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Abstract

Given a pair of videos having a common action, our goal
is to simultaneously segment this pair of videos to extrac-
t this common action. As a preprocessing step, we first
remove background trajectories by a motion-based figure-
ground segmentation. To remove the remaining background
and those extraneous actions, we propose the trajectory co-
saliency measure, which captures the notion that trajecto-
ries recurring in all the videos should have their mutual
saliency boosted. This requires a trajectory matching pro-
cess which can compare trajectories with different lengths
and not necessarily spatiotemporally aligned, and yet be
discriminative enough despite significant intra-class varia-
tion in the common action. We further leverage the graph
matching to enforce geometric coherence between regions
so as to reduce feature ambiguity and matching errors. Fi-
nally, to classify the trajectories into common action and
action outliers, we formulate the problem as a binary la-
beling of a Markov Random Field, in which the data term
is measured by the trajectory co-saliency and the smooth-
ness term is measured by the spatiotemporal consistency
between trajectories. To evaluate the performance of our
framework, we introduce a dataset containing clips that
have animal actions as well as human actions. Experimen-
tal results show that the proposed method performs well in
common action extraction.

1. Introduction
Consider Fig. 1, which shows two frames from a video

example: Two penguins are tobogganing and one penguin

is walking. One basic task of a vision system is to extrac-

t the interesting foreground of this video. This begs the

question: What is the interesting foreground? A straightfor-

ward approach would be to extract those objects that move

in the scene [3, 12]. In that case, all the penguins in Fig. 1

would be extracted as foreground. Clearly, this simple crite-

ria is not fine-grained enough for many applications where

specific kinds of actions may be of interest. The labeling

task for these latter kinds of applications can be collective-

Figure 1. Two frames in a video example. If the desired action is

penguin tobogganing, motion cues alone would fail to identify the

correct foreground.

ly termed as video tag information supplementation [24].

For instance, most of the videos on Youtube are currently

tagged with a set of keywords by the owners. However, the

manual tagging process through which this is usually done

is quite unwieldy and would require far too much labor to

provide additional information such as when and where the

contents depicted by the tags actually appear in the tagged

video. Therefore, most of the videos are only provided with

a simple tag. It will be desirable for a video tag information

supplementation system to augment the tag with more fine-

grained information. For example, if the video in Fig. 1

is tagged as “Penguin Tobogganing”, only the tobogganing

penguins should be extracted as foreground. Another exam-

ple is that if the content referred to by the tag only appears

in some frames of a long video, only those frames should

be retrieved, while the others can be discarded.

Such informative content retrieval also has importan-

t benefits for action recognition or detection. In the training

of an action classifier or detector, the collection of positive

examples includes not only gathering videos that contain

useful information, but also retrieving those pertinent part-

s from these videos. Most of the existing action recogni-

tion or detection methods simply rely on the labor inten-

sive process of manually drawing boxes to define the action

[13, 17]. For the case of human actions, while one may

make use of human pose estimation [1] for automatic re-

trieval of the relevant bounding boxes [22], the method may

still fail when there exist extraneous actions.

A similar problem exists in object-oriented image seg-

mentation where there might exist extraneous objects in the
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foreground. To handle this problem, the technique of im-

age co-segmentation has been used [15, 21, 9]. It simul-

taneously segments common regions occurring in multi-

ple images. In this paper, we develop an analogous video

co-segmentation framework for common action extraction,

which allows us to extract the desired action without having

to use higher level cues or any learning process.

In image co-segmentation [21, 9], a pair of regions are

defined to be co-salient if they exhibit strong internal coher-

ence and strong local saliency w.r.t the background, and the

correspondences between the regions are supported by high

appearance similarity of features. Our work is based on the

similar concept of trajectory co-saliency. Compared to the

case of image, the time dimension in video presents signifi-

cant challenges that must be overcome before the trajectory

co-saliency idea can be realized effectively. First we must

have a set of effective spatiotemporal descriptors that can

discriminate various animate and inanimate motion pattern-

s. The second challenge is the additional variation brought

about by the time dimension. Not only the common action

across the multiple videos can be misaligned in both time

and space, the action may also exhibit significantly more

complex intra-class variation.

