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Abstract. An important issue concerning the design of any vision system is the choice of a proper space repre-
sentation. In order to search for clues to a suitable representation, we look at the distortion of space arising from
errors in motion or stereo estimates. Understanding this space distortion has important epistemological implications
for the problem of space representation because it tells us what can be and what cannot be computed. This paper is
therefore an enquiry into the nature of space representation through the study of the space distortion, though it is not
a psychophysical or physiological study but rather a computational one. We show that the distortion transformation
is a quadratic Cremona transformation, which is bijective almost everywhere except on the set of fundamental
elements. We identify the fundamental elements of both the direct and the inverse transformations, and study the
behaviour of the space distortion by analyzing the transformation of space elements (lines, planes) that pass through
these fundamental elements.

Keywords: motion analysis, structure from motion, stereopsis, error analysis, shape representation, cremona
transformation

1. Introduction

An important issue concerning the design of any vision
system is the choice of a proper space representation.
This representation of space must allow us to abstract
essential information in a real-time manner. The classi-
cal reconstruction theory, as articulated by Marr (1982),
attempts to recover a metric representation of space
which is general-purpose and thus can be used for any
task. Despite more than a decade of efforts, we still
lack robust and real-time algorithms to extract such a
3D space representation. This state of affairs has led
to a re-evaluation as to what constitutes an appropriate
space representation.

In recent years, there emerged the paradigm of Ac-
tive Vision or Purposive Vision, which emphasizes
visual recovery as part of a perception-action cycle, as
opposed to something in isolation (Aloimonos et al.,
1988). Recovery of shape and orientation information

in the general case is eschewed; the emphasis is on what
should be done with computations in vision. Such rep-
resentations include a limited amount of information,
as required by a particular task. The assumption is that
the computation of concise representations requires
less information and fewer assumptions, and may be
therefore potentially more robust.

The results in this paper suggest that restricting the
information recovered from images alone does not
guarantee that it is more reliable. The form of the space
representation is also innately constrained by what
could be computed. It is at the level of inherent con-
straints upon which we wish to focus our enquiry. The
elucidation of these inherent constraints, and of how
certain aspects of the 3D scene may be more sensitive
to perturbations than others would eventually pave the
way for deriving an appropriate space representation.

Different visual cues might give rise to different
forms of space representations. Each cue may represent
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a different, partial aspect of the physical space around
the observer. This paper focuses upon the perception
of space arising from motion and stereo cues, though
the concept proposed has general applicability. Of the
two cues, stereo can be treated as a special case of mo-
tion. Thus most of our discussions and analyses will be
dealing with the general case of motion.

Motion and stereo are among the most important
visual cues used for space perception. In spite of the
often complex mathematical treatment that they re-
ceive, they are perhaps the most intuitive to understand,
and at the same time capable of elegant geometrical
characterization. Yet, robust depth estimates have been
difficult to obtain. Due to inaccuracies in the way mo-
tion is perceived, or in the way parameters of the stereo
apparatus are estimated, the recovered structure from
motion and to a lesser extent from stereo invariably
contains systematic distortion.

A proper representation of space cannot be obtained
unless one tackles the interaction between the errors in
motion or stereo estimates and the corresponding dis-
tortion in depth. Understanding the nature of the space
distortion would have important epistemological impli-
cations for the problem of space representation because
it tells us what can be and what cannot be computed.
The fundamental contribution of this paper is the de-
velopment of a computational framework showing the
geometric laws under which the recovered scene is dis-
torted. The systematic way in which visual space is dis-
torted is therefore made explicit; we show that the trans-
formation from physical to perceptual space belongs
to the family of Cremona transformations (Hudson,
1927; Semple and Roth, 1949), which is bijective
almost everywhere except on the set of fundamental
elements.

The power of the computational framework intro-
duced was demonstrated in two companion articles
(Cheong et al., 1998; Ferm¨uller et al., 1997). First,
the framework has allowed us to present a number of
geometric arguments regarding the inherent ambigu-
ity in image sequences as far as 3D motion estima-
tion is concerned (Cheong et al., 1998). It has also
been used to explain the psychophysics of the distor-
tion of visual space experienced by human observers
from stereo or motion (Ferm¨uller et al., 1997). In this
paper, we focus on developing mathematical results on
the shape distortion transformation. Specifically, we
identify the fundamental elements of the direct and
the inverse transformations, and study the behaviour
of the space distortion by analyzing the transformation

of space elements (lines, planes) that pass through these
fundamental elements.

2. Literature Review

2.1. Estimation of 3D Motion and Structure

Motion is one of the most important cues that gives rise
to space perception and has therefore attracted consid-
erable research in the past decade (Ferm¨uller, 1995;
Heeger and Jepson, 1992; Heel, 1990; Horn, 1987;
Longuet-Higgins, 1981; Maybank, 1993; Spetsakis
and Aloimonos, 1988; Tsai and Huang, 1984; Uras
et al., 1988; Weng et al., 1991). Its computational as-
pects have been studied extensively as two subprob-
lems, namely, the measurement of 2D image velocity
(also called optical flow), and the extraction of 3D
scene structure and egomotion from the image velocity
measurements. These studies have given rise to several
algorithms for deriving the 3D structure and motion.
Experimentation with these algorithms, however, has
revealed the lack of robustness in practice. A small
amount of error in the image measurements can lead
to very different solutions (Barron et al., 1987; Dutta
and Snyder, 1990; Tsai and Huang, 1984; Weng et al.,
1991).

The ill-conditioned nature of the computation has
since then prompted many analyses. One problem
is due to the inherent ambiguity in determining the
motion (Horn, 1987; Krames, 1940; Maybank, 1993;
Negahdaripour, 1987, 1989), that is, different mo-
tion/surface pairs (not related through a scaling factor)
can give rise to mathematically identical motion fields.
It has been shown that the ambiguity is only possi-
ble if the scene in view lies on certain hyperboloids of
one sheet, or their degeneracies, the so-called critical
surfaces. In practice, it is rare to encounter configura-
tions that are exactly ambiguous. Nevertheless, when
the image velocity measurements or the image corre-
spondences contain noise, the instability in reconstruc-
tion and the ambiguity are not unrelated: Maybank
(1993) showed that a small perturbation can be found
such that the resulting set of image correspondences or
image velocities becomes ambiguous.

Compounding the aforementioned problem is the
difficulty in computing feature correspondences or op-
tical flow vectors. The difficulty arises as a conse-
quence of the aperture problem. The need to combine
local motion constraints over an area of the image,
or along contours, often leads to errors in the optical
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flow, not to mention its considerable computational re-
quirement. Several techniques have been proposed to
address this problem, examples of which are robust
statistics (Black, 1994; Bober and Kittler, 1994), higher
order flow constraints (Uras et al., 1988), constraint line
clustering (Schunck, 1989), and the phase-based ap-
proach (Fleet, 1992). Each has different advantages and
shortcomings in terms of accuracy, computational ef-
ficiency and measurement density. In practice, several
aspects of the image formation process contribute fur-
ther uncertainty. For instance, Verri and Poggio (1989)
showed that the 2D motion field (the projection on
the image plane of the 3D velocity field) and the opti-
cal flow vectors are in general quantitatively different,
unless very special conditions are satisfied.

In view of such errors, several analyses relate the
errors of the estimated motion parameters in the second
step to the measurement errors in the first step. The er-
rors are typically expressed as a high variance or a bias
in the motion parameters through some statistical anal-
ysis (Adiv, 1989; Daniilidis and Nagel, 1993; Duric
and Aloimonos, 1994; Thomas et al., 1993; Weng et al.,
1991; Young and Chellapa, 1992), or given as empir-
ical figures through some simulations (Barron et al.,
1987; Dutta and Snyder, 1990). A comprehensive sur-
vey of such analysis is given by Daniilidis and Spetsakis
(1997). Based on a combination of qualitative analy-
sis and quantitative simulations, the following observa-
tions regarding reliable motion estimation can be made:

• The field of view should be large in order to ob-
tain more reliable motion estimates. If field of view
is small or depth variation is insufficient, rotations
about an axis parallel to the image plane can easily
be confounded with lateral translations.
• The magnitude of translational flow should be large

relative to rotational flow in order to obtain reliable
translational direction and accurate structure of the
scene. Thus either the scene should be near or the
translational motion should be large.
• In the case of a small field of view, the estimated

translation is biased towards the viewing direction if
the error metric is not appropriately normalized.

