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Abstract. When the foreground objects have variegated appearance
and/or manifest articulated motion, not to mention the momentary oc-
clusions by other unintended objects, a segmentation method based on
single video and a bottom-up approach is often insufficient for their ex-
traction. In this paper, we present a video co-segmentation method to
address the aforementioned challenges. Departing from the objectness
attributes and motion coherence used by traditional figure-ground sep-
aration methods, we place central importance in the role of “common
fate”, that is, the different parts of the foreground should persist togeth-
er in all the videos. To accomplish this idea, we first extract seed super-
pixels by a motion-based figure/ground segmentation method. We then
formulate a set of linkage constraints between these superpixels based on
whether they exhibit the characteristics of common fate or not. An iter-
ative constrained clustering algorithm is then proposed to trim away the
incorrect and accidental linkage relationships. The clustering algorithm
also perform automatic model selection to estimate the number of indi-
vidual objects in the foreground (e.g. male and female birds in courtship),
while at the same time binding the parts of a variegated object together
in a unified whole. Finally, a multiclass Markov random fields labeling
is used to obtain a refined segmentation result. Our experimental re-
sults on two datasets show that our method successfully addresses the
challenges in the extraction of complex foreground and outperforms the
state-of-the-art video segmentation and co-segmentation methods.

1 Introduction

Imagine how, starting with a lack of models for most categories of objects, a
developing young infant, say 7-8 month old, can come to acquire the faculty of
segmenting the world into objects. It is believed that young infants gradually
perceive individual objects as unified, bounded, and persisting by repeated ob-
servations from different perspectives and how objects interact with others [1].
However, the computational process underpinning this developmental process
is not well-explored. Imagine another (common) scenario where we are given
multiple videos with the same tag, but no further information is provided; how
can we automatically augment the tag with more fine-grained information such
as the segmentation of the tagged object [2]? These two scenarios provide the
motivation for our work.
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Fig. 1. Challenges of video foreground co-segmentation: variegated objects (such as
the ostrich and the panda’s variegated black and white appearance), objects hardly
separable from the background (such as the inconspicuous female Bird of Paradise
in (¢)), and motion ambiguities caused by articulated motions of many animals, and
extraneous objects moving together momentarily by chance (e.g. the green toy horse in
(b)). First row: Original videos. Second row: Video segmentation results from [10].
Third row: The selected object proposals of [8]. Fourth row: Results of the proposed
video foreground co-segmentation method.

Our work is akin to the traditional figure-ground separation albeit in a mul-
tiple video setting. We prefer calling it foreground separation rather than figure-
ground separation in such multiple video setting, as not necessarily all the figures
in the individual videos are of interest — some figural objects are only present
fleetingly and/or coincidentally. Despite some such subtle differences, our prob-
lem has many similarities with the traditional figure-ground separation works.
Of course, figure-ground separation has been a longstanding important problem.
Despite many attempts made over decades [3-9], the problem remains difficult or
even ill-defined. In those methods based on a single image, classical mid-level vi-
sual cues to figure/ground assignment such as convexity and parallelism are used
[3-6]. However, most proposed representations are still too local and bottom-up
to handle the complex variability in natural images. They were usually demon-
strated solely on line images, with a few exception [4, 5].

The reason why figural assignment is hard is because it is not a purely
bottom-up phenomenon [11]. Top-down cues such as familiar shape contours
play a role [12], especially in natural scenes where many objects may not have
convex shape or have holes. Moreover, the figure itself may contain multiple
objects, which may be spatially separated with each other so that many of the
figure-ground segmentation methods may fail to extract the whole figure due to
their continuity assumption about the figure.

When we are viewing a dynamic scene, motion cue provides strong informa-
tion about figural assignment. Despite the utility of motion cues, not many meth-
ods exploit motion for figure extraction. Recently, video segmentation methods
[10, 13, 9] divide the video into motion layers, though the focus of these methods
has been not so much on figure-ground separation. For simple scenes (e.g. near
planar) or object motions (e.g. rigid), these approaches of course also yield fig-
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ure and ground as two layers, but for more complex scenes and object motions,
this simple strategy would fail. The natural world, unfortunately, abounds with
such motions, such as the slithering motion of snake, the articulated motion of
ostrich in Fig. 1(a), and indeed, almost all animal motions. The video segmenta-
tion approach is also plagued by the practical difficulties of obtaining accurate
optical flow. Fig. 1 illustrates two of these difficulties. In the third row of Fig.
1(a), the elongated head and neck of the ostrich are poorly delineated because
of the well-known short-boundary bias of standard pairwise MRF model and the
failure of the objectness measure [14, 15] to cover the whole figure; in Fig. 1(c),
the smaller female Bird of Paradise in the near ground failed to be separated
from the background due to the paucity of textural details in the female bird.