We address these challenges at various levels. At the

most basic level, we adopt dense trajectories as the mea-

surement unit, as they capture the long-term dynamics of an

action better [23]. Compared to other representation such as

tubes [16] or cuboid [6], trajectory representation allows us

to track action details explicitly without having to deal with

the extraneous region that inevitably comes with a space-

time volume approach. We adopt the motion boundary his-

togram (MBH) [5] to describe the spatiotemporal variation

of motion along the trajectory, as well as to help suppress

the uninformative constant motion induced by camera mo-

tions. We then build upon the MBH so as to accommodate

similarity measurement between trajectories with different

lengths and probably spatiotemporally misaligned.

Relying solely on similarity measurement at the level of

a single trajectory would result in many ambiguous matches

as it is not unlikely that two trajectories from different ac-

tions share some similarities. Instead, we carry out match-

ing at the level of trajectory clusters. We first associate

each trajectory with a trajectory cluster by a spatiotempo-

ral over-segmentation within each video; then, a trajectory

is co-salient if 1) the trajectory cluster it belongs to succeed-

s in finding a large number of trajectory matches in another

trajectory cluster of the other video, and 2) these trajectory

matches exhibit high geometric coherence.

The final step is formulated as a binary labeling of a

Markov random field (MRF) which classifies the trajecto-

ries into common action and action outliers. The data term

penalizes any foreground trajectories with low co-saliency

and vice versa, and the smoothness term penalizes the as-

1. Trajectory tracking 2. Initial figure-ground segmentation 3. Spatiotemporal over-segmentation
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4. Trajectory co-saliency measurment 5. MRF based co-segmentation
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4

Figure 2. Overview of the system. Best viewed in color.

signment of different labels to two trajectories near in some

spatiotemporal sense in the same video.

2. Overview
Fig. 2 shows the overview of our system. Given two

videos that contain a similar action, we first use the tracker

of [19] to generate dense trajectories in each video.

Next, we perform a “background subtraction” in each

video to remove the background trajectories as much as pos-

sible. We eschew the 3D motion segmentation approaches

[18, 26], as they are in general numerically suspect for large

number of motions. Instead we propose a figure-ground

segmentation step which is based on 2D motion cues. While

it contains several improvements over [7, 12] so as to bet-

ter extract motion with small contrast (Sect. 3), it is not the

main focus of this paper and we do not assume that good

background subtraction in either video is a must.

After the initial background subtraction, the remaining

trajectories in the videos might still contain action outlier-

s, namely, the remaining background trajectories and those

extraneous actions. To remove these action outliers, we si-

multaneously perform the segmentation of the remaining

trajectories from both videos. This co-segmentation prob-

lem is finally cast as a binary labeling of a MRF (Sect. 5,

step 5 of Fig. 2), with its customary data and smoothness

terms. The preceding steps (3 and 4) basically compute the

data term, i.e., the trajectory co-saliency that rewards com-

mon observations among multiple videos. We first associate

each trajectory with a trajectory cluster by a spatiotemporal

over-segmentation within each video (Sect. 4.2, step 3 in

Fig. 2). Trajectory correspondence candidates are initial-

ized using the proposed extended MBH (Sect. 4.1). Then,

the trajectory co-saliency is computed by taking into ac-

count both the feature similarity of the trajectories and the

geometric coherence of the associated regions via a graph

matching framework (Sect. 4.3, step 4 of Fig. 2).

3. 2D Motion based Figure-Ground Segmenta-
tion

Let T denote the trajectory set of a video clip V . Our

objective in this step is to separate T into the foreground

F and the background B. The foreground trajectories are

those with high motion saliency w.r.t. the background.
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Algorithm 1 GMM based figure-ground segmentation

Input: Trajectory set T of a video clip having L frames

B ← T , F ← ∅;
for t = 1→ L− T do
while true do

Compute sit of all tri ∈ B ∩ Tt using (1);

Fit a GMM based on sit and compute ψ using (2);

Ft ← {tri|sit > ψ}, F ← F ∪ Ft, B ← B − Ft;

if Ft = ∅ then
break;

end if
end while

end for
return F and B

Denote the i-th trajectory in T as tri. The Euclidean

distance between two trajectories tri and trj at a particular

instant t is dt(tr
i, trj) = 1

T {(uit − ujt )
2 + (vit − vjt )

2},
where uit = xit+T − xit and vit = yit+T − yit denote the

motion of tri aggregated over T frames. We set T as 5 in

our implementation. Use sