted of a planar surface.
shortcomings in terms of accuracy, computational ef- It is being understood that small errors in the motion
ficiency and measurement density. In practice, several estimates can lead to very large errors in the depth esti-
aspects of the image formation process contribute fur- mates (Dutta and Snyder, 1990). Notably absent in all
ther uncertainty. For instance, Verri and Poggio (1989) these analyses is an account of the systematic errors of
showed that the 2D motion field (the projection on the depth estimates that result from erroneous motion
the image plane of the 3D velocity field) and the opti- estimates. While Thomas et al. (1993) represent such
cal flow vectors are in general quantitatively different, systematic distortion using an error covariance matrix,
unless very special conditions are satisfied. the matrix formulation is motivated by the need to rep-
In view of such errors, several analyses relate the resent structure errors in a recursive estimation algo-
errors of the estimated motion parameters in the secondrithm. Therefore the geometric mapping involved in the
step to the measurement errors in the first step. The er-distortion is not made explicit. Due to the lack of such
rors are typically expressed as a high variance or a biasan analysis, the relationship between the distorted sur-
in the motion parameters through some statistical anal- faces and the true surfaces for arbitrary motion errors is
ysis (Adiv, 1989; Daniilidis and Nagel, 1993; Duric not well understood, except in the case of critical sur-
and Aloimonos, 1994; Thomas etal., 1993; Weng etal., face pairs (Horn, 1987; Krames, 1940; Negahdaripour,
1991; Young and Chellapa, 1992), or given as empir- 1987, 1989), where the relationship is explicitly stated.
ical figures through some simulations (Barron et al.,
1987; Dutta and Snyder, 1990). A comprehensive sur- ] ]
vey of such analysis is given by Daniilidis and Spetsakis 2-3- Human's Depth Perception from Motion
(1997). Based on a combination of qualitative analy- and Stereopsis

sis and quantitative simulations, the following observa- ) ) ) _
tions regarding reliable motion estimation can be made: N the field of psychophysics, there is strong evidence
that the perceived visual space and the physical space

are not similar (Foley, 1967, 1980; Johnston, 1991,
Ogle, 1964; Tittle et al., 1995). Many psychophysical
experiments reportthat while our perceptual judgments
can be quite accurate in some instances, other aspects
of the perceived visual space are systematically dis-
torted. In an effort to develop an explanation for the
relative to rotational flow in order to obtain reliable relationship between the physical and the percewgd
space, the general approach among the psychophysical

translational direction and accurate structure of the . .
scene. Thus either the scene should be near or thecommunlty has been based on the hierarchy of geome-

translational motion should be large. :L?S.zroppsﬁd by Felix Klem.m hErIe;ngen Erogrguml
e In the case of a small field of view, the estimated eldeals that any geometric transtormation will alter

translation is biased towards the viewing direction if some of the structural properties of the scene while

the error metric is not appropriately normalized. leaving others'lnvarlant. I one considers the mapping
between physical and perceived space as a geometric

transformations, then it follows from Klein's analysis
2.2. Errors in Depth Estimation that some properties of 3D structure will be systemat-

ically distorted and others will remain invariant. This
While the various analyses discussed in the precedinghas led to a series of investigations that analyze the
paragraphs have advanced our understanding of the erspecific perceptual tasks that yield accurate or inac-
rors in the motion parameters and the circumstancescurate performance, so that the geometric transforma-
that give rise to them, the corresponding issues on thetions between the physical and perceived space can be

e The field of view should be large in order to ob-
tain more reliable motion estimates. If field of view
is small or depth variation is insufficient, rotations
about an axis parallel to the image plane can easily
be confounded with lateral translations.

e The magnitude of translational flow should be large
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identified. Some of the candidate transformations are Y
Euclidean, similarity, affine, or Riemannian, among 1v
others. Nevertheless, much of the results seem to sug-
gest that the transformation is more complex than can
be easily accounted for by one of these transforma-
tions. For instance, the expansion of depth at near dis-
tances and the contraction of depth at far distances has
been reported by numerous investigators (Foley, 1980;
Johnston, 1991; Tittle et al., 1995), which is incon-
sistent with what is expected if the mapping between
physical and perceived space were affine. In contrastto
a synthetic approach, the iso-distortion framework pro-
posed in this paper offers an analytic account of several
properties of the perceived visual space. Our analysis Fi9ure 1 Theimage formation modeD X'y Zis a coordinate sys-
tem fixed to the camera& is the optical center and the positiZeaxis

shows that the transformation between phy5|cal and is the direction of view. The image plane is located at a focal lefigth

perceptual space is more complicated than previously pixeis from0 along thez-axis. A pointP at (X, Y, Z) in the world

thought. produces an image poiptat (X, y) on the image plane wherg, y)
The paper is organized as follows. Section 3 devel- is given by(*, 1f). The instantaneous motion of the camera is

ops the equations leading to the iso-distortion frame- given by the translational vectdd, V, W) and the rotational vector

work. Section 4 shows that the transformation from 77

physical to perceptual space belongs to the family

of Cremona transformations, and applies some es-point to the 3D velocity and the depth of the corre-

tablished results from the mathematical literature on sponding scene point are (Longuet-Higgins, 1981)

Cremona transformation to the shape distortion trans-

formation. Sections 5 and 6 relate the iso-distortion sur- | _ Urrans = Urot

faces to Cremona transformation. The paper ends with

2
a short description of future work and conclusions. —(x— Xo)g n @’ _ ’B(XT n f) +yy
3. Distortion of Visual Space V= Vurans+ Urot ,
. | —y-wg () - B @
As an image formation model, we use the standard 4 f f

model of perspective projection on the plane, with the
image plane ata distanddrom the nodal pointparallel ~ Whereuyans viransare the horizontal and vertical com-
to the XY plane, and the viewing direction along the ponents of the flow due to translation, amgt, vrot the
positive Z-axis as illustrated in Fig. 1. horizontal and vertical components of the flow due to
The change of viewing geometry is described rotation, respectively.
through a rigid motion with translational velocity The normal flowu, measured along a direction
(U, V, W) and rotational velocitya, 8, y) of the ob- N = (ny, ny) normal to the intensity gradient is given
server in the coordinate systetXY Z(see Fig. 1). by
As a consequence of the scaling ambiguity, only
the direction of translatiotko, Yo) = (i f, w ) repre-
sented in the image plane by the epipole (also called the Knowing the parameters of the viewing geometry ex-
FOE (focus of expansion) or FOC (focus of contrac- actly, the scaled depth can be derived from (2). Since

tion) depending on wheth&V is positive or negative),  the depth can only be derived up to a scale factor, we
the scaled deptiZ /W and the rotational parameters get\W = 1 and obtain

can possibly be obtained from flow measurements. Us-
ing this notation the equations relating the 2D velocity 7 _ (X = Xo)Ny + (Y — Yo)ny
U = (U, v) = (Uyans+ Urot, Virans+ vrot) OF an image Un — UrotNx — VrotNy

Un - unx + vny (2)
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If there is an error in the estimation of the viewing
geometry, this willin turn cause errors in the estimation

199

In order to derive the iso-distortion surfaces in 3D
space (i.e. XY Z-space) instead of visual space (i.e.,

of the scaled depth, and thus a distorted version of xyZ-space), we substitute= fTX andy = % in (4),

space will be computed. To distinguish between the

various estimates, we use the hat sign “~ " to represent
estimated quantities, the unmarked letters to denote

the actual quantities, and the subscrigttb represent

errors, where the estimates are related as follows:
(R0, Y0) = (X0 — Xo,, Yo — ¥o,)

@ B.7)=@—ac.B—Pe.v — e

(
l’:lrot = (Urot — Urot, s Vrot — Urop)

X X2
= Urot_<a y ﬁe(?‘i‘f)‘i‘ye)/),

o

2 X
Urot — (Ol€<yT+ f) _ﬂETy_VEX)}

If we also allow for a noise term\ in the estimatdi,
of the component flow,,, we havel, = u, — N. The
estimated depth becomes

(X — Ro) Ny + (Y — Yo) Ny
ljn - (Grotnx + ﬁrotny)

z

N>

or

(X — o) Nx + (Y — J0) Ny
(X—X0+ ZUrot)nx + (y_ y0+ ZUroL) ny - N Z
3)

z

From (3) we can see thal is obtained fromZ
through multiplication by a factor given by the term
inside the brackets, which we denoteyand call the
distortion factor. Inthe forthcoming analysis we do not
attempt to model the statistics of the noise and we will
therefore ignore the noise term. Thus, the distortion
factor takes the form

(X =R Nx + (y —Yo) Ny
(X — Xo + ZUroL)nx + (y_ Yo+ ZUTOL) Ny

(4)

Equation (4) describes, for any fixed direction
(nx, ny) and any fixed distortion factoD, a surface
f(x,y,Z) = 0in xyZ-space, which we call an iso-
distortion surface. For specific values of the param-
eters X, Yo, Xo, Yo, e, Be, ¥e and (ny, ny), this iso-
distortion surface has the obvious property that points
lying onit are distorted in depth by the same multiplica-
tive factorD. The distortion of the estimated space can
be studied by looking at these iso-distortion surfaces.

which gives the following equation:

D((@e XY — B(X2+ Z%) + y.Y Z)ny
+ (@ (Y2 + Z%) — B XY — y X Z) ny)

— X—E—D X_E Ny
f f
(- Eofr- oo

describing the iso-distortion surfaces as quadratic
surfaces—in the general case, as hyperboloids.
Figure 2 is obtained by the intersection of such surfaces
with planes parallel to th&-Z plane, and looking at
the resultant iso-distortion contours. We see that there
are two common intersecting points of all the distor-
tion contours in 3D space. Atthese intersecting points,
the distortion factor is undefined. This phenomenon is
related to the fundamental elements of the Cremona
transformation and will be further elaborated upon in
Sections 4 and 5.

The nature of such space distortion can be studied
from two points of view. On the one hand, as men-
tioned previously, we can characterize the nature of
space distortion in terms of the geometrical properties
of the iso-distortion surfaces. This allows us (Cheong
et al., 1998) to address several computational issues in
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Figure 2 Iso-distortion contours in 3D spaceny =1, ny =0,
Xo =200, Xp, = —100, & =y =0, andB. = —0.001. Only the con-
tours with 04 < D < 4 are shown.
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motion estimation: positions), where the imaget] V', Z, W] of a point
[X, ), Z,W] e P3is given by the formulae

Efficacy of the visibility constraint

¢ Situations likely to give rise to ambiguities [X, D, Z, W] = [¢1, p2, p3, pa] (6)
e Anisotropy in the FOE uncertainty area (Duric and .
Aloimonos, 1994; Sinclair et al., 1994) Similarly, the inverse transformatiop:P3 —

Precision needed in an inertial sensor for accurate P is given by
3D motion estimation (the inertial sensor estimates o
rotation) (Viéville and Faugeras, 1989). (X, Y, Z, W] = [¢1, p2, p3, $4] (1)

The geometry of such iso-distortion surfaces can also 1€ quantitiesp; are homogeneous polynomials (in

be used to explain various psychophysical phenomena<t: Vs £ andW) of degreen andg; are homogeneous
in stereoscopic perception too, such as: polynomials (inX, Y, £ and W) of degreen (#n
in general). However, the transformation that we are

going to study has the propenty= fi = 2 and¢ and
¢~ have similar expressions except for the parameters.
TheF-elements o are precisely the common vani-
shing set (called a variety) @f, 1 < i < 4 where¢
is indeterminate. However, it will be shown later that
For detai|S, see (Fel’lmﬂer et aI., 1997) FOI’afuller de- each point in thel:_set in genera| Corresponds to a
scription of the mathematical properties of the distorted positive dimensional variety i®? (calleda principal
stereoscopic space, see (Baratoff, 1997). element Hence theF-set inP9 corresponds to some
On the other hand, we can study the properties of the variety P-set(the union of allP-elements) inPd.
transformation itself, which we will show is a Cremona In the case ofl = 3, the F-elements can be points
transformation. The rest of this paper (Sections 4-6) (simple or multiple) or curves. In particular, when

focus on studying the mathematical properties of the n — 2, only three possibilities fof = degree ofp—1
Cremona transformation, and then relating them back and theF-set may occur:

to the iso-distortion surfaces, thereby revealing further

properties of the distorted space. In order to present a conic and a simple point
these analyses visually, mostofthe investigationwillbe 3 jine and three simple points
conducted by initially considering a particular gradient
direction, say(ny = 1, ny = 0).

e Apparent Fronto Parallel Plane (AFPP)
e Apparent Distance Bisection (ADB)
e Distance Judgment from Motion and Stereo

>

|I Il

-bOOI\)
~
(o2}
Nt

a double point and three simple pointé

For details, see (Hudson, 1927).