From the above brief review of the figure-ground separation problem, we can
make the following observations. The image-based methods are often plagued by
over-segmentation, due to the variegated appearance of many objects and the
non-convex shapes of many real-world objects. While the image-based methods
can use motion cues to bind object segments together, they often over-rely on
motion coherence which limits its applicability for natural motions. The use of
motion cue also does not guarantee accurate figure outline due to the practical
difficulty of estimating optical flow (See the second row of Fig. 1).

In our problem setting, the use of motion (or form for that matter) bring
another complication: How to determine whether a group of segments (coherent
in motion or form) are from the same object, but not from different objects
moving together momentarily? One example is shown in Fig. 1(b) where a panda
is playing with a toy horse. In other videos, there might be multiple moving
objects. Some might be only momentarily present, but some might be interacting
with one another on a prolonged basis, for instance, the two Birds of Paradise
in courtship ritual in Fig. 1(c). In the former example, imagine we are trying
to segment all the pandas in a group of videos bearing the tag “panda”. Then,
clearly we are not interested in the toy horse. In the latter example, there might
be strong reasons to regard the multiple objects as a single foreground entity.

In solving our problem of video foreground separation, we need to handle the
aforementioned difficulties faced by the image-based approach as well as those
using dynamic cues. Our definition of foreground is much more generic than
those used for figure-ground separation; we eschew assumptions used by the
preceding approaches, such as those based on objectness and motion coherence.
As we have at our disposal multiple video sequences, with the foreground of
interest appearing in all of them, the foreground is simply an object that is
recurring in all the videos, moving differently from the background but having
certain permanence quality about it. Operationally, this permanence quality is
checked by requiring the different parts of the foreground should persist together
in all the videos. In other words, the goodness of the foreground is based upon
“common fate”, which we believe is a much more generic assumption than those
used for figure-ground separation. By observing the appearance under different
environment, we will be able to tease out the stable from the accidental, not
getting entangled in possibly spurious correlations of features.
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Fig. 2. Algorithm overview with steps (a) to (e).

Fig. 2 gives an overview of the proposed method. It first performs an initial
motion based figure-ground segmentation within each video to get seed super-
pixels for foreground and background. We also generate initial pair-wise to-link
and not-to-link constraints between these superpixels based on whether they
manifest the characteristics of common fate or not. Using these seed superpixels
and their pair-wise constraints, we propose an iterative constrained clustering
algorithm, in which the grouping together of articulated or variegated object is
promoted by retaining and making use of the correct and common constraints,
whereas the removal of spurious connections is cast as discovering and pruning of
violated constraints. We also need to perform model selection in the constrained
clustering step because we want to allow for multiple objects in the foreground.
Finally, we perform a multiclass labeling of multiple Markov random fields (M-
RF) to obtain the final refined co-segmentation result.

We test our method on a newly created dataset, CFViSC as well as on the
MOViSC dataset from [16]. The videos of CFViSC highlight the aforementioned
video foreground segmentation challenges. Our experiments in Sect. 3 show that
our method successfully addresses these challenges and outperforms the state-of-
the-art video segmentation [10, 13, 8] and co-segmentation [16] methods in term
of foreground segmentation accuracy.

1.1 Related Works

Video Segmentation: Video segmentation methods such as [10, 13] make use
of dense trajectories and the associated motion cues for grouping. Due to the
lack of explicit notion of how the figure looks like, they simply assume that the
figure is the content moving in the scene. Clearly, this is not fine-grained enough
in many cases where some extraneous objects of no interest are also moving or
momentarily interacting with the figure. Another limitation of these methods
arises when there are objects with articulated motions. In this case, relying on
the pair-wise motion distance is likely to result in over-segmentation.