2.2. Errors in Depth Estimation

While the various analyses discussed in the preceding
paragraphs have advanced our understanding of the er-
rors in the motion parameters and the circumstances
that give rise to them, the corresponding issues on the

errors in depth estimation is much less explored. Due
to the complexity of the problem, most of the analyses
on the errors in the depth estimates are of an empiri-
cal nature, dealing with specific motions or scene types
(Adiv, 1989; Dutta and Snyder, 1990). For instance, the
translation involved was restricted to forward motion
only, or the scene in view consisted of a planar surface.
It is being understood that small errors in the motion
estimates can lead to very large errors in the depth esti-
mates (Dutta and Snyder, 1990). Notably absent in all
these analyses is an account of the systematic errors of
the depth estimates that result from erroneous motion
estimates. While Thomas et al. (1993) represent such
systematic distortion using an error covariance matrix,
the matrix formulation is motivated by the need to rep-
resent structure errors in a recursive estimation algo-
rithm. Therefore the geometric mapping involved in the
distortion is not made explicit. Due to the lack of such
an analysis, the relationship between the distorted sur-
faces and the true surfaces for arbitrary motion errors is
not well understood, except in the case of critical sur-
face pairs (Horn, 1987; Krames, 1940; Negahdaripour,
1987, 1989), where the relationship is explicitly stated.

2.3. Human’s Depth Perception from Motion
and Stereopsis

In the field of psychophysics, there is strong evidence
that the perceived visual space and the physical space
are not similar (Foley, 1967, 1980; Johnston, 1991;
Ogle, 1964; Tittle et al., 1995). Many psychophysical
experiments report that while our perceptual judgments
can be quite accurate in some instances, other aspects
of the perceived visual space are systematically dis-
torted. In an effort to develop an explanation for the
relationship between the physical and the perceived
space, the general approach among the psychophysical
community has been based on the hierarchy of geome-
tries proposed by Felix Klein in hisErlangen Program.
The idea is that any geometric transformation will alter
some of the structural properties of the scene while
leaving others invariant. If one considers the mapping
between physical and perceived space as a geometric
transformations, then it follows from Klein’s analysis
that some properties of 3D structure will be systemat-
ically distorted and others will remain invariant. This
has led to a series of investigations that analyze the
specific perceptual tasks that yield accurate or inac-
curate performance, so that the geometric transforma-
tions between the physical and perceived space can be
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identified. Some of the candidate transformations are
Euclidean, similarity, affine, or Riemannian, among
others. Nevertheless, much of the results seem to sug-
gest that the transformation is more complex than can
be easily accounted for by one of these transforma-
tions. For instance, the expansion of depth at near dis-
tances and the contraction of depth at far distances has
been reported by numerous investigators (Foley, 1980;
Johnston, 1991; Tittle et al., 1995), which is incon-
sistent with what is expected if the mapping between
physical and perceived space were affine. In contrast to
a synthetic approach, the iso-distortion framework pro-
posed in this paper offers an analytic account of several
properties of the perceived visual space. Our analysis
shows that the transformation between physical and
perceptual space is more complicated than previously
thought.

The paper is organized as follows. Section 3 devel-
ops the equations leading to the iso-distortion frame-
work. Section 4 shows that the transformation from
physical to perceptual space belongs to the family
of Cremona transformations, and applies some es-
tablished results from the mathematical literature on
Cremona transformation to the shape distortion trans-
formation. Sections 5 and 6 relate the iso-distortion sur-
faces to Cremona transformation. The paper ends with
a short description of future work and conclusions.

3. Distortion of Visual Space

As an image formation model, we use the standard
model of perspective projection on the plane, with the
image plane at a distancef from the nodal point parallel
to the XY plane, and the viewing direction along the
positiveZ-axis as illustrated in Fig. 1.

The change of viewing geometry is described
through a rigid motion with translational velocity
(U,V,W) and rotational velocity(α, β, γ ) of the ob-
server in the coordinate systemO XY Z(see Fig. 1).

As a consequence of the scaling ambiguity, only
the direction of translation(x0, y0)= ( U

W f, V
W f ) repre-

sented in the image plane by the epipole (also called the
FOE (focus of expansion) or FOC (focus of contrac-
tion) depending on whetherW is positive or negative),
the scaled depthZ/W and the rotational parameters
can possibly be obtained from flow measurements. Us-
ing this notation the equations relating the 2D velocity
u = (u, v) = (utrans+ urot, vtrans+ vrot) of an image

Figure 1. The image formation model.O XY Zis a coordinate sys-
tem fixed to the camera.O is the optical center and the positiveZ-axis
is the direction of view. The image plane is located at a focal lengthf
pixels fromO along theZ-axis. A pointP at (X,Y, Z) in the world
produces an image pointp at(x, y) on the image plane where(x, y)
is given by( f X

Z ,
f Y
Z ). The instantaneous motion of the camera is

given by the translational vector(U,V,W) and the rotational vector
(α, β, γ ).

point to the 3D velocity and the depth of the corre-
sponding scene point are (Longuet-Higgins, 1981)

u=utrans+ urot

= (x − x0)
W

Z
+ αxy

f
− β

(
x2

f
+ f

)
+ γ y

v= vtrans+ vrot

= (y− y0)
W

Z
+ α

(
y2

f
+ f

)
− βxy

f
− γ x (1)

whereutrans, vtransare the horizontal and vertical com-
ponents of the flow due to translation, andurot, vrot the
horizontal and vertical components of the flow due to
rotation, respectively.

The normal flowun measured along a direction
n = (nx,ny) normal to the intensity gradient is given
by

un = unx + vny. (2)

Knowing the parameters of the viewing geometry ex-
actly, the scaled depth can be derived from (2). Since
the depth can only be derived up to a scale factor, we
setW = 1 and obtain

Z = (x − x0)nx + (y− y0)ny

un − urotnx − vrotny
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If there is an error in the estimation of the viewing
geometry, this will in turn cause errors in the estimation
of the scaled depth, and thus a distorted version of
space will be computed. To distinguish between the
various estimates, we use the hat sign “ ˆ ” to represent
estimated quantities, the unmarked letters to denote
the actual quantities, and the subscript “ε” to represent
errors, where the estimates are related as follows:

(x̂0, ŷ0) =
(
x0− x0ε , y0− y0ε

)
(α̂, β̂, γ̂ ) = (α − αε, β − βε, γ − γε)

ûrot =
(
urot− urotε , vrot− vrotε

)
=
[
urot−

(
αεxy

f
− βε

(
x2

f
+ f

)
+ γε y

)
,

vrot−
(
αε

(
y2

f
+ f

)
−βε xy

f
− γεx

)]
If we also allow for a noise termN in the estimatêun

of the component flowun, we haveûn = un− N. The
estimated depth becomes

Ẑ = (x − x̂0)nx + (y− ŷ0)ny

ûn − (ûrotnx + v̂rotny)
or

Ẑ = Z

·
(

(x− x̂0)nx + (y− ŷ0)ny(
x− x0+ Zurotε

)
nx +

(
y− y0+ Zvrotε

)
ny− N Z

)
(3)

From (3) we can see that̂Z is obtained fromZ
through multiplication by a factor given by the term
inside the brackets, which we denote byD and call the
distortion factor. In the forthcoming analysis we do not
attempt to model the statistics of the noise and we will
therefore ignore the noise term. Thus, the distortion
factor takes the form

D= (x− x̂0)nx + (y− ŷ0)ny(
x − x0+ Zurotε

)
nx +

(
y− y0+ Zvrotε

)
ny

(4)

Equation (4) describes, for any fixed direction
(nx,ny) and any fixed distortion factorD, a surface
f (x, y, Z) = 0 in xyZ-space, which we call an iso-
distortion surface. For specific values of the param-
eters x0, y0, x̂0, ŷ0, αε, βε, γε and (nx,ny), this iso-
distortion surface has the obvious property that points
lying on it are distorted in depth by the same multiplica-
tive factorD. The distortion of the estimated space can
be studied by looking at these iso-distortion surfaces.

In order to derive the iso-distortion surfaces in 3D
space (i.e.,XY Z-space) instead of visual space (i.e.,
xyZ-space), we substitutex = f X

Z andy = f Y
Z in (4),

which gives the following equation:

D((αεXY−βε(X2+ Z2)+ γεY Z)nx

+ (αε(Y2+ Z2)−βεXY− γεX Z)ny)

−
(

X− x̂0Z

f
− D

(
X− x0Z

f

))
nx

−
(

Y− ŷ0Z

f
− D

(
Y− y0Z

f

))
ny = 0 (5)

describing the iso-distortion surfaces as quadratic
surfaces—in the general case, as hyperboloids.
Figure 2 is obtained by the intersection of such surfaces
with planes parallel to theX-Z plane, and looking at
the resultant iso-distortion contours. We see that there
are two common intersecting points of all the distor-
tion contours in 3D space. At these intersecting points,
the distortion factor is undefined. This phenomenon is
related to the fundamental elements of the Cremona
transformation and will be further elaborated upon in
Sections 4 and 5.

The nature of such space distortion can be studied
from two points of view. On the one hand, as men-
tioned previously, we can characterize the nature of
space distortion in terms of the geometrical properties
of the iso-distortion surfaces. This allows us (Cheong
et al., 1998) to address several computational issues in

Figure 2. Iso-distortion contours in 3D space.nx =1,ny=0,
x0=200, x0ε =−100, αε = γε =0, andβε =−0.001. Only the con-
tours with 0.4< D < 4 are shown.
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motion estimation:

• Efficacy of the visibility constraint
• Situations likely to give rise to ambiguities
• Anisotropy in the FOE uncertainty area (Duric and

Aloimonos, 1994; Sinclair et al., 1994)
• Precision needed in an inertial sensor for accurate

3D motion estimation (the inertial sensor estimates
rotation) (Vièville and Faugeras, 1989).

The geometry of such iso-distortion surfaces can also
be used to explain various psychophysical phenomena
in stereoscopic perception too, such as:

• Apparent Fronto Parallel Plane (AFPP)
• Apparent Distance Bisection (ADB)
• Distance Judgment from Motion and Stereo

For details, see (Ferm¨uller et al., 1997). For a fuller de-
scription of the mathematical properties of the distorted
stereoscopic space, see (Baratoff, 1997).

On the other hand, we can study the properties of the
transformation itself, which we will show is a Cremona
transformation. The rest of this paper (Sections 4–6)
focus on studying the mathematical properties of the
Cremona transformation, and then relating them back
to the iso-distortion surfaces, thereby revealing further
properties of the distorted space. In order to present
these analyses visually, most of the investigation will be
conducted by initially considering a particular gradient
direction, say,(nx = 1,ny = 0).

4. Cremona Space Transformation

A Cremona transformationφ :Pd→ P̂d is a transfor-
mation from a projective space to another of the same
dimension. It has the property (birationality) that it
is bijective almost everywhere except on the set of
F-elements(abbreviation forfundamental elements)
whereφ becomes a one-to-many correspondence. The
F-elements form avarietyofPd which by definition is
the vanishing set of some homogeneous polynomials
onPd.

We now introduce the homogeneous coordi-
nates [X ,Y,Z,W], which are related to the non-
homogeneous coordinates(X,Y, Z) by (X,Y, Z) =
[X /W,Y/W,Z/W,1]. Now define a Cremona trans-
formationφ :P3 → P̂3 (we think ofP3 as the actual
coordinates of the object butP̂3 those of their estimated

positions), where the image [X̂ , Ŷ, Ẑ, Ŵ] of a point
[X ,Y,Z,W] ∈ P3 is given by the formulae

[X̂ , Ŷ, Ẑ, Ŵ] = [φ1, φ2, φ3, φ4] (6)

Similarly, the inverse transformationφ−1 : P̂3 →
P3 is given by

[X ,Y,Z,W] = [φ̂1, φ̂2, φ̂3, φ̂4] (7)

The quantitiesφi are homogeneous polynomials (in
X , Y, Z andW) of degreen andφ̂i are homogeneous
polynomials (inX̂ , Ŷ, Ẑ and Ŵ) of degreen̂ (6=n
in general). However, the transformation that we are
going to study has the propertyn = n̂ = 2 andφ and
φ−1 have similar expressions except for the parameters.

TheF-elements ofφ are precisely the common vani-
shing set (called a variety) ofφi ,1 ≤ i ≤ 4 whereφ
is indeterminate. However, it will be shown later that
each point in theF-set in general corresponds to a
positive dimensional variety in̂Pd (calleda principal
element). Hence theF-set inPd corresponds to some
variety P-set(the union of allP-elements) inP̂d.

In the case ofd = 3, theF-elements can be points
(simple or multiple) or curves. In particular, when
n = 2, only three possibilities for̂n=degree ofφ−1

and theF-set may occur:

a conic and a simple point n̂ = 2

a line and three simple points n̂ = 3

a double point and three simple pointŝn = 4
(8)

For details, see (Hudson, 1927).
When d=3, the set of all linear combinations of

φi ’s form a three-dimensional (projective) family of
surfacesS(defined byc1φ1+c2φ2+c3φ3+c4φ4 = 0)
(called the homoloidal net spanned byφi ’s). These
are precisely the degreen surfaces that map to planes
c1X̂ + c2Ŷ + c3Ẑ + c4Ŵ = 0 in P̂3. If a degreen
surfaceS does not belong to the net spanned byφi ’s,
its total image inP̂3 is a degreenn̂ surface (from (7)).
This surface may containP-elements ifScontains any
F-element, in which case the total image less all the
P-elements,̂S, is called theproper homologue of S.1

4.1. Singular Elements of Space
Distortion Transformation

Consider the distortion factor given in Eq. (5). If we
fix (nx,ny) to be in the horizontal direction,D can be
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written as:

D= f X− x̂0Z

f X− x0Z+ f (αεXY−βε(X2+ Z2)+ γεY Z)
(9)

Since X̂ = xẐ
f = D x Z

f = DX, and similarly,Ŷ =
DY, we can now express the space distortion in terms
of the following homogeneous coordinates:

X̂ = φ1= ( fX − x̂0Z)X
Ŷ = φ2= ( fX − x̂0Z)Y
Ẑ = φ3= ( fX − x̂0Z)Z (10)

Ŵ = φ4= ( fX − x0Z)W + f (αεXY
−βε(X 2+Z2)+ γεYZ)

which is a Cremona space transformation of degree
two. The transformation is uniquely defined except
when all the (φ) vanish. This occurs when( fX− x̂0Z)
andφ4 both vanish. SubstitutingX = x̂0

f Z intoφ4, we
obtain:

Z
(−x0ε fW +αε x̂0 f Y −βε
× (x̂2

0 + f 2
)
Z + γε f 2Y

)=0

from which it can be concluded that the fundamental
elements consist of two straight linesL1 andL2 given
as follows:

L1 = {[X ,Y,Z,W] | fX − x̂0Z = 0,Z = 0}
= {[0,Y,0,W] | [Y,W] ∈ P1}

L2 =
{
[X ,Y,Z,W] | fX − x̂0Z = 0,(−x0ε fW +αε x̂0 f Y −βε

(
x̂2

0 + f 2
)
Z

+ γε f 2Y
)=0

}
=
{[

x̂0

f
Z,

βε
(
x̂2

0 + f 2
)

f (αε x̂0+ γε f )
Z + x0ε

αε x̂0+ γε f

×W,Z,W
] ∣∣∣∣ [Z,W] ∈ P1

}
(11)

L1 and L2 intersect at the pointB, [0, x0ε
αε x̂0+γε f ,0,1]

which constitutes the third fundamental element.B has
multiplicity 2 (thus counted as two points) since it is
the intersection of two lines. Thus theF-system is a
degenerate conic (union of two lines) on which lies a
double pointB. It follows from (8) that the inverse
transformation is also of degree two.

4.2. Inverse Transformation

We now derive the inverse transformationφ−1:

φ−1[X̂ , Ŷ, Ẑ, Ŵ] = [X ,Y,Z,W]

=
[
1,
Y
X ,
Z
X ,
W
X

]

=
[

1,
Ŷ
X̂
,
Ẑ
X̂
,
W
X

]
(12)

Ŵ
X̂ is related toWX as follows:

Ŵ
X̂
= ( f X− x0Z)W+ f (αεXY− βε(X2 + Z2)+ γεYZ)

( f X− x̂0Z)X

= W
X

 f − x0
Ẑ
X̂

f − x̂0
Ẑ
X̂

+ f

(
αε
Ŷ
X̂ − βε

(
1+

(
Ẑ
X̂

)2
)
+ γε ŶX̂

Ẑ
X̂

)
f − x̂0

Ẑ
X̂

Hence,WX can be expressed in terms ofŴX̂ as follows:

W
X =


Ŵ
(

f − x̂0
Ẑ
X̂
)
− f X̂

(
αε
Ŷ
X̂ − βε

(
1+

( Ẑ
X̂
)2
)
+ γε ŶX̂

Ẑ
X̂

)
X̂
(

f − x0
Ẑ
X̂
)


Substituting the above relationship into (12), we obtain:

X = ( f X̂ − x0Ẑ)X̂
Y = ( f X̂ − x0Ẑ)Ŷ
Z = ( f X̂ − x0Ẑ)Ẑ
W = ( f X̂ − x̂0Ẑ)Ŵ − f (αε ŶX̂

−βε(X̂ 2+ Ẑ2
)+ γε ŶẐ)

(13)

Hence,φ andφ−1 have similar expressions. Notice that
the planef X̂ −x0Ẑ = 0 in P̂3 is mapped onto a single
point [0,0,0,1]. Hence the plane f̂X − x0Ẑ = 0 is a
P-element.

Carrying out the same operation as forφ, we obtain
the fundamental elements ofφ−1 as follows:

L̂1: [0, Ŷ,0, Ŵ]

L̂2:

[
x0
f Ẑ,

βε(x2
0+ f 2)

f (αεx0+γε f ) Ẑ + x0ε
αεx0+γε f Ŵ, Ẑ, Ŵ

]
B̂:

[
0,

x0ε

αεx0+ γε f
,0,1

]
(14)
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4.3. Transformation of F-Lines

In general, aF-conic is transformed into aP-cone. In
degenerate cases, where the conic becomes lines, the
P-cone breaks up into planes. To see what these planes
are, we need to lift the transformationφ :P3→ P̂3 to
another transformatioñφ : BLi → P̂3, i = 1,2. The
varietyBLi is theblow-upofP3 alongLi . It is isomor-
phic toP3 away fromLi but replacesLi with Li ×P1.
We can think of the factorP1 as all the possible di-
rections from which we can approach the lineLi . The
reason for doing that is because points which are in-
finitesimally nearLi have well defined images in̂P3

so that we can compute the “image” ofLi by taking
the limit of the proper images of all possible directions
of approach toLi . See (Shafarevich, 1994) for details
on blow-ups.

4.3.1. Transformation of L1. We consider the blow-
up ofR3

X,Y,Z (we look at the affine space inP3 defined
byW 6= 0) alongL1. Define the varietyBL1 as follows:

BL1 = {((X,Y, Z), [s, t ]) | Xt = Zs}
⊆ R3

X,Y,Z × P1
s,t

There is a natural mapπ : BL1 → L1 given by pro-
jection onto the first factor. We can regardν = s

t
as the direction of approach toL1. For any point
p = (X,Y, Z) not onL1, X 6= 0 or Z 6= 0, there is a
unique pointπ−1(p)= ((X,Y, Z), [X, Z]) ∈ BL1 over
p. On the other hand, whenp lies onL1, X = Z = 0,
π−1(p) = P1

s,t . Hence the point(0,Y,0) on L1 can be
regarded as being replaced by a copy ofP1 in BL1. An-
other interpretation of this copy ofP1 is to recognize
that L1 is the projectivization of the two dimensional
subspaceL1 spanned byY andW. Then this copy of
P1 is the projectivization of all the normal directions
to L1, P(R4/L1).

Using the relationX= νZ on BL1, consider the lift-
ing of φ, φ̃ : BL1 → P̂3:

φ̃ ((X,Y, Z), [s, t ]) = φ[X ,Y,Z,W]

= [X ( f ν − x̂0),Y( f ν − x̂0),Z( f ν − x̂0),

W( f ν − x0)+ f Y (αεν + γε) − fβε(X ν + Z)]

The image of the pointp = (0,Y0,0) ,Y0 = Y0/W0 =
ω onL1 can be obtained by substitutingX = 0,Z = 0

into the above equation:

[0,Y( f ν − x̂0),0,W( f ν − x0)+ f Y (αεν + γε)]

=
[
0,

ω( f ν − x̂0)

( f ν − x0)+ f ω (αεν + γε) ,0,1
]

(15)

which is the line L̂1 as defined in (14) asν varies
in P1

s,t . As ω varies, each point onL1 gives rise to
the same imagêL1. It is easy to verify that if we had
performed the blow-up to the affine space defined by
Y 6= 0 alongL1, we would have found that the point
at infinity, [0,1,0,0], on L1 is mapped tôL1 too:

The image is [0, ( f ν − x̂0),0, f (αεν + γε)].

i.e., the limit of (15) asω → ∞. Thus the image
of L1 − [0,0,0,1] is a degenerate plane, consisting
of infinite copies of the linêL1. But [0,0,0,1] in P3

corresponds to the planef X̂ − x0Ẑ = 0 in P̂3. Hence
the P-element corresponding toL1 is the planef X̂ −
x0Ẑ = 0.

4.3.2. Transformation of L2. From Eqs. (11)L2 can
be written as:

X = x̂0

f
Z

Y = λZ + µW

where for ease of presentation, we have definedλ and
µ as follows:

λ = βε
(
x̂2

0 + f 2
)

f (αε x̂0+ γε f )

µ = x0ε

αε x̂0+ γε f

(16)

A general pointp on L2 has the following homoge-
neous coordinates:

p = [X0,Y0,Z0,W0]

=
[

x̂0

f
(ω − µ), λω, ω − µ, λ

]
=
[

x̂0

f

(ω − µ)
λ

, ω,
(ω − µ)
λ

,1

]
(17)

In the case ofL1, the definition ofBL1 hinges on the
fact thatL1 is characterized byX = Z = 0. To blow
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up alongL2, we change coordinates so thatL2 is char-
acterized byX ′ = Z ′ = 0 in some new homogeneous
coordinates. Let our new projective coordinates be

X ′ = fX − x̂0Z
Y ′ = Y
Z ′ = Y − λZ − µW
W ′ = W

(18)

or, equivalently:

X = X
′

f
+ x̂0

f λ
(Y ′ − Z ′ − µW ′)

Y = Y ′

Z = 1

λ
(Y ′ − Z ′ − µW ′)

W = W ′

(19)

Define the blow-upBL2 (of the affine space given by
W =W ′ 6= 0) alongL2 as before:

BL2 = {((X′,Y′, Z′), [s, t ]) | X′t = Z′s}
⊆ R3

X′,Y′,Z′ × P1
s,t

where(X′,Y′, Z′) = [X ′/W ′,Y ′/W ′,Z ′/W ′,1]. To
obtain φ̃ : BL2 → P̂3 in terms ofX ′,Y ′,Z ′,W ′, we
substitute (19) into (10) to obtain:

X̂ = νZ ′
(
νZ ′

f
+ x̂0

f λ
(Y ′ − Z ′ − µW ′)

)
Ŷ = νZ ′Y ′

Ẑ = νZ ′
λ
(Y ′ − Z ′ − µW ′)

Ŵ = ( fX − x0Z)W + f (αεXY
−βε(X 2+ Z2)+ γεYZ)

(20)

Using the fact that onL2, X = x̂0
f Z,X ′ = 0,Z ′ = 0

and thatY ′ = Y,W ′ =W, we obtain the imagêL(p) of
a point p = [X0,Y0,Z0,W0], whereY0 = Y0/W0 =
ω, on L2 as follows:[

ν
x̂0

f λ
(Y − µW), νY, ν

λ
(Y − µW),

αε x̂0+ γε f

λ
(Y − µW)

]
=
[

x̂0

f
bν,

λω

ω − µbν,bν,1

]
= λbν
ω − µ

(
x̂0

f

(ω − µ)
λ

, ω,
(ω − µ)
λ

)
(21)

wherebν = ν
αε x̂0+γε f depends only on the direction of

approach top (measured byν). From the above for-
mula, the image ofp is a line lying in the planê5 given
by X̂ = x̂0

f Ẑ and passing through the origin. Different
points on this line come from different directions of
approach top asν varies. If we identifyP3 andP̂3,
we can see from the last line and (17) thatL̂(p) is the
line joining the origin andp.