Whend =3, the set of all linear combinations of
¢i’s form a three-dimensional (projective) family of
surfacesS (defined bycy 1 + Cop2 + C3p3 + Ca¢p4 = 0)
(calledthe homoloidal net spanned lay’s). These
are precisely the degreesurfaces that map to planes
X 4+ Y + C3Z + ¢V = 0in P3. If a degreen
surfaceS does not belong to the net spanneddhl,
its total image irP® is a degre@n surface (from (7)).
This surface may contaiR-elements ifS contains any
F-element, in which case the total image less all the
P-elements$, is called theproper homologue of &

4. Cremona Space Transformation

A Cremona transformatiog : P9 — P4 is a transfor-
mation from a projective space to another of the same
dimension. It has the propertyifationality) that it
is bijective almost everywhere except on the set of
F-elements(abbreviation forfundamental elements
where¢ becomes a one-to-many correspondence. The
F-elements form aarietyof P¢ which by definition is
the vanishing set of some homogeneous polynomials
onPd,

We now introduce the homogeneous coordi-
nates [t', Y, Z, W], which are related to the non- 4.1. Singular Elements of Space
homogeneous coordinatéX, Y, Z) by (X,Y, Z) = Distortion Transformation
[X/ W, Y/W, Z/W, 1]. Now define aCremonatrans-
formationg : P2 — P3 (we think of P3 as the actual ~ Consider the distortion factor given in Eq. (5). If we
coordinates of the object bire those of their estimated ~ fix (ny, ny) to be in the horizontal directior) can be
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written as: 4.2. Inverse Transformation
D= FX—=%0Z We now derive the inverse transformatign?:
fX =X0Z + f (e XY =B (X24+22)+y.Y 2)
©) ¢HX Y, 2V =X, D, 2, W]
. - Z
SinceX = DXZ = DX, and similarly,Y = = [ X — &]
DY, we can now express the space distortion in terms XXX
of the following homogeneous coordinates: [ y Z W]
= 1, R A T, (12)
N X
X = pr=(fX —R2)X A
YV = ¢o=(FX-%2)Y % is related to% as follows:
Z = a=(fX-%2)Z 10 A
£ = ga=(14~%2) QO (x4 2D 4y
W = ¢pa=(fX - X 2IW+ f(a. XY r (fx—S%02)x
2 2 . .
— B(X*+ 2% + 7.V 2) ) V_V(f _Xo)ze) ) (e -p.(1+(2)") +n22)
which is a Cremona space transformation of degree Y- AO% f =% %
two. The transformation is uniquely defined except W ) _
when all the $) vanish. This occurs whetf X' —%02) Hence,% can be expressed in terms%fas follows:
andg, both vanish. Substituting’ = = Z into ¢4, we
obtain: w W(ffxgx) fX<a€l. @(H(%) )w%f{)
Z(—XoefW‘f‘ae)?Ofy_ﬁs . ??(f—xo%)

x (R + f9)Z+y. f2))=0
Substituting the above relationship into (12), we obtain:
from which it can be concluded that the fundamental

elements consist of two straight links andL, given X =(fX —%x2)X
as follows: - AA
V=({X~-x%2)Y
L ={[X,V,ZW]| fX—-%Z=0,Z=0} Z—(fX—x2)2 (13)
Lo = {[X. Y. 2. W] | 14 ~%Z =0, @ 2 1y
(—Xo6 fW—i—ae)A(ofJ)—ﬂe()A(S—i- fz)Z
5 (11) Henceg andg™ L have similar expressions. Notice that
+vef y) = 0} the planef ¥ —xoZ = 0inP3is mapped onto a single
{[f(o ﬂe(f(é+ f2) Yo IpDomlt [0, 0, tO 1]. Hence the plane X —xZ=0isa
=12 > 5 -elemen
F fadoty D Ko+ vt Carrying out the same operation as §grwe obtain
W, Z, W] ‘ [Z, W] € 731} the fundamental elements ¢f* as follows:
L, and L, intersect at the poinB, [0, —X2— 0, 1] L1:[0, ¥, 0,]

KXoty £
which constitutes the third fundamentgl elemdéhhas

A~ 3 f2 A A A
multiplicity 2 (thus counted as two points) since itis L2 Xz fﬂ(a(fxgiy})z + a€X§$y€ W, Z, Wi|
the intersection of two lines. Thus thesystem is a

degenerate conic (union of two lines) on which lies a B X0e 1

double poin_tB._ It follows from (8) that the inverse T aexoFye

transformation is also of degree two. (14)
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4.3. Transformation of F-Lines

In general, & -conic is transformed into R-cone. In

into the above equation:

[Oﬂy(fv_)zo)aovw(fl)_xo)_'_ fy(a€v+yé)]

degenerate cases, where the conic becomes lines, the

P-cone breaks up into planes. To see what these planes

are, we need to lift the transformatign P23 — P3 to
another transformatios : B, — P3i =1,2. The
variety B, is theblow-upof P32 alongL;. Itis isomor-
phic toP3 away fromL; but replaces ; with L; x P?.
We can think of the factoP?! as all the possible di-
rections from which we can approach the line The

reason for doing that is because points which are in-

finitesimally nearL; have well defined images i3
so that we can compute the “image” bf by taking

the limit of the proper images of all possible directions

of approach td_;. See (Shafarevich, 1994) for details
on blow-ups.

4.3.1. Transformation of ;. We consider the blow-
up of R v.z (we look at the affine space ° defined
by W = 0)alongL ;. Define the variety, , as follows:

B, ={((X,Y,2),[st]) | Xt=Zs}

3 1
C Rx.v,z X Psy

There is a natural map : B, — L1 given by pro-
jection onto the first factor. We can regard= %
as the direction of approach tb;. For any point
p=(X,Y,Z)notonL;, X #0o0rZ # 0, there is a
unique pointr ~1(p) = ((X, Y, 2),[X, Z]) € B, over
p. On the other hand, whemliesonL;, X = Z =0,
7~1(p) = PZ,. Hence the point0, Y, 0) onL; can be
regarded as being replaced by a copéin B ,. An-
other interpretation of this copy ¢! is to recognize
thatL, is the projectivization of the two dimensional
subspacé ; spanned by andWW. Then this copy of
Pl is the projectivization of all the normal directions
to Ly, P(R*/Ly).

Using the relatiorX =vZ on By ,, consider the lift-
ingof¢, ¢: B, — P3:

¢ (X, Y, 2),[s,1]) = ¢[X, V, Z, W]
:[X(fv_)z())vy(fv_)20)52(1:])_)?0)7
W(fv —Xo) + Y (v + ye) — FB(Xv + 2)]

The image of the poinp = (0, Yy, 0), Yo = Yo/ Wo =
wonLj can be obtained by substitutidg=0, Z =0

a)(fl)—)?())
T (fv—Xg) + fo (o + y.

_ [o
which is the linel; as defined in (14) as varies

in Pét. As w varies, each point olh; gives rise to

the same imagé ;. It is easy to verify that if we had
performed the blow-up to the affine space defined by
Y # 0 alongL,, we would have found that the point
at infinity, [0, 1, 0, 0], on L is mapped td_; too:

0 1} (15)

Theimageis [0(fv — Ro), 0, f(aev + y0)].

i.e., the limit of (15) asw — oo. Thus the image
of Ly — [0, 0,0, 1] is a degenerate plane, consisting
of infinite copies of the lind_,. But [0,0,0,1] in P®
corresponds to the plarfet — xoZ = 0inP3. Hence
the P-element corresponding o, is the planef X' —
XoZA =0.

4.3.2. Transformation of .. From Egs. (111, can
be written as:

Xo
X==2Z

f
YV=\Z+uW

where for ease of presentation, we have definedd
u as follows:

_ BB+ 1?)
~ faRotyeh)
_ Xoe

056),20 + Vef

(16)

A general pointp on L, has the following homoge-
neous coordinates:

p = [Xo, Yo, Z0, Wo)

Xo
= |:T(a) — W), o, 0w — W, A]

:[&(w—u) (0 — )

1 17
fx’w’,\’]()

In the case ot 1, the definition ofB, hinges on the
fact thatl ; is characterized by = Z = 0. To blow
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up alongL ,, we change coordinates so thatis char-
acterized byt” = Z’ = 0 in some new homogeneous
coordinates. Let our new projective coordinates be

X = fX - %2

Y=Yy (18)
=Y - AZ—-uW
wW=w
or, equivalently:
X/ )A(O / / /
X=—+ -0 -2 —uW)
f A
y=y (19)
1
= X(y’ = Z' =W
W=w

Define the blow-upB,, (of the affine space given by
W = W' # 0) alongL, as before:

BL, = {((X,Y,Z),[st]) | X't =Z's}
C R¥y.z x PLy

where(X",Y', Z') = [X"/ W', Y'/W', Z'/W', 1]. To
obtaing: B, — P3in terms of X", ), Z/, W', we
substitute (19) into (10) to obtain:

Rz (? S MW’)>
y=vzY
222 =2 - ) (20)
W= (fX—XOZ)W—l— f (e XY

—B(X?+ 2% + yYVZ)

Using the fact that oo, ¥ = 22, ' = 0,2 = 0
andthaf)’ = Y, W = W, we obtain the image® of
a pointp = [Xb, Vo, Zo, Wol, WhereYy = Yo/ Wo =
w, on L, as follows:

)zo v
[Vﬁo; — W)Y, 2 = W),

KXo+ Ve f
A

= [ﬁb\H )\'—wbvv bV7 1}
w—

_ b (&(w—u)’w’ (w—M)> 21)
w—u\ f A A

- MW):|

whereb, a + depends only on the direction of
approach top (measured by). From the above for-
mula, the image op is aline lying in the planél given
by X = % Z and passing through the origin. Different
points on this line come from different directions of
approach top asv varies. If we identifyP? and P32,
we can see from the last line and (17) tha® is the
line joining the origin andp.

That the point at infinity, 2, 2, 1, 0] on L is also
mapped to a line in the plang = 3 Z can be easily
verified.

The planell in P2 defined by¥ = % 2 is spanned
by theA two linesL; and L,. With the identification
P3 = P83, we conclude that:

(a) Every point except [@, 0, 1] on L, corresponds
to L4, the Y-axis in?3 (from (15)).

(b) [0, 0, 0, 1] corresponds to th@-plane inP3 de-
fined by f X — xoZ = 0 (from (13)).

(c) Every pointp on L, corresponds to a liné(®
joining the origin andp, lying in the planelT in
73 defined byX = * 2 (from (21)).

Also, it is not hard to see that is ruled byL P asp
runs through_, and that every point ofl — (L; U L5)
is mapped onto [0, 0, 1] P3. Hence, we can fur-
ther conclude that:

(d) The planell =11 is invariant under (but not
pointwise or even linewise).

From (a)—(d), we conclude that tife-cone is the
unlon of the two planed X - xOZ —OandfX —
%02 = 0, corresponding t& (actually only one point
[0, 0,0, 1] on it) andL , respectively.

4.4. Transformation of Lines and Planes
which Contain Only k (or Ly)

A general variety (i.e., it is not &-element) ofP®
is transformed byp into another inP3 of the same
dimension.

By (7), a general surfaceS in 7P3, say,
9 (X, Y, Z W), of degreer, is mapped to the sur-
facegr (d1. g2, P3. da) or sayde (X, ¥, Z, W), of de-
greef = fr. If Scontains certairF-elements, then
the homologue (given b§ = 0) splits into a union of
principal surfaces, corresponding to theelements,
and a residual surfac®, of degree<fir, which is the
proper homologue o8. For example, ifg is a scalar

203
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linear combination oy, ¢, ¢s, ¢4, thenSreduces to
a plane.

For a curveC in P3, its degree is defined to be the
number of intersection points with a general plane. A
general curveC of degreem is mapped to a curv€
of degreenm—for if C meets a general plane °
in m points, it must meet a generaldric S in the
net spanned by;’s in mn points? The image of the
n-dric is a planetr which meets the total image &f
in mn points. As in the case of surfacesdfpasses
through anyF-points, the total image splits into a set of
P-elements, and a residu@l of degree<nm, which
is the proper homologue @.

In our caseg is specialized such that tHe-conic
breaks up into a pair of intersecting linkg and Lo,
and that thé>-cone |n7>3 breaks up into two planes: the
planest = XOZ andX = XOZ

In general |fasurfac8def|ned byg = 0 (of degree
r) passes through; but notL,, theng = X1+ Z»
for some degre&¢ — 1) homogeneous polynomiais
andyr,. Using the inverse formula fg&—*, we can see
that the total image d8consists of thé>-element given
by X — 22 = 0 (due to [Q0, O, 1]) and the proper
homologue of degreer2- 1. For instance, planes that
pass through.; but not throughL, will be preserved
as planes.

We shall now study how planes passing throligh
but notL , (or vice versa) are transformed $yo planes
by looking at how lines which intersect only one of
them are transformed.

4.4.1. Image of a Line L Intersecting L But Not
L,. Any line L which intersectsL; at, sayp =
[0, w,0,1] = (0, w, 0) lies in some plane given by
tX —sZ = O with [s,t]ePL. Let§ = v. Note that
v # ? since otherwisé. lies on the plandl defined
by fX — XpZ = 0 and will have [00, 0, 1] as its
proper homologue (together with twe-elements ;
andL () wherep’ = L N L,). SoL is given by:

V2,82 + oW, Z, W] (22)

where$ measures the slope bfin the planer. Since
fX—%Z #0,% =% =v# % ThusL, the image
of L, lies on the plane¥ = v Z.

Substituting the inverse formulae (13) for Z and
W into the relationy = §Z + W, we obtain:

(FX=%2)Y=8fX —%2)Z +w(fX —%X2)
W — wf (@ PX — B (X + 2+ y.D2)

Substituting® = v 2, we get

ZQY-8Z—0W)=0 (23)
whered andé are respectively given by:
5 8(fv—x)+ wfBc(v? + 1)

B fV—XO+wf(aeV+Ve) (24)

a)(f\)—)A(o)
fv— X+ of (@ev + ve)

@

SettingZ = 0 in (23) gives us the lind.; which
is the P-element corresponding o = L N L;. The
proper homologue of is L defined by

A~

AAT' =VvZ, )} = SZA + @W

Clearly, the planer is ruled by lines described by
(22). Thus any plane with equationY = v Z (includ-
ing v = Xo/f from the previous section), is invariant
under¢. However, it is not line-wise invariant.

Note thats, the slope ofL, is dependent o and
w, but® depends only om. [0, @, 0, 1] is the point
wherel mtersectsLl That is,wherel_ mtersectsLl
depends only on = slope of the plane on which L lies
This agrees with the formula (15) in the blow-up along
L, when we computed the image of the pojmt=
[0, w, 0, 1] on L by taking the limit as we approagh
from the planer defined byX = vZ.

For a lineL which intersectsL; at [0, 1,0, 0] at
infinity, its image can be found by taking the limit of

L asw — oo. The image of such a line is given by:

X=vZ
j}=,3€(v2+1)é (fv —Xo)
(atev + ve) flaev + ve)

Note that for lines withw = 0 (these correspond to
lines of sight passing through the origii),= 0 and
§ = 8. Thatis, points along a line of sightwill remain
as points along the same line of sight in the distorted
space.

4.4.2. Image of a Line L Intersecting £But Not L.
From the opening remarks on the transform of a line
containing aF-point in Section 4.4, we know that the
homologue of a lind_ intersecting., at p is a degree

2 curve with two components, the transformpfi_ (?
and the proper homologUfa of L.
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Suppose a ling intersectd._, at a pointp given by
17)

p = [Xo, Yo, Z0, W)

A

Xo
= |:T(a) — W), o, w— W, )Li|

_ [ﬁo(w—u) (0 —p) ]
— | ¢ , W, 315
f A A

thenL lies in some plane’ given by

X =vZ

25
YV =824+ oW (25)

for somev # 0 (v = 0 yields the planet’ = fX —
XoZ = Owhich passes through bath andL ), where
theX’, V', Z', W' system is defined in (18).

Note that there is a relation among . anda from
the fact thatps(p) = 0

(Ro — x@(“’l—“) + f[aeXoVo
- lge(-)(o2 + Zg) + VeyOZO] =0 (26)

Interms of theY, ), Z andW coordinatesl. is the
intersection of two planes given by

fX—-RZ=v(Y—AZ—uWW)
YV=58Q —AZ—uW)+ oW

(27)
(28)
W in (27) can be expressed in terms)and Z using

(28). Hencel can also be realized as the intersection
of two planesP; and P, given by:

flw—ud)X +vip —w)y
+[rwv — (0 — n8)X]Z =0: Py

A=8)Y+MrZ—(w—=6pW=0:P, (29
Substituting the inverse formulae (13) f&% ), Z and
W into (29), we obtain two image quadri€3, and
Q2. The intersectiorQ; N Q, has Qegree 22=4
and contains the proper homologueof L, L® and

another degree 2 curve which is not a component of the

homologue ofL (see below).
Substituting (13) into the equation &, we have

(fX —%2)[f(w—pu&X +v(p — )Y

+ [y — (@ — u8)R] Z] = 0 (30)
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describing a quadrlch which is the union of two
pIanesR1 U R, whereR; is given by f X - xoZ 0.

Similarly, substitution of (13) into the equation of
P, gives us the image quadr(@z given by

(FX =SR2V — (X — %2)
1-68 .
X Y+ oh Z
w—38U w—68uU

- f[aej}-)%_ﬂe(-)ez‘i‘z,\z)‘i‘yej)z] =0

(1)

The total homologue corresponding to is only
(R N Qo) where:

0:nQ:=(RUR)NQ,
= (RiNQ) U(RNQy)

because we know tha®, is a F-plane in3 which
maps onto [00, 0, 1] in P2, the F-point whichL does

not pass through. In any case, it is easy to verify that
(RiNQyisLiULy, the F-set inP3.

For the mtersectlorRZ N Qz, it is easy to verify
that the linel (P, the P-element corresponding to the
intersectionp = L,NL, liesin botth (this is trivial)
and Q, (needs (26)). ThereforeRz N Q, must be a
union of two lineL(® U L, the second of which is the
proper homologue of .

Note that if p specializes to the double poiBt(i.e.,

w = p) on bothL; andL,, R, N Q, becomed U L.

In algebraic terms, it means that if we set the second
factor of (30) to zero and substitute into (31), we must
get a reducible quadratic polynomial. From (30):

f(a)—,ub‘))%

Ay — (0 — ,LLS))A(OZ;
v(w — )

V= v(w — @)

Substituting the above into (31), we obtain

v(w—p)(FX = RZ2)W — (fX — X0 2)
x {F(L=8)X +[Av — Ro(1—8)]Z)}
— f{@ X+ y D) (- ud)X + (v
— (@ — u8)R0) 2] — v(w — WP (X2+ 2%} =0

which can be factorized as:
(fX —%2) (v(w — W+ [v(@ — w)pe

— (0 — ud) fae — (1 —8) f1X
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vi[wiye — (w0 — ) Be] Thus, we can state the following: THe-elements in

X %o — frel@—ud)  p3 consist of the pland & — xo2 = 0 which corre-

sponds to the poird (0, 0, 0, 1), and thé>-cone (de-

_ M@ F(1- 8)x0] 2) -0 fined bytt\e union o_fthetwo plandst —xoZ = 0 an_d
Xo f X — X0 Z = 0) which corresponds to a conic defined