Some other methods make use of dense optical flow between two frames for
figure-ground segmentation [17, 18]. They are also easily plagued by the practical
difficulties of obtaining accurate optical flow. The work of [9] aims to address
this issue by simultaneously estimating accurate flow and solving for a figure-
ground segmentation that yields good flow estimates. While it is able to recover
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[ Method [ MS [ MF [ CM [ Hetero-FG ]
Ours Y Y Y Y
ddCRP [16] Y Y Y N
ObMiC [21] N Y N Y
SC&QPBO [22] N N N Y
DC-M [23] N Y N N
MFC [24] N Y Y Y
OC [20] N N N Y

Table 1. Comparison of our algorithm with previous video and image co-segmentation
methods (top and bottom halves respectively). MS: whether an algorithm can perform
model selection. MF: whether an algorithm is designed for multiple figure object seg-
mentation. CM: whether an algorithm can deal with the content misalignment issues
(see text for discussion). Hetero-FG: whether an algorithm can identify a heterogeneous
object as a single object. Y and N represent yes and no respectively

fine structures, it still faces the limitation of a two-layer segmentation and would
suffer from the various ambiguity problems mentioned above.

Recently, several video segmentation methods built upon object proposals
[14,15] are proposed to detect the primary object in videos [7,8]. When faced
with the scenario in Fig. 1(b), they are still likely to suffer from the afore-
mentioned issue as they are unable to determine whether there is an object
with variegated appearance or there are multiple objects moving together. Oth-
er modes of failure include: the employed object proposal method may fail to
generate adequately good proposals to correctly cover the whole figure. Even
when there exist good object proposals, the segmentation algorithm may fail to
identify them and select the bad ones. This is likely to happen especially when
the object has non-compact shape. For instance, in Fig. 1(a), due to the varie-
gated appearance and its articulated motion, the selected object proposals by
[8] does not cover the neck and the feet of the ostrich (third row, Fig. 1(a)).

Co-segmentation: The problem of object co-segmentation is first addressed by
[19] on an image pair. The usage of object proposals have also been introduced
to co-segmentation [20,21]. They share with other object-based approaches the
same limitation mentioned in the preceding paragraph.

There are other co-segmentation works that segment objects using videos [22,
16]. The former [22] formulates a subspace clustering for video co-segmentation
which jointly utilized appearance feature across multiple videos and motion fea-
tures within each video to segment the foreground of interest. The assumption
that the motion of each object forms a low-rank subspace makes this work in-
capable of handling objects with articulated motion. While it can treat multiple
objects as foreground, it cannot provide further segmentation into the individ-
ual foreground objects. The latter [16] formulates a distant-dependent Chinese
Restaurant Process across multiple videos based on motion cues and appear-
ance cues, but the co-segmentation results are not organized into foreground
and background explicitly. It also suffers from severe over-segmentation when
dealing with complex scenes with a lot of clutter.

Table 1 compares our method with the previous video and image object co-
segmentation methods. As explained above, our method can handle foreground
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with variegated appearance and non-compact shape, foreground comprising mul-
tiple objects (with the number of objects unknown), and finally, can remove
extraneous or spurious objects momentarily present in the scene or interacting
with the foreground. Note from Table 1 that [16] and [24] are also able to handle
extraneous objects that are only present in some of the scenes. They termed
this kind of images or videos as exhibiting content misalignment. One big differ-
ence is that they choose to retain these extraneous objects in the foreground. In
principle, both these two and our methods utilize the information to discard or
retain these extraneous objects, depending on the needs of the applications.

2 Proposed Method

Given a set of N videos V = {Vi,Va,...,Vx}, we first run the motion-aware
superpixel segmentation of [25] for each frame within each video, and then rep-
resent each video as a collection of superpixels, i.e., § = {51, Sa, ..., SN}, where
S; denotes the superpixel collection of V;. Our video co-segmentation method
presented in this section is based on these superpixels as input.

2.1 Discovering Seed Superpixels and Initial Pairwise Constraints

The objective in this step is to perform a rudimentary foreground-background
segmentation in each video to obtain a set of seed superpixels and some ini-
tial pairwise constraints among these selected superpixels. In this rudimentary
foreground-background segmentation, often only fragments of the foreground
are selected, together with extraneous background or other undesirable objects.
Thus, further processing of foreground-background separation will be needed.

To extract the seed superpixels, we adopt the latest technique in computing
the motion saliency map [18] and the inside-outside map [26]. The motion salien-
cy measure of [18] exploits the center-surround difference on optical flow field
to separate the foreground. It is relatively robust to any complex intra-object
motion differences that could arise from self-occlusion or articulated motion. For
instance, it allows the head and neck of the ostrich in Fig. 1(a) to have differ-
ent motion from the body, as long as the contrast with the background is large
enough. The drawback is that it depends on sufficient motion contrast (see the
missing arm in the second column, second row of Fig. 3), and could be sensitive
to spurious motion contrast due to depth discontinuities in the background.