That the point at infinity, [̂x0
f , λ,1,0] on L2 is also

mapped to a line in the planêX = x̂0
f Ẑ can be easily

verified.
The plane5 in P3 defined byX = x̂0

f Z is spanned
by the two linesL1 and L2. With the identification
P3 = P̂3, we conclude that:

(a) Every point except [0,0,0,1] on L1 corresponds
to L̂1, theŶ-axis inP̂3 (from (15)).

(b) [0,0,0,1] corresponds to theP-plane inP̂3 de-
fined by f X̂ − x0Ẑ = 0 (from (13)).

(c) Every point p on L2 corresponds to a linêL(p)

joining the origin andp, lying in the plane5̂ in
P̂3 defined byX̂ = x̂0

f Ẑ (from (21)).

Also, it is not hard to see that̂5 is ruled byL̂(p) asp
runs throughL2 and that every point on5− (L1∪ L2)

is mapped onto [0,0,0,1] ∈ P̂3. Hence, we can fur-
ther conclude that:

(d) The plane5= 5̂ is invariant underφ (but not
pointwise or even linewise).

From (a)–(d), we conclude that theP-cone is the
union of the two planesf X̂ − x0Ẑ = 0 and f X̂ −
x̂0Ẑ = 0, corresponding toL1 (actually only one point
[0,0,0,1] on it) andL2 respectively.

4.4. Transformation of Lines and Planes
which Contain Only L1 (or L2)

A general variety (i.e., it is not aF-element) ofP3

is transformed byφ into another inP̂3 of the same
dimension.

By (7), a general surfaceS in P3, say,
gr (X ,Y,Z,W), of degreer , is mapped to the sur-
facegr (φ̂1, φ̂2, φ̂3, φ̂4) or sayĝr̂ (X̂ , Ŷ, Ẑ, Ŵ), of de-
greer̂ = n̂r . If S contains certainF-elements, then
the homologue (given bŷg = 0) splits into a union of
principal surfaces, corresponding to theF-elements,
and a residual surfacêS, of degree<n̂r , which is the
proper homologue ofS. For example, ifg is a scalar
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linear combination ofφ1, φ2, φ3, φ4, thenŜ reduces to
a plane.

For a curveC in P3, its degree is defined to be the
number of intersection points with a general plane. A
general curveC of degreem is mapped to a curvêC
of degreenm—for if C meets a general plane inP3

in m points, it must meet a generaln-dric S in the
net spanned byφi ’s in mn points.2 The image of the
n-dric is a planeπ̂ which meets the total image ofC
in mn points. As in the case of surfaces, ifC passes
through anyF-points, the total image splits into a set of
P-elements, and a residualĈ of degree<nm, which
is the proper homologue ofC.

In our case,φ is specialized such that theF-conic
breaks up into a pair of intersecting linesL1 and L2,
and that theP-cone inP̂3 breaks up into two planes: the
planesX̂ = x0

f Ẑ andX̂ = x̂0
f Ẑ.

In general, if a surfaceSdefined byg = 0 (of degree
r ) passes throughL1 but notL2, theng = Xψ1+Zψ2

for some degree(r −1) homogeneous polynomialsψ1

andψ2. Using the inverse formula forφ−1, we can see
that the total image ofSconsists of theP-element given
by X̂ − x0

f Ẑ = 0 (due to [0,0,0,1]) and the proper
homologue of degree 2r − 1. For instance, planes that
pass throughL1 but not throughL2 will be preserved
as planes.

We shall now study how planes passing throughL1

but notL2 (or vice versa) are transformed byφ to planes
by looking at how lines which intersect only one of
them are transformed.

4.4.1. Image of a Line L Intersecting L1 But Not
L2. Any line L which intersectsL1 at, say p =
[0, ω,0,1] = (0, ω,0) lies in some planeπ given by
tX − sZ = 0 with [s, t ]εP1. Let s

t = ν. Note that
ν 6= x̂0

f since otherwiseL lies on the plane5 defined
by fX − x̂0Z = 0 and will have [0,0,0,1] as its
proper homologue (together with twoP-elementsL̂1

andL̂(p
′) wherep′ = L ∩ L2). SoL is given by:

[νZ, δZ + ωW,Z,W] (22)

whereδ measures the slope ofL in the planeπ . Since
fX − x̂0Z 6= 0, X̂Ẑ =

X
Z = ν 6= x̂0

f . ThusL̂, the image
of L, lies on the planeX̂ = νẐ.

Substituting the inverse formulae (13) forY, Z and
W into the relationY = δZ + ωW, we obtain:

( f X̂ − x0Ẑ)Ŷ = δ( f X̂ − x0Ẑ)Ẑ + ω( f X̂ − x0Ẑ)

× Ŵ − ω f (αε ŶX̂ − βε(X̂ 2+ Ẑ2
)+ γε ŶẐ)

SubstitutingX̂ = νẐ, we get

Ẑ(Ŷ − δ̂Ẑ − ω̂Ŵ) = 0 (23)

whereδ̂ andω̂ are respectively given by:

δ̂ = δ( f ν − x0)+ ω fβε(ν2+ 1)

f ν − x0+ ω f (αεν + γε)
ω̂ = ω( f ν − x̂0)

f ν − x0+ ω f (αεν + γε)
(24)

SettingẐ = 0 in (23) gives us the linêL1 which
is the P-element corresponding top = L ∩ L1. The
proper homologue ofL is L̂ defined by

X̂ = νẐ, Ŷ = δ̂Ẑ + ω̂Ŵ

Clearly, the planeπ is ruled by lines described by
(22). Thus any planeπ with equationX = νZ (includ-
ing ν = x̂0/ f from the previous section), is invariant
underφ. However, it is not line-wise invariant.

Note thatδ̂, the slope ofL̂, is dependent onδ and
ω, but ω̂ depends only onν. [0, ω̂,0,1] is the point
whereL̂ intersectsL̂1. That is,whereL̂ intersectsL̂1

depends only onν= slope of the plane on which L lies.
This agrees with the formula (15) in the blow-up along
L1 when we computed the image of the pointp =
[0, ω,0,1] on L1 by taking the limit as we approachp
from the planeπ defined byX = νZ.

For a line L which intersectsL1 at [0,1,0,0] at
infinity, its image can be found by taking the limit of
L̂ asω→∞. The image of such a line is given by:

X̂ = νẐ

Ŷ = βε(ν
2+ 1)

(αεν + γε) Ẑ +
( f ν − x̂0)

f (αεν + γε)Ŵ

Note that for lines withω = 0 (these correspond to
lines of sight passing through the origin),ω̂ = 0 and
δ̂ = δ. That is, points along a line of sightL will remain
as points along the same line of sight in the distorted
space.

4.4.2. Image of a Line L Intersecting L2 But Not L1.
From the opening remarks on the transform of a line
containing aF-point in Section 4.4, we know that the
homologue of a lineL intersectingL2 at p is a degree
2 curve with two components, the transform ofp, L̂(p)

and the proper homologuêL, of L.
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Suppose a lineL intersectsL2 at a pointp given by
(17)

p = [X0,Y0,Z0,W0]

=
[

x̂0

f
(ω − µ), λω, ω − µ, λ

]

=
[

x̂0

f

(ω − µ)
λ

, ω,
(ω − µ)
λ

,1

]
,

thenL lies in some planeπ ′ given by

X ′ = νZ ′
Y ′ = δZ ′ + ωW ′ (25)

for someν 6= 0 (ν = 0 yields the planeX ′ = fX −
x̂0Z = 0 which passes through bothL1 andL2), where
theX ′,Y ′,Z ′,W ′ system is defined in (18).

Note that there is a relation amongω, µ andλ from
the fact thatφ4(p) = 0:

(x̂0− x0)

(
ω − µ
λ

)
+ f

[
αeX0Y0

−βe
(
X 2

0 + Z2
0

)+ γeY0Z0
] = 0 (26)

In terms of theX ,Y,Z andW coordinates,L is the
intersection of two planes given by

fX − x̂0Z = ν(Y − λZ − µW) (27)

Y = δ(Y − λZ − µW)+ ωW (28)

W in (27) can be expressed in terms ofY andZ using
(28). Hence,L can also be realized as the intersection
of two planesP1 andP2 given by:

f (ω − µδ)X + ν(µ− ω)Y
+ [λων − (ω − µδ)x̂0]Z = 0 : P1

(1− δ)Y + δλZ − (ω − δµ)W = 0 : P2 (29)

Substituting the inverse formulae (13) forX ,Y,Z and
W into (29), we obtain two image quadricŝQ1 and
Q̂2. The intersectionQ̂1 ∩ Q̂2 has degree 2× 2 = 4
and contains the proper homologueL̂ of L, L̂(p) and
another degree 2 curve which is not a component of the
homologue ofL (see below).

Substituting (13) into the equation ofP1, we have

( f X̂ − x0Ẑ)[ f (ω − µδ)X̂ + ν(µ− ω)Ŷ
+ [λων − (ω − µδ)x̂0]Ẑ] = 0 (30)

describing a quadricQ̂1 which is the union of two
planesR̂1 ∪ R̂2 whereR̂1 is given by f X̂ − x0Ẑ = 0.

Similarly, substitution of (13) into the equation of
P2 gives us the image quadriĉQ2 given by

( f X̂ − x̂0Ẑ)Ŵ − ( f X̂ − x0Ẑ)

×
[

1− δ
ω− δµ Ŷ +

δλ

ω− δµ Ẑ
]

− f [αε ŶX̂ − βε(X̂ 2+ Ẑ2)+ γε ŶẐ] = 0 (31)

The total homologue corresponding toL is only
(R̂2 ∩ Q̂2) where:

Q̂1 ∩ Q̂2 = (R̂1 ∪ R̂2) ∩ Q̂2

= (R̂1 ∩ Q̂2) ∪ (R̂2 ∩ Q̂2)

because we know that̂R1 is a F-plane inP̂3 which
maps onto [0,0,0,1] in P3, theF-point whichL does
not pass through. In any case, it is easy to verify that
(R̂1 ∩ Q̂2) is L̂1 ∪ L̂2, theF-set inP̂3.

For the intersectionR̂2 ∩ Q̂2, it is easy to verify
that the lineL̂(p), the P-element corresponding to the
intersectionp = L2∩ L, lies in bothR̂2 (this is trivial)
and Q̂2 (needs (26)). Therefore,̂R2 ∩ Q̂2 must be a
union of two lineL̂(p) ∪ L̂, the second of which is the
proper homologue ofL.

Note that ifp specializes to the double pointB (i.e.,
ω = µ) on bothL1 andL2, R̂2 ∩ Q̂2 becomeŝL1 ∪ L̂.

In algebraic terms, it means that if we set the second
factor of (30) to zero and substitute into (31), we must
get a reducible quadratic polynomial. From (30):

Ŷ = f (ω − µδ)
ν(ω − µ) X̂ +

λων − (ω − µδ)x̂0

ν(ω − µ) Ẑ

Substituting the above into (31), we obtain

ν(ω − µ)( f X̂ − x̂0Ẑ)Ŵ − ( f X̂ − x0Ẑ)

×{ f (1− δ)X̂ + [λν− x̂0(1− δ)]Ẑ}
− f {(αε X̂ + γεẐ)[ f (ω−µδ)X̂ + (λων
− (ω − µδ)x̂0)Ẑ] − ν(ω − µ)βε(X̂ 2+ Ẑ2)} = 0

which can be factorized as:

( f X̂ − x̂0Ẑ)
(
ν(ω − µ)Ŵ + [ν(ω − µ)βε

− (ω − µδ) f αε − (1− δ) f ]X̂
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×
[
ν f [ωλγε − (ω − µ)βε ]

x̂0
− f γε(ω − µδ)

− λν x0

x̂0
+ (1− δ)x0

]
Ẑ
)
= 0

The first factor corresponds to a plane whose intersec-
tion with R̂2 is L̂(p); the second factor corresponds to
a plane whose intersection witĥR2 is our requiredL̂.
That is, the proper homologue ofL defined by:

f (ω − µδ)X + ν(µ− ω)Y
+ [λων − (ω − µδ)x̂0]Z = 0

ν(ω − µ)W − (1− δ) fX

+ [(1− δ)x̂0− νλ]Z = 0

(whereby we have expressedP2 in a different way by
eliminatingY) is L̂ defined by:

f (ω − µδ)X̂ + ν(µ− ω)Ŷ
+ [λων − (ω − µδ)x̂0]Ẑ = 0

ν(ω − µ)Ŵ + [ν(ω − µ)βε − (ω − µδ)
× f αε − (1− δ) f ]X̂

+
[
ν f [ωλγε − (ω − µ)βε ]

x̂0
− f γε(ω − µδ)

− λν x0

x̂0
+ (1− δ)x0

]
Ẑ = 0

4.5. Forms ofφ andφ−1

The observed symmetry betweenφ andφ−1 is related
to the fact that the projection center(0,0,0,1) is part
of the F-set, which results in the particularly simple
form of φ:

φ1 = ( fX − x̂0Z)X

φ2 = ( fX − x̂0Z)Y

φ3 = ( fX − x̂0Z)Z

or,

X̂ : Ŷ : Ẑ = X : Y : Z (32)

In this simple case, it can be shown thatφ andφ−1

always have the same form (see Hudson, 1927, p. 184).

Thus, we can state the following: TheP-elements in
P̂3 consist of the planef X̂ − x0Ẑ = 0 which corre-
sponds to the pointO (0, 0, 0, 1), and theP-cone (de-
fined by the union of the two planesf X̂−x0Ẑ = 0 and
f X̂ − x̂0Ẑ = 0) which corresponds to a conic defined
by the union of the two linesL1 andL2. Similarly, the
P-elements inP3 consist of the planefX − x̂0Z = 0
which corresponds to the point̂O (0, 0, 0, 1), and
the P-cone (defined by the union of the two planes
fX − x0Z = 0 and fX − x̂0Z = 0) which corre-
sponds to a conic defined by the union of the two lines
L̂1 andL̂2. Equation (32) also succinctly describes the
result obtained in Section 4.4.1 that a ray of the star
at O will map to the same ray of the star atÔ. Visu-
ally, this means that the displacement of a point in 3D
space caused by the distortion transformation is always
in the direction of its line of sight. Indeed, the order of
points along a line of sight can always be determined
despite the distortion transformation (see Appendix A).
Such ordinal depth information constitutes a less met-
rical way of representing depth than those traditionally
used and has attracted much research interest recently
(Garding et al., 1995, Todd and Reichel, 1989).

5. Revisiting Iso-Distortion Surfaces

Referring to Fig. 2, the two common intersecting points
of all the iso-distortion contours are exactly the points
whereL1 and L2 intersect theX-Z plane. However,
although all iso-distortion surfaces containL1 andL2,
they do not fall under the homoloidal net spanned by
φi ’s, as we shall show now.

From the formula for the distortion factorD in (9),
we can also writeD as

D =
(

fX − x̂0Z
)W(

fX − x0Z
)W + f

(
αεXY − βε

(X 2 +Z2
)+ γεYZ)

For convenience, we defineφ5 as( fX − x̂0Z)W.
TheD-iso-distortion surface,QD, is a quadric given by
the equationφ5− Dφ4 = 0. However,D is indetermi-
nate along a set whereφ4 = φ5 = 0. Easy calculations
show that this set is the union ofL1 ∪ L2 and a conic
C at infinity defined byW = αεXY−βε(X 2+Z2)+
γεYZ = 0.

Hence,every iso-distortion surface passes through
L1 ∪ L2 ∪ C.

From the opening remarks in Section 4.4, the total
homologue of theD-iso-distortion surfaceQD is the
union of two planesfX − x̂0Z = 0 and fX − x0Z =
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0 (sinceQD contains the point [0,0,0,1] and the line
L2 in P3), and a quadricQ̂D which is the proper ho-
mologue. We can verify that easily by substituting the
formulae ofφ−1 into the equation ofQD, obtaining:

( f X̂ − x̂0Ẑ)( f X̂ − x0Ẑ)[( f X̂ − x̂0Ẑ)Ŵ

− f [αε ŶX̂ − βε(X̂ 2+ Ẑ2)+ γε ŶẐ]

−D( f X̂ − x0Ẑ)Ŵ] = 0

Note thatQ̂D is precisely the1
D -iso-distortion surface

of φ−1.
Hence, we conclude thatthe D-iso-distortion sur-

face ofφ transforms to the1
D -iso-distortion surface of

φ−1.

6. Transformation of Surfaces Containing
Both L1 and L2

We need some facts and theorems from commutative al-
gebra in this section, namely, the Hilbert’s Nullstellen-
satz and the relation between ideals inC[X ,Y,Z,W]
and varieties inP3. Appendix B summarizes some of
the concepts from algebraic geometry required in this
section.