The first f d | h i by the union of the two linek; andL,. Similarly, the
e first factor corresponds to a plane whose intersec- 5_qjaments i3 consist of the pland X — %2 = 0

tion with Ry is LP; the secondAfactor corresponds to which corresponds to the poir@ ©, 0, 0, 1), and

a plane whose intersection with; is our required.. the P-cone (defined by the union of the two planes
That is, the proper homologue bfdefined by: fX —xZ = 0and fX — %Z = 0) which corre-
sponds to a conic defined by the union of the two lines

flo—ud)X + v - o)y L, and(,. Equation (32) also succinctly describes the

+[Awv — (@ — u8)R]Z =0 result obtained in Section 4.4.1 that a ray of the star
at O will map to the same ray of the star @ Visu-
viw—wW-(1-68fx ally, this means that the displacement of a point in 3D

space caused by the distortion transformation is always
in the direction of its line of sight. Indeed, the order of
points along a line of sight can always be determined
despite the distortion transformation (see Appendix A).
Such ordinal depth information constitutes a less met-

+[(L—8)R —vA]Z =0

(whereby we have expresséd in a different way by
eliminating)’) is L defined by:

f (o — ;MS)Q? ol — )Y rical way of representing depth than tho;e traditionally
A used and has attracted much research interest recently
+[howv — (@ — ud)X] Z =0 (Garding et al., 1995, Todd and Reichel, 1989).

(@ — WW + [v(@ — e — (@ — nd)

 fa, — (1— &) f])E 5. Revisiting Iso-Distortion Surfaces

i [Vf [whye — (0 — ) Be] ~ fyw— 1) Referring to Fig. 2, the two common intersecting points
Xo ve H of all the iso-distortion contours are exactly the points
wherelL; and L, intersect theX-Z plane. However,
— Auﬁﬁ +@1- S)XO}.?% =0 although all iso-distortion surfaces contdinandL,,
0

they do not fall under the homoloidal net spanned by
¢i’'s, as we shall show now.
4.5, Forms ofp and¢—* From the formula for the distortion fact® in (9),
we can also writeD as
The observed symmetry betwegrand¢ 1 is related

to the fact that the projection cent@; 0, 0, 1) is part (fX -%Z)W

D=

of the F-set, which results in the particularly simple (fX =% Z) W+ f (ac XY - B (X2+ 22) + vV 2)
form of ¢:
For convenience, we definlg as(f X — XgZ2)W.
1= (fX —X2)X TheD-iso-distortion surfaceQp, is a quadric given by
. the equatiops — D¢, = 0. HoweverD is indetermi-
¢2 = (fX —X2)Y nate along a set wheya = ¢s = 0. Easy calculations
b3= (fX —R2)Z show that this set is the union &f; U L, and a conic
C atinfinity defined byWV = ac XYY — B (X2 + 22) +
or, v YZ=0.
Hence,every iso-distortion surface passes through
XY Z2=x:Y:2Z (32) L;UL,UC.
From the opening remarks in Section 4.4, the total
In this simple case, it can be shown tigaand¢—* homologue of theD-iso-distortion surfac&p is the

always have the same form (see Hudson, 1927, p. 184).union of two planesf X — XoZ = 0andf X — xoZ =
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0 (sinceQp contains the point [, 0, 1] and the line ¢1, @2, . .., ¢s and the variety
L, in P%), and a quadri®Qp which is the proper ho-

mologue. We can verify that easily by substituting the V() ={peP" " ¢(p)
formulae ofgp—* into the equation ofp, obtaining: = ¢a(p) = - = ps(p) = O}
(FX —%2)(fX = x2)[(FX —RZ)W is non-empty, the (V (1)) = Rad(1).

A 50 52 A5 In other words, if we start with an idedl look at
= flaeyd = fe @7+ 25 4y Y Z] V(1) andthen (V (1)), we may end up getting polyno-
—D(fX —xZ)W] =0 mialsh € Rad 1) — | which do not originally belong
to | (butsome powers ¢fdo) unlesd is already a radi-

Note thatQp is precisely thel -iso-distortion surface ~ calideal. Also, itis possible to have two ide&ls# 1,
of L. with V(1) = V(ly), but then Rad;) = Radl,).

Hence, we conclude thalhe D-iso-distortion sur- Hence, there is a one-one correspondence between pro-
face ofg transforms to thel-iso-distortion surface of ~ jective varieties and homogeneous radical ideals (ex-

L. cluding those irrelevant ideals, whose radical ideal is
the maximal ideakX, A>, ..., A,), which yield the
empty set).

6. Transformation of Surfaces Containing Itis easy to see th&t(S) = (g) sincegisirreducible.

BothLiandL, Now we see what the radical of = (¢1, ¢2, 3, Pa)

is. Firstly, we observe that(l;) = V (l,) wherel, =
We need some facts and theorems from commutative al- (f ¥ — %02, ¢4), i.e.,F = L1 U L, is presented as the
gebra in this section, namely, the Hilbert's Nullstellen- intersection 0fap|ane and aquadric_ Hence,Rad=
satz and the relation between ideal€[iX’, ), Z, W] Radl,). We make the following:
and varieties ifP3. Appendix B summarizes some of
the concepts from algebraic geometry required in this Claim: Rad(l,) = > = (f X — R0Z, ¢a)
section.

Hilbert's Nullstellensatz is valid only ovet or an Proof: See Appendix B. a
algebraically closed field. We apply this resultto obtain
ideals and varieties ovet and then notice that all of Therefore, a degreesurfaceS containingF has its
these are actually defined over defining polynomial e (f X' — X Z, ¢4) since(g) =
SetF to be the uniorL; U L, for convenience. If (S C1(F) =1l ie.
a surfaceS in P* containsF, then thehomogeneous )
ideal of S I (S), is contained in the homogeneous ideal 9= (fX = %2)Y1+ da¥2

of F, I (F). Sisdefined by ahomogeneous polynomial
g of degreer. gis in general a product of irreducible
polynomials, possibly with repetitions. However, we
can assume thatis anirreducible polynomial since the
proper homologue of areducible surface is the union o

the proper homologues of its irreducible components 2 F ’ . -
(possibly with multiple components). S, is a degree 2— 2 surface defined bg/(fX —