The inside-outside map of [26] is based on first detecting motion boundaries,
and then based on these incomplete boundaries, computes the inside-outside map
via a point-in-polygon rule. Specifically, any ray starting from a point inside the
polygon (or any closed curve) should intersect the boundary of the polygon an
odd number of times. According to our observation, this inside-outside measure
significantly outperforms the motion saliency measure when the foreground has a
small motion contrast against the background. However, it is erroneous when the
foreground object possesses large intra-object motion differences, since in this
case, the differences could raise too many edges in the interior of the foreground,
violating the basic premise of the point-in-polygon rule.
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Fig. 3. First column: Two original frames. Second column: motion saliency mea-
sure. Third column: inside-outside measure, with intensity indicating degree of inside-
ness. Fourth column: extracted patches by combining motion saliency and inside-
outside measure.

Fig. 3 shows both the motion saliency map and the inside-outside map of two
frames of a video, where their aforementioned pros and cons are well-illustrated
in the second and third columns. We found that the two measures can actually
complement each other to resolve their drawbacks. Thus, we combine them to
extract those seed superpixels s that are likely to cover the foreground region:

S = {s]| sal(s) >a or in(s) > B}, (1)

where S denotes the collection of seed superpixels (F' stands for figure); sal(-)
and in(-) represent the average motion saliency and the inside points ratio of a
superpixel respectively; o and § are the thresholds. The fourth column of Fig.
3 shows initial foreground-background separation results. Despite the relatively
good result of the foreground-background segmentation for this example, there
are plenty of other examples where the initial segmentation is inadequate, for
instance, the panda shown in Fig 2.

After the rudimentary foreground-background segmentation, our next aim is
to generate the pair-wise constraints among the extracted seed superpixels of
each input video. These constraints will eventually guide the formation of the
correct foreground model in a constrained clustering setting. Denoting SE as
the seed superpixels of video V,,, we want to build for ¥ a constraint matrix
Zn ={Zij}N,xN,, No = |Sh]:

+1, (Si, Sj) eM
Zij = —1, (Si,Sj) eC (2)
0, otherwise.

where M denotes the set of to-link constraints, and C denotes the set of not-to-
link constraints. The not-to-link constraints forbid two objects that are physi-
cally separated to be linked together and are computed based on the following
simple spatial relationship:(s;, s;) € C if there is no path (i.e. a sequence of n-
odes connected by edges) from s; to s; in an adjacency graph built for the seed
superpixels of the current frame. To compute M, we select a pair of superpixels
(si,s;) that are adjacent in a frame, and warp them to the next and previous
5 frames using the forward and the backward optical flow respectively. If the
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warped superpixels still remain close to each other, i.e., exhibiting common-fate,
(s;, s;) are selected to be in M; otherwise, no constraints are assigned to (s;, s;).

Since we rely only on the gestalt law of common fate to generate constraints,
the graphs are robust to intra-object motion difference arising from self-occlusion
or articulated motions. For instance, the different parts of the ostrich are linked
together due to the fact they stay connected despite the articulated motions.
Evidently, there would still be incorrect constraints, such as those to-link con-
straints that arise when there are different objects interacting with each other
in a single video (e.g. the panda and the toy horse). This is where one needs to
use multiple videos to tease out the stable aspect of the foreground appearance.

In order to estimate the background model, we also need to extract the seed
superpixels that can represent the background. We used the simple boundary
prior proposed by [27], namely, we select those superpixels that reside along the
image boundary but do not belong to S¥, and denote the set as SB.

2.2 Iterative Constrained Clustering and Model Selection

Given N input videos V = {Vi, Va, ..., Vi }, seed superpixels S¥ = {SF,SF, ..., Sk 1,
constraint matrices Z = {Zj,Zo,...,Zy} and an affinity matrix W € RM>*M
(M = >N |SF|), which describes the similarity between all seed superpixels,
the objective in this subsection is to estimate the number of cluster K and divide
the seed superpixels into K clusters, each of which models a foreground object.

To accomplish the objective, we rely on the to-link constraints to provide
the necessary prior to bind the non-uniformly colored zones of say, a panda or a
leopard together in one cluster. However, recall that some constraints in our Z,,
may be incorrect due to the interaction between different objects or to the errors
from the initial foreground-background segmentation. Thus, we need to prune
these incorrect constraints to avoid incorrect binding or incorrect separation
when clustering the superpixels.