Hilbert’s Nullstellensatz is valid only overC or an
algebraically closed field. We apply this result to obtain
ideals and varieties overC and then notice that all of
these are actually defined overR.

Set F to be the unionL1 ∪ L2 for convenience. If
a surfaceS in P3 containsF , then thehomogeneous
ideal of S, I (S), is contained in the homogeneous ideal
of F , I (F). Sis defined by a homogeneous polynomial
g of degreer . g is in general a product of irreducible
polynomials, possibly with repetitions. However, we
can assume thatg is an irreducible polynomial since the
proper homologue of a reducible surface is the union of
the proper homologues of its irreducible components
(possibly with multiple components).

To determine the general form ofg, we can make
use of the fact thatI (S) ⊂ I (F). We compute both
ideals first. Unfortunately,I (F) is not necessarilyI =
〈φ1, φ2, φ3, φ4〉, the ideal which yieldsF in the first
place. This is the content ofHilbert’s Nullstellensatz.

Hilbert’s Nullstellensatz

Suppose a homogeneous idealI in C[X1,X2,

. . . ,Xn] is generated by homogeneous polynomials

φ1, φ2, . . . , φs and the variety

V(I ) = {p ∈ Pn−1 | φ1(p)

= φ2(p) = · · · = φs(p) = 0}

is non-empty, thenI (V(I )) = Rad(I ).
In other words, if we start with an idealI , look at

V(I )and thenI (V(I )), we may end up getting polyno-
mialsh ∈ Rad(I )− I which do not originally belong
to I (but some powers ofh do) unlessI is already a radi-
cal ideal. Also, it is possible to have two idealsI1 6= I2

with V(I1) = V(I2), but then Rad(I1) = Rad(I2).
Hence, there is a one-one correspondence between pro-
jective varieties and homogeneous radical ideals (ex-
cluding those irrelevant ideals, whose radical ideal is
the maximal ideal〈X1,X2, . . . ,Xn〉, which yield the
empty set).

It is easy to see thatI (S) = 〈g〉 sinceg is irreducible.
Now we see what the radical ofI1=〈φ1, φ2, φ3, φ4〉
is. Firstly, we observe thatV(I1) = V(I2) whereI2 =
〈 fX − x̂0Z, φ4〉, i.e.,F = L1∪ L2 is presented as the
intersection of a plane and a quadric. Hence, Rad(I1) =
Rad(I2). We make the following:

Claim: Rad(I2) = I2 = 〈 fX − x̂0Z, φ4〉
Proof: See Appendix B. 2

Therefore, a degreer surfaceScontainingF has its
defining polynomialg∈ 〈 fX − x̂0Z, φ4〉 since〈g〉 =
I (S) ⊂ I (F) = I2, i.e.

g = ( fX − x̂0Z)ψ1+ φ4ψ2

for some degreer − 1 homogeneous polynomialψ1

and degreer − 2 homogeneous polynomialψ2.
The total homologue always contains the two planes

defined byf X̂− x̂0Ẑ = 0 and f X̂−x0Ẑ = 0 because
S passes throughL1 and L2. The proper homologue
Ŝ, is a degree 2r − 2 surface defined bŷg/( f X̂ −
x̂0Ẑ)( f X̂ −x0Ẑ), whereĝ comes from substitution of
the formulae ofφ−1 into g.

The caser = 2 is particularly interesting since then
ψ1 is linear andψ2 is a constant. Ifψ1 does not haveW
as a summand, theng = c1φ1+c2φ2+c3φ3+c4φ4, the
proper homologue ofS is a planec1X̂ + c2Ŷ + c3Ẑ +
c4Ŵ = 0. If ψ1 hasW as a summand, theng is a
linear combination ofφ1, φ2, φ3, φ4 andφ5. The proper
homologueŜ is a quadric. The special case occurs
wheng is a linear combination of onlyφ4 andφ5, i.e.,
S is an iso-distortion surface.
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7. Conclusions

Euclidean geometry has been used over the years by
perceptual theorists to model perceptual space, that is,
to represent physical space in the minds of seeing sys-
tems or in the computers controlling artificial vision
systems. The major result of this paper is that no vision
system can actually develop an Euclidean representa-
tion of its extra-personal space. Due to any slight errors
in the estimation of its intrinsic or extrinsic parame-
ters, the system can only estimate a distorted version
of the physical space. In particular, a theory describing
the distortion of the visual space due to errors in mo-
tion estimates has been developed. It represents a first
step towards departing from the traditional Euclidean
geometry used in the structure from motion problem.
Specifically, it showed that the transformation between
physical and perceptual space is a Cremona transforma-
tion. The systematic nature of the distortion is therefore
made explicit by this transformation.

From a philosophical standpoint, this paper provides
support for the empiricist viewpoint regarding the na-
ture of our knowledge. In particular, to understand
how the mind represents space, it is necessary to in-
vestigate scientifically the causal principles that in fact
govern the mind’s operation. The viewpoint emerging
from this paper is that perceptual space appears to be
governed by its own peculiar geometry whose under-
standing is a long-term research endeavour. This paper
explored a few basic fundamentals of this geometry and
opened up an exciting field of inquiry.

Specifically, we applied some established results
from the mathematical literature on Cremona space
transformation to the shape distortion transformation.
We identified the fundamental elements of both the di-
rect and the inverse transformation, and showed that
they consist of degenerate conics and points. We also
studied the transformation of space elements (lines,
planes) that pass through these fundamental elements.
Specifically, we derived planes that remain invariant
under the distortion transformation. We also showed
that points with the same gradient and lying on the same
line of sight will remain as points along the same line
of sight. Finally, we investigated the relationship be-
tween iso-distortion surfaces and the Cremona transfor-
mationφ.

There are several aspects of this work that could be
further developed. First, the iso-distortion framework
could be used to investigate properties of the visual
space that remain invariant under distortions, due to

imprecise motion estimates or imprecise estimates on
the viewing geometry of a stereo configuration. Other
important fields of inquiry include furthering the study
of the mathematical properties of Cremona transforma-
tion and conducting a systematic psychophysical study
on the effects of Cremona transformation on perceived
visual space. Lastly, the distortion space of other de-
partments of the Shape from X problems can be system-
atically worked out. When their respective laws of dis-
tortion, their individual weaknesses and strengths, and
so forth, are understood, our representation of space
will come to be securely grounded on a scientific foun-
dation.

Appendix A

It is clear from Eq. (4) that the distorted depthẐ given
by DZ has the form Z

a+bZ , wherea andb are given by:

a = (x − x0, y− y0) · n
(x − x̂0, y− ŷ0) · n

b =
(
urotε , vrotε

) · n
(x − x̂0, y− ŷ0) · n

(33)

Since we are studying points lying along the same line
of sight and with the same gradientn, a and b are
constant. Consider two such points, with depthsZ1

and Z2 and their respective distortion factors denoted
by D1 and D2. It can be easily shown that the sign
of the depth difference(Z1 − Z2) can be expressed as
follows:

sgn(Z1− Z2) = sgn(aD1D2(Ẑ1− Ẑ2))

where we have used sgn(·) to denote the sign function.
The signs ofD1, D2, Ẑ1 andẐ2 are all known. Thus, if
the sign ofa is known, the relative ordering ofZ1 and
Z2 can always be determined. In particular, given the
case wherea is positive, only the following scenarios
are possible:

1. if D1 > 0, D2 > 0⇒ sgn(Z1 − Z2) = sgn(Ẑ1 −
Ẑ2)

2. if D1 < 0, D2 < 0⇒ sgn(Z1 − Z2) = sgn(Ẑ1 −
Ẑ2)

3. if D1D2 < 0⇒ sgn(Z1 − Z2) = −sgn(Ẑ1 − Ẑ2)

and the larger of the two depths will have a negative
distortion factor.
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Figure 3. Unshaded area represents the region on the image plane
wherea is positive (for gradient directionn).

The area wherea is positive is determined readily if
the uncertainty region of the FOE can be bounded by,
sayτ . This is illustrated in Fig. 3. Therefore ifτ is
sufficiently small, ordinal depth along a line of sight
over much of the image region can be determined.

Appendix B

This appendix consists of a brief description of sev-
eral notions in algebraic geometry that are used in this
paper, chiefly in Section 6.

The solutions of a system of polynomial equations
form a geometric object called avariety; the corre-
sponding algebraic object is anideal. There is a close
relationship between ideals and varieties which reveals
the intimate link between algebra and geometry. An ex-
cellent modern treatment of these topics is (Cox et al.,
1992).