To determine the general form gf we can make %02)(f X —x%02), \l/v.hereg comes from substitution of
use of the fact that (S) c I (F). We compute both  the formulae o™ into g. , o
ideals first. Unfortunatelyl, (F) is not necessarily = The case = 2 is particularly interesting since then
(d1, o, b3, ba), the ideal which yieldsF in the first Y islinear and)» is a constant. If, does not havgV

place. This is the content éfilbert’'s Nullstellensatz asasummand, thegp:. C1¢1+Ca2 +Cagps + C4¢4’Athe
proper homologue dfis a planec; X + ;Y + 3.2 +

¢V = 0. If 1 hasW as a summand, thepis a

for some degree — 1 homogeneous polynomigi,
and degree — 2 homogeneous polynomidgik,.
The total homologue always contains the two planes
f defined byf X —%X0Z = 0andf X —xgZ = 0 because
S passes through; andL,. The proper homologue

Hilbert's Nullstellensatz linear combiAnation ob1, P2, @3, P4 andgs. The proper
homologueS is a quadric. The special case occurs
Suppose a homogeneous idedal in C[X, X>, wheng is a linear combination of onlg, and¢s, i.e.,

..., Xy] is generated by homogeneous polynomials Sis an iso-distortion surface.
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7. Conclusions imprecise motion estimates or imprecise estimates on
the viewing geometry of a stereo configuration. Other
Euclidean geometry has been used over the years byimportant fields of inquiry include furthering the study
perceptual theorists to model perceptual space, that is,of the mathematical properties of Cremona transforma-
to represent physical space in the minds of seeing sys-tion and conducting a systematic psychophysical study
tems or in the computers controlling artificial vision on the effects of Cremona transformation on perceived
systems. The major result of this paper is that no vision visual space. Lastly, the distortion space of other de-
system can actually develop an Euclidean representa-partments of the Shape from X problems can be system-
tion of its extra-personal space. Due to any slight errors atically worked out. When their respective laws of dis-
in the estimation of its intrinsic or extrinsic parame- tortion, their individual weaknesses and strengths, and
ters, the system can only estimate a distorted version so forth, are understood, our representation of space
of the physical space. In particular, a theory describing will come to be securely grounded on a scientific foun-
the distortion of the visual space due to errors in mo- dation.
tion estimates has been developed. It represents a first
step towards de_parting from the tradition_al Euclidean Appendix A
geometry used in the structure from motion problem.

Specifically, it showed that the transformation between |1 is clear from Eq. (4) that the distorted depttgiven

physical and perceptual spaceis aQrempnqtransforma—by DZ has the form +zb , wherea andb are given by:
tion. The systematic nature of the distortion is therefore

made explicit by this transformation.

From a philosophical standpoint, this paper provides g X=X.Y—Yo) N
support for the empiricist viewpoint regarding the na- (X = %0, Y —Yo) - N
ture of our knowledge. In particular, to understand (33)
how the mind represents space, it is necessary to in- — (U'O'f’ U’O‘f) n
vestigate scientifically the causal principles that in fact (X =%,y —Yo)-Nn

govern the mind’s operation. The viewpoint emerging

from this paper is that perceptual space appears to beSince we are studying points lying along the same line

governed by its own peculiar geometry whose under- of sight and with the same gradient a andb are

standing is a long-term research endeavour. This paperconstant. Consider two such points, with depis

explored a few basic fundamentals of this geometry and and Z, and their respective distortion factors denoted

opened up an exciting field of inquiry. by D; and D,. It can be easily shown that the sign
Specifically, we applied some established results of the depth differencéZ; — Z,) can be expressed as

from the mathematical literature on Cremona space follows:

transformation to the shape distortion transformation.

We identified the fundamental elements of both the di- SgN(Z1 — Z») = sgn@aDyD2(Z1 — Z5))

rect and the inverse transformation, and showed that

they consist of degenerate conics and points. We alsowhere we have used sgnto denote the sign function.

studied the transformation of space elements (lines, The signs oD;, D,, Z; andZ, are all known. Thus, if

planes) that pass through these fundamental elementsthe sign ofa is known, the relative ordering &; and

Specifically, we derived planes that remain invariant Z, can always be determined. In particular, given the

under the distortion transformation. We also showed case whera is positive, only the following scenarios

that points with the same gradient and lying on the same are possible:

line of sight will remain as points along the same line

of sight. Finally, we investigated the relationship be- 1. if D1 > 0, D, > 0 = sgn(Z; — Z) = sgn(Z, —

tweeniso-distortion surfaces and the Cremonatransfor-  Z5)

mationg. 2. if Dy < 0,D; < 0= sgnZ; — Zy) = sgnZ; —
There are several aspects of this work that could be Z)

further developed. First, the iso-distortion framework 3. if D1D, < 0 = sgn(Z; — Z,) = —sgn(Zy — Z»)

could be used to investigate properties of the visual  and the larger of the two depths will have a negative

space that remain invariant under distortions, due to  distortion factor.
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y Definition. Let hy,...,hs be polynomials in
K[X1, ..., Xn]. Then we define
R (... he)
H e T el
L oty ’,.‘ s
N’ =1 ghi g ....0s€kX0. ... X] .
s i=1
Figure 3 Unshaded area represents the region on the image plane . . . . . _
wherea is positive (for gradient direction). The crucial f?'Ct|$hl’ -5 Pg)is a_n ideal. Anideal =
(h1, ..., hs) is ahomogeneous ideathenhy, ..., hg

are homogeneous polynomials.

The area whera is positive is determined readily if A variety can be studied by passing to the ideal

the uncertainty region of the FOE can be bounded by,
sayt. This is illustrated in Fig. 3. Therefore if is
sufficiently small, ordinal depth along a line of sight
over much of the image region can be determined.

I (V) ={heK[Xs,...,X]:h(xX) =0forallx € V}

of all polynomials vanishing oiv. Conversely, given
Appendix B anideall c K[xy, ..., Xy], we can define the set

n.
This appendix consists of a brief description of sev- V() = {xekih0g =0 forallh € 1}
eral notions in algebraic geometry that are used in this
paper, chiefly in Section 6.

The solutions of a system of polynomial equations
form a geometric object called aariety, the corre-
sponding algebraic object is &teal. There is a close
relationship between ideals and varieties which reveals
the intimate link between algebra and geometry. An ex-
cellent modern treatment of these topics is (Cox et al.

The following relationship exists between ideals and
varieties:
Let V; andVs be varieties irk". Then:

(i) Vi1 c Veifandonlyifl (V1) D 1(Vy).
(i) V1 =Vzifandonlyifl (Vy) = I (Vo).