Based on the assumption made in the last subsection, namely, those correct
constraints must be stable and recur for all input videos while those incorrect
ones should not recur in most videos, we propose an iterative constrained clus-
tering algorithm to deal with the aforementioned issues. Our key idea is similar
to the cross-validation procedure, where the incorrect constraints from one ma-
trix Z,, are detected by finding the inconsistency between the clustering results
and the remaining (N — 1) constraint matrices. The proposed algorithm is sum-
marized in Algorithm 1.

For the sake of clarity, let’s first assume we have two simple input videos. The
first video contains a flapping flag with red and white stripes, and the second
contains a flapping flag with red, white and blue stripes (in this case, by the end
of the process, our extracted foreground must contain only white and red stripes,
since they consistently appear in the two videos). In our algorithm, we extract
superpixels from the areas of the flags, and create a similarity matrix W based on
color appearance of these superpixels. We generate constraint matrices: Z; and
Zs, where Z4 will provide the links between the red and white superpixels, and Z»
will provide the links for the red, white and blue superpixels. Our idea here is that
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Algorithm 1 Iterative Constrained Clustering and Model Selection

Input: W, Z2={Z2,,Z,,...,Zn}, T, CM
Go = diag(Z1,Z2,...,ZnN);
fort=1— T do
Gt = Gi1;
forn=1— N do
Compute the matrix G} by (3);
Get the clustering result L,, by (4);
Compute R (Z,), the violated constraint ratio of Z,,;
end for
if no violated constraints detected then
G* = G, and break;
end if
Select the constraint matrix Z,, with the largest R (Z,);
Update Z,, by (5) and update G; accordingly;
end for
Get the model number K and the final clustering result L* by clustering W s.t. G*;
if CM == 0 then
Remove the clusters that are not common;
Adjust K and L™ accordingly;
end if
return K and L*

if we remove the links in Z;, and do the clustering on W subject to Z,, we end
up with the blue stripes included in the foreground. However, if we remove the
links in Zs, and do the clustering on W subject to Z;, the extracted foreground
will comprise only the white and red stripes grouped together, because there is
no link to the blue superpixels. For the latter case, there will be inconsistency
between the clustering result and the constraints described by Zs, necessitating
Z5 to be corrected or updated. Through this verification process, we can prune
incorrect constraints and this forms the core of our algorithm.

For more detailed discussion of Algorithm 1, we start with combining all
constraints Z into a matrix Gy, such that Go = diag(Z1,Zs,...,Zy). In every
iteration t, our goal is to select one Z, that currently has the highest violated
constraint ratio, and then to update it. To achieve this, in the second loop (the
n-loop), we first remove each set of constraints one by one. We denote G} the
G; with Z,, removed from the matrix:

G¢(i,7), otherwise.

G{(i,j) = { 3)
where (2, is a set of indices of Z,, that we want to remove.
Next, we perform the following constrained clustering:

Cluster on W, s.t. Gy. (4)

In each iteration n, we are interested only in the clustering results of the fore-
ground superpixels, denoted as L,,. Since Z,, is excluded in this round, it has no
effect on L,. Subsequently, we can compare L, to Z, and record the violated
constraints of Z,,. If Z,(i,5) = +1 but L, (i) # L,(j), or Z,(i,5) = —1 but
L, (i) = L,(j), then we increase the number of violation. The ratio of violated
constraint of Z,,, denoted as R (Z,,), is then computed as the number of violation
over the number of all constraints.
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Fig. 4. The constraint updating process by Algorithm 1 on the panda sequences. The
constraint graphs having the highest violated constraint ratio and thus selected for
update in each iteration are bordered in orange.

Having processed the n-loop, we choose the constraint matrix that has the
highest violated constraint ratio, and then update it as follows:

Zo(i, ) = 0, if Z,,(4,7) violates L,
i) = Z,(i,j), otherwise.

()

This will create new configurations of links that are more consistent, since those
that are inconsistent with the others are pruned.

Fig. 4 visualizes the constraint updating process by Algorithm 1. It can be
seen that the incorrect constraints such as those to-link ones between the panda
and the toy horse or those not-to-link ones within the panda are successfully re-
moved iteratively, while the correct and common to-link constraints that connect
the panda’s white and black patches remain alive.