The ideals studied in algebraic geometry are sub-
sets of thepolynomial ring k[x1, . . . , xn], where
k[x1, . . . , xn] denotes the set of all polynomials in
x1, . . . , xn with coefficients in the algebraically closed
field k. The polynomial ring used in this paper is
R= C[X ,Y,Z,W].

Definition. Letk be a field, and letg1, . . . , gs be poly-
nomials ink[x1, . . . , xn]. Then we set

V(g1, . . . , gs) = {(a1, . . . ,an) ∈ kn :

gi (a1, . . . ,an)=0 for all 1≤ i ≤ s}.

We call V(g1, . . . , gs) the variety defined by g1,
. . . , gs.3

Definition. A subsetI ⊂ k[x1, . . . , xn] is an ideal if
it satisfies:

(i) 0 ∈ I .
(ii) If g, h ∈ I , theng+ h ∈ I .

(iii) If g ∈ I andh ∈ k[x1, . . . , xn], thengh ∈ I .

Definition. Let h1, . . . , hs be polynomials in
k[x1, . . . , xn]. Then we define

〈h1, . . . , hs〉

=
{

s∑
i=1

gi hi : g1, . . . , gs∈ k[x1, . . . , xn]

}
.

The crucial fact is〈h1, . . . , hs〉 is an ideal. An idealI =
〈h1, . . . , hs〉 is ahomogeneous idealwhenh1, . . . , hs

are homogeneous polynomials.
A variety can be studied by passing to the ideal

I (V) = {h ∈ k[x1, . . . , xn]: h(x) = 0 for all x ∈ V}

of all polynomials vanishing onV . Conversely, given
an idealI ⊂ k[x1, . . . , xn], we can define the set

V(I ) = {x ∈ kn: h(x) = 0 for all h ∈ I }

The following relationship exists between ideals and
varieties:

Let V1 andV2 be varieties inkn. Then:

(i) V1 ⊂ V2 if and only if I (V1) ⊃ I (V2).
(ii) V1 = V2 if and only if I (V1) = I (V2).

ThoughI (V) andV(I ) give us a correspondence be-
tween ideals and varieties, the mapV(I ) can fail to be
one-to-one; different ideals can define the same variety.
To establish an one-to-one correspondence, we need to
introduce the notion of aradical ideal.

Definition. An ideal I is radical if hm∈ I for any
integerm≥ 1 implies thath ∈ I .

It is also useful to introduce the operation of taking the
radical of an ideal.

Definition. Let I ⊂ k[x1, . . . , xn] be an ideal. The
radical of I , denoted Rad(I ), is the set

{h: hm ∈ I for some integerm≥ 1}.

Rad(I ) clearly contains the idealI (with m= 1).

Irreducible varietiesarise in many context. Intu-
itively, a line or a plane are irreducible: they do not
seem to be a union of finitely many simpler varieties.
To caption this notion algebraically, we introduce the
notion ofprime ideal.
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Definition. An ideal I ∈ k[x1, . . . , xn] is prime if
wheneverg, h∈ k[x1, . . . , xn] andg, h∈ I , then either
g ∈ I or h ∈ I .

A variety V irreducible if and only ifI (V) is a prime
ideal. The simplest variety inkn is a single point. The
ideal I that corresponds to this point is said to bemaxi-
malbecause it has the property that any idealJ contain-
ing I is such that eitherJ = I or J = k[x1, . . . , xn].

Quotient Ring

We need to first introduce the notion of congruence
modulo:

Definition. Let I ⊂ R be an ideal, and letg, h ∈ R.
We sayg andh are congruent moduloI , if g− h ∈ I .

It can be shown that congruence moduloI is an equiva-
lence relation onR. It partitionsR into the equivalence
classes of [g], defined by

[g] = {h ∈ R: g andh are congruent moduloI }.

Given a ringR and an idealI ⊂ R, thequotient ring
of R by I, R/I , is defined to be the set of equivalence
classes for congruence moduloI :

R/I = {[g]: g ∈ R}.

The sum and product operationson classesare de-
fined by using the corresponding operations on el-
ements of R. That is, [g] + [h] = [g + h] and
[g][h] = [gh]. It is easy to verify thatR/I forms a
ring with the above operations.

There is a simple but useful relation between prime
ideals inR and prime ideals inR/I , namely, there is a
one-one correspondence :

prime idealsA ⊂ R/I ↔
prime idealsA′ ⊂ R containingI

Proof: We have the natural quotient mapπ : R →
R/I . Given a prime idealA ⊂ R/I , A′ = π−1(A) is
clearly an ideal inR which containsI . To show that
A′ is a prime ideal, we need to show that if a product
gh lies in A′, then eitherg ∈ A′ or h ∈ A′. But if gh
is in A′, thenπ(gh) = [gh] = [g][h] is in A. That
means either [g] or [h] is in A sinceA is a prime ideal.

Hence we can conclude that eitherg ∈ π−1[g] ⊂ A′

or h ∈ π−1[h] ⊂ A′.
On the other hand, if we have a prime idealA′ in

R, A = π(A′) is easily shown to be an ideal inR/I .
However, to show thatA is prime, we need the fact
thatπ is onto. Suppose [gh] ∈ A, we want to show
that either [g] ∈ A or [h] ∈ A. Sinceπ is onto, there
areg′, h′ ∈ R such thatπ(g′) = [g] andπ(h′) = [h].
Clearly,g′h′ ∈ A′ but A′ is prime, therefore eitherg′ ∈
A′ or h′ ∈ A′. Applyingπ to both and we are done.

2

Now we are already to compute the radical ofI1 with
the following:

Claim: Rad(I2) = I2 = 〈 fX − x̂0Z, φ4〉

Proof: There is an alternative but equivalent defini-
tion of the radical of an idealI in R, namely, it is the
intersection of all prime ideals inRcontainingI . With
the above property of prime ideals in a quotient ring,
it is sufficient to find all prime ideals inR/I , compute
their intersectionB, then we have Rad(I ) = π−1(B)
sinceπ−1 respects intersections.

Hence, to find Rad(I ), it is sufficient to find all
prime ideals inR/I , compute their intersectionB, then
Rad(I ) = π−1(B).

Applying the above to our situation withR =
C[X ,Y,Z,W] and I = I2 = 〈 fX − x̂0Z, φ4〉, we
find that

R/I2 ≡ C[Y,Z,W]/〈φ4〉
= C[Y,Z,W]/〈Z(Y − λZ − µW)〉

whereφ4 is φ4 with the substitutionX = x̂0
f Z.

From the view point of varieties, the substitution
of X = x̂0

f Z into φ4 restricts our attention to the plane
defined byfX− x̂0Z = 0 (now with homogeneous co-
ordinatesY,Z,W) in which lies two linesL1 (defined
by Z = 0) andL2 (defined byY − λZ − µW = 0).
See (16) for the definition ofλ andµ.

The prime ideals inR/I2 are in one-one corre-
spondence with the (zero and one dimensional) irre-
ducible varieties inF = L1 ∪ L2, i.e., points onF
and the linesL1 and L2 themselves. They are: the
maximal ideals corresponding to points lying onL1

and L2, and two prime ideals [Z] (corresponding to
L1) and [Y − λZ −µW] (corresponding toL2), where
[Y], [Z], and [W] are images ofπ : R→ R/I2. How-
ever, the intersection of all the maximal ideals corre-
sponding to points lying onL1 all contain [Z] since
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each of them does (similarly for points onL2). Hence,
it is sufficient to consider the intersection of the two
prime ideals due toL1 and L2. It is Rad(R/I2) =
[Z] ∩ [Y − λZ − µW] = [Z(Y − λZ − µW)],
which is the zero ideal inR/I2. Therefore, pulling back
to R, we have Rad(I2) = I2. 2

Notes

1. In the language of algebraic geometry, the homoloidal net ofφ is
called thelinear systemspanned byφ, theF-set of the net is called
thebase locusof the system, theP-set is called theexceptional
set, the proper homologue is called theproper transform.

2. Such ann-dric is linearly equivalent ton copies of a general plane
which meetsC m times. Hence, by intersection theory, it meets
C mntimes.

3. Some writers use the termalgebraic subsetfor the object as here
defined, while reserving the term variety for the narrower meaning
of irreducible algebraic subset.
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