' Thoughl (V) andV (I) give us a correspondence be-

19‘?51()3. ideals studied in algebraic geometry are sub- tween ideals gnd vari_eties, the m‘dpl ) can fail to be_

sets of thepolynomial ring Kxu....,x.], where one—to—or)e; differentideals can define the same variety.

KX, %,] denotes the set of ’aII }E)olr;/;lomials in To establish an ope—to—one.correspondence, we need to
v g e . ’ introduce the notion of eadical ideal

X1, ..., Xn With coefficients in the algebraically closed

field k. The polynomial ring used in this paper is

R=C[X.).Z. W], Definition. An ideal | is radical if h™e | for any

integerm > 1 implies thath € |.

Definition. Letkbe afield, andleg,, ..., g; be poly- It is also useful to introduce the operation of taking the

nomials ink[xg, ..., X5]. Then we set radical of an ideal.
j— n.
V(9. G9) = {(@,...,an) € k' Definition. Let | C K[Xy,..., Xn] be an ideal. The
g@,...,an)=0forall 1<i <s}. radical ofl, denoted Rad ), is the set
We call V(gi,...,0s) the variety defined by g, {h:h™ e | for some integem > 1}.
.., 083
Rad(l) clearly contains the ideal (with m = 1).
Definition. A subsetl C K[xy, ..., X,] is anideal if
it satisfies: Irreducible varietiesarise in many context. Intu-
itively, a line or a plane are irreducible: they do not
(i oel. seem to be a union of finitely many simpler varieties.
(i) If g,hel,theng+hel. To caption this notion algebraically, we introduce the

(iii) If g el andh € k[xy, ..., Xy], thengh e I. notion ofprime ideal
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Definition. An ideal | € K[xy,...,Xy] is prime if
wheneveg, heKk[xy, ..., Xp]andg, h € |, then either
gelorhel.

A variety V irreducible if and only ifl (V) is a prime

ideal. The simplest variety iK" is a single point. The
ideall that corresponds to this point is said torhaxi-

malbecause it has the property that any ideabntain-

ing | is such that eithed = | or J = K[Xq, ..., Xn].

Quotient Ring

We need to first introduce the notion of congruence
modulo:

Definition. Letl c Rbe anideal, and ley, h € R.
We sayg andh are congruent modulb, if g—h € I.

It can be shown that congruence module an equiva-
lence relation orR. It partitionsRinto the equivalence
classes ofd], defined by

[g] = {h € R:g andh are congruent modulb}.

Given aringR and an ideal c R, thequotient ring
of R by I, R/1, is defined to be the set of equivalence
classes for congruence modulo

R/l ={[d]: g € R}.

The sum and product operatioas classesre de-
fined by using the corresponding operations on el-
ements ofR. That is, g] + [h] = [g + h] and
[gl[h] = [gh]. Itis easy to verify thatR/I forms a
ring with the above operations.

There is a simple but useful relation between prime
ideals inR and prime ideals ifR/1, namely, there is a
one-one correspondence :

prime idealsA C R/l «
prime idealsA’ C R containingl

Proof: We have the natural quotient map: R —
R/1. Given a prime ideaA c R/, A = 7~ 1(A) is
clearly an ideal inR which containsl. To show that
A’ is a prime ideal, we need to show that if a product
ghliesin A, then eithelg € A’ orh € A'. Butif gh

is in A, thenz(gh) = [gh] = [g][h] is in A. That
means eitherd] or [h] is in AsinceA s a prime ideal.

Hence we can conclude that eithgere 771[g] c A
orhen~[h] c A.

On the other hand, if we have a prime ide¥lin
R, A = 7 (A) is easily shown to be an ideal R/I.
However, to show thaf is prime, we need the fact
thatz is onto. Supposegh] € A, we want to show
that either §] € Aor [h] € A. Sincer is onto, there
areg’, " € Rsuch thatr(g') = [g] andn(h") = [h].
Clearly,g’h’ € A’ but A’ is prime, therefore eithey ¢
A orh’ e A'. Applying  to both and we are done.

O

Now we are already to compute the radical pivith
the following:

Claim: Radlz) =1l = <fX — )A(oZ, ¢4)

Proof: There is an alternative but equivalent defini-
tion of the radical of an idedl in R, namely, it is the
intersection of all prime ideals iR containingl . With
the above property of prime ideals in a quotient ring,
it is sufficient to find all prime ideals iR/l , compute
their intersectiorB, then we have Radl) = 7 ~1(B)
sincer ~! respects intersections.

Hence, to find Rad ), it is sufficient to find all
prime ideals iR/l , compute their intersectioB, then
Radl) = 7~(B).

Applying the above to our situation witlR =
C[X, ¥, Z,W]land| = |, = (fX — RZ, ¢4), We
find that

R/12 =CLY, Z, W]/(¢a)
=C[V, Z,WI/(Z(Q = 1Z — uWV))

whereg, is ¢4 with the substitutiont’ = % 2.

From the view point of varieties, the substitution
of X = % Z into ¢4 restricts our attention to the plane
defined byf X —XyZ = 0 (now with homogeneous co-
ordinatesy, Z, W) in which lies two lined_; (defined
by Z = 0) andL, (defined byy — AZ — uW = 0).
See (16) for the definition of and .

The prime ideals inR/l, are in one-one corre-
spondence with the (zero and one dimensional) irre-
ducible varieties inF =L; U L, i.e., points onF
and the linesL; and L, themselves. They are: the
maximal ideals corresponding to points lying an
and L,, and two prime idealsZ] (corresponding to
Li)and [y — A Z — uW] (corresponding td.»), where
[V].[Z], and DV] are images ofr : R— R/I,. How-
ever, the intersection of all the maximal ideals corre-
sponding to points lying oib; all contain [£] since
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each of them does (similarly for points &n). Hence,

it is sufficient to consider the intersection of the two
prime ideals due td.; andL,. It is RadR/ly) =
[2] N[V -2 — W] = [2QV - A2 — V)],
whichisthe zeroideal iR/1,. Therefore, pulling back
to R, we have Rad,) = I,. O

Notes

1. Inthe language of algebraic geometry, the homoloidal n¢tisf
called thdinear systenspanned by, theF-set of the netis called
the base locuf the system, thé>-set is called thexceptional
set the proper homologue is called theoper transform.

2. Such am-dric is linearly equivalent ta copies of a general plane
which meet€C mtimes. Hence, by intersection theory, it meets
C mntimes.

3. Some writers use the teratgebraic subsefor the object as here
defined, while reserving the term variety for the narrower meaning
of irreducible algebraic subset
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