We stop the iteration when no more violation of constraint is found or the
preset maximum iteration limit is reached. The cluster number K and the final
clustering result L* is obtained by running the constrained clustering algorithm
based on the final overall constraint matrix G*. A final minor point is that, as
discussed in Sect. 1, one can choose to discard or retain the extraneous objects
extracted, depending on the needs. We use the parameter CM for this purpose.
For the purpose of our work, we set CM == 0 which means that the clusters
that do not appear in all input videos should be removed. For some applications,
if we want to allow some foreground objects to irregularly occur, then the flag
CM will be set to 1.

Implementation Details We extract the normalized color histogram as the
feature descriptors of superpixels as in [23, 16] and compute the pair-wise affinity
using the following formula:

Wi )= o L) “

Oc

where ¢; denotes the color histogram and x?(-,-) represents the y>-distance be-
tween two histograms. To perform constrained clustering, we adopt the Exhaus-
tive and Efficient Constraint Propagation method (EECP) from [28] to incorpo-
rate the constraints into the affinity matrix. As EECP does not have an in-house
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step to perform model selection, we adopt the state-of-the-art SCAMS method
from [29] to perform simultaneous clustering and model selection on the modi-
fied affinity matrix. Please refer to [28] and [29] for the details of the EECP and
the SCAMS algorithms respectively.

2.3 MRF Based Object Segmentation

Assuming the seed superpixels have been clustered by Algorithm 1 into K groups
for the foreground, F = {F1,Fa,...,Fk}, we now augment it with the back-
ground seed superpixels SB. We then learn a K + 1 class SVM classifier that
can infer an appropriate distance metric to distinguish the K + 1 classes. This
is done in an one-vs-all scheme by using one of F; or S® as positive data and
the others as negative data. Normalized color histograms are used as the feature
descriptors in this step.

Having obtained the appropriate distance metrics for the foreground object
models and the background model, we can use them to refine the segmentation
results via a graph-cut method [30,31]. We define a graph over each video’s
superpixels with nodes representing superpixels and edges between two nodes
corresponding to the cost of a cut between two superpixels. Then, we seek to
minimize the following energy function for multi-class video segmentation:

E(f)=>_ Di(fi)+X > Vi(fi£y) (7)

€S i,JEN

where f is the label vector of the superpixel nodes with each element f; €
[1, K + 1], and NV defines the spatiotemporal neighborhood of the superpixels.

The data term D;(f;) penalizes the labeling of the superpixel z; with f;,
which is described as D;(f;) =1 — Py, (x;), where Py, (z;) is the estimated prob-
ability of assigning x; with label f;, calculated using the learnt one-vs-all SVM
for f;. The smoothness term V; ;(f;, f;) encourages the labeling to be spatiotem-
porally consistent, and is defined as:

e~ (widet@udy) - if f, o£ f. and A3 =1,
Vii(fis fj) = Qe (wedet@ado) if fy o f; and AL =1, (8)

where A7, = 1 and Aﬁj = 1 indicate spatial adjacency and temporal adjacency
respectively. The spatial adjacency is only based on the spatial relationship in
a single frame, as we want to keep the MRF to a simple pairwise clique, it
not being our main contribution. To define temporal adjacency, we warp the
superpixels forward and backward to the adjacent frames using optical flow, and
then, those superpixels in the adjacent frames that overlap the warped area are
selected as the temporal neighbors. The weights w; and w; (w; + w; = 1) are
used to trade off the influence of the color distance and the motion distance. We
define the color distance d.(i, j) as the x2-distance between the color histograms
of the superpixels, and the motion distance d¢(7,j) between spatially adjacent
superpixels as the Euclidean distance between the mean motions of the pixels
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()
Fig. 5. Comparison of segmentation accuracies on (a) CFViICS and (b) MOVIiCS.

in the superpixels. For temporally adjacent superpixels, their motion distance
dy(%,7) is computed as the average area of two way after-motion overlap, which
indicates how likely it is for z; to move to x; and vice versa.

3 Experiments

We applied our method on two datasets and compared the results with those
from the state-of-the-art video segmentation methods and video co-segmentation
methods. To quantify the results, we employed the intersection-over-union (IOU)
metric which is defined as M (S,G) = %, where S is the segmentation result
and G is the ground truth. As the video segmentation methods do not link
figure objects across videos, we computed their IOU metrics independently in
each video and obtain the average as the final IOU figure, while for the video
co-segmentation method, the IOU metric was computed jointly in all videos,
with S restricted to the segments having the same label. For those videos whose
foregrounds have multiple objects, we did not include for comparison those video
segmentation methods that can only generate two-layer segmentation.

Exp. on the CFViCS Dataset: We built the Complex Foreground Video Co-
Segmentation (CFViICS) dataset that comprises of 8 sets of videos selected to
cover the challenges mentioned in Sect. 1. The ground truth of this dataset was
manually annotated, and is depicted in the second rows of (a) through (h) of
Fig. 6. The CM parameter in Algorithm 1 is set to 0 for this dataset.

Fig. 5(a) depicts the IOU metrics on the CFViCS. It shows that our method
achieved the best performance on most of the sequences, and in average out-
performed the ddCRP [16] by 20%, the VS [8] by 39%, and the Moseg ([10]
postprocessed by [13]) by 25%.

The segmentation results on the CFViCS are shown in Fig. 6. The VS [8] per-
formed poorly in nearly all the sequences in this dataset, and the chief reason
was the difficulties in obtaining enough good object proposals when the fore-
ground or background is complex. The video segmentation algorithm obtained
by postprocessing [10] with [13] tended to have a good performance when the
foreground undergoes rigid motions, as can be seen in the Clown Fish sequences
(Fig. 6(b)) and the Border Collie sequences (Fig. 6(e)). However, its performance
degraded severely when confronted with articulated motion and inaccurate op-
tical flow estimates (Fig. 6(c) and (d)). In comparison, our method was able
to resolve the ambiguity arising from articulated motion and rectify the errors
caused by inaccurate optical flow.
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(a) Bicolor Angelfish (b) Clown Fish (c) King Cobra (d) Ostrich

L BL

B Vi

(e) Border Collie (f) Panda (g) Human and Dog (h) Bird of Paradise in
Dancing Courtship

Fig. 6. Segmentation results on the CFViCS dataset. In each example, from top to
bottom: original video frames, ground truth, results of [10] post-processed by[13], re-
sults of [8], results of [16], results of our method after Algorithm 1, and our final results
with MRF refinement. Best viewed in color.

The ddCRP method [16] does not organize the segmentation into foreground
and background, which to some degree increases the difficulty in matching the
foreground across videos. Even if it succeeds in matching, it is likely to over-
segment those complex foreground objects with variegated appearance (Fig. 6(e)
and (f)). In comparison, it can be seen from the sixth row of Fig. 6 that our
iterative constrained clustering and model selection algorithm manages to group
different parts of the heterogeneous foreground together.

Exp. on the MOViCS Dataset: We also tested our method on the Multi-
Object Video Co-Segmentation (MOViCS) dataset from [16]. This dataset allows
the foreground to comprise of objects irregularly occurring in the videos. Thus,
for experimental comparison, we set the CM parameter in Algorithm 1 to 1.
The comparison between our method and the ddCRP of [16] on the MOViCS
is shown in Fig. 5(b) and Fig. 7. Our method outperformed the ddCRP [16] in
three out of four sets of videos, and by 17% in average. Again, as can be seen in
Fig. 7, the ddCRP [16] was likely to generate a severely over-segmented results
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(a) Chicken, Turtle (b) Zebra, Lion (c) Giraffe, Elephant (d) Tiger
Fig. 7. Segmentation results on the MOViCS dataset. In each example, from top to
bottom: original video frames, ground truth, results of [16], and results of our method.

\ Video set | #GT | #MS ]| Video set | #GT | #MS |

CFViCS

Bicolor Angelfish 1 2 Human and Dog Dancing 2 2

Border Collie 1 3 Ostrich 1 1

Clown Fish 1 2 Panda 1 1

King Cobra 1 1 Bird of Paradise in Courtship 2 2
MOViCS

Chicken, Turtle 2 4 Giraffe, Elephant 2 2

Zebra, Lion 2 3 Tiger 1 2

Table 2. The true numbers of objects in the foreground (#GT) and the model selection
results of our method (#MS).

on both the foreground and background, whereas our method was able to capture
the foreground objects as unified entities.

The model selection results of our method on the CFViCS and the MOViCS
are also shown in Table 2. It can be seen that our method obtained correct
model selection results in half of the video sets. Even for those incorrect cases,
the errors in the model selection were mainly due to some background patches
being incorrectly extracted as foreground (see Fig. 6 and Fig. 7). Most of these
patches were separated from the true foreground objects. Thus they could be
easily removed by some user interaction if necessary.

4 Conclusions

We have presented a video co-segmentation framework for the separation of
complex foreground and background. We first perform an initial figure/ground
separation using motion cues to obtain seed superpixels and their pairwise con-
straints. An iterative constrained clustering algorithm is then put forth for model
selection and estimation. Finally, a multiclass MRF labeling is used to obtain
refined segmentation results. We have tested our method on the CFViCS and
the MOViCS datasets; the experimental results demonstrate its success in ad-
dressing the challenges present in realistic foreground extraction.

Acknowledgement. This work was partially supported by the Singapore PS-
F grant 1321202075 and the grant from the National University of Singapore
(Suzhou) Research Institute (R-2012-N-002).



Consistent Foreground Co-segmentation 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Spelke, E.S.: Principles of object perception. Cognitive Science 14 (1990) 29-56
Wang, M., Ni, B., Hua, X.S., Chua, T.S.: Assistive tagging: a survey of multimedia
tagging with human-computer joint exploration. ACM Computing Surveys 44
(2012)

Fowlkes, C., Martin, D., Malik, J.: On measuring the ecological validity of local
figure/ground cues. In: ECVP. (2003)

Maire, M.: Simultaneous segmentation and figure/ground organization using an-
gular embedding. In: ECCV. (2010)

Ren, X., Fowlkes, C., Malik, J.: Figure/ground assignment in natural images. In:
ECCV. (2006)

Stahl, J., Wang, S.: Convex grouping combining boundary and region information.
In: ICCV. (2005)

Lee, Y., Kim, J., Grauman, K.: Key-segments for video object segmentation. In:
ICCV. (2011)

Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially
accurate and temporally dense extraction of primary object regions. In: CVPR.
(2013)

Sun, D., Wulff, J., Sudderth, E.B., Pfister, H., Black, M.J.: A fully-connected
layered model of foreground and background flow. In: CVPR. (2013)

Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories.
In: ECCV. (2010)

M.A., P.: Low-level and high-level contributions to figure-ground organization.
Oxford University Press (2014)

Peterson, M., Gibson, B.: Must figure-ground organization precede object recog-
nition? an assumption in peril. Psychological Science 5 (1994) 253-259

Ochs, P., Brox, T.: Object segmentation in video: A hierarchical variational ap-
proach for turning point trajectories into dense regions. In: ICCV. (2011)

Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR. (2010)
Endres, 1., Hoiem, D.: Category independent object proposals. In: ECCV. (2010)
Chiu, W.C., Fritz, M.: Multi-class video co-segmentation with a generative multi-
video model. In: CVPR. (2013)

Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer segmentation of live
video. In: CVPR. (2006)

Rahtu, E., Kannala, J., Salo, M., Heikkid, J.: Segmenting salient objects from
images and videos. In: ECCV. (2010)

Rother, C., Kolmogorov, V., Minka, T., Blake, A.: Cosegmentation of image pairs
by histogram matching incorporating a global constraint into mrfs. In: CVPR.
(2006)

Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In: CVPR. (2011)
Fu, H., Xu, D., Zhang, B., Lin, S.: Object-based multiple foreground video co-
segmentation. In: CVPR. (2014)

Wang, C., Guo, Y., Zhu, J., Wang, L., Wang, W.: Video object co-segmentation via
subspace clustering and quadratic pseudo-boolean optimization in an mrf frame-
work. IEEE Trans. Multimedia 23 (2014)

Joulin, A., Bach, F., Ponce, J.: Multi-class cosegmentation. In: CVPR. (2012)
Kim, G., Xing, E.P.: On multiple foreground cosegmentation. In: CVPR. (2012)
Galasso, F., Cipolla, R., Schiele, B.: Video segmentation with superpixels. In:
ACCV. (2012)



16

26.

27.

28.

29.

30.

31.

Jiaming Guo, Loong-Fah Cheong, Robby T. Tan, and Steven Zhiying Zhou

Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In:
ICCV. (2013)

Lempitsky, V., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bound-
ing box prior. In: ICCV. (2009)

Lu, Z., Ip, H.: Constrained spectral clustering via exhaustive and efficient con-
straint propagation. In: ECCV. (2010)

Li, Z., Cheong, L.F., Zhou, S.Z.: SCAMS: Simultaneous clustering and model
selection. In: CVPR. (2014)

Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. TPAMI 23 (2001) 1222-1239

Cheng, H.T., Ahuja, N.: Exploiting nonlocal spatiotemporal structure for video
segmentation. In: CVPR. (2012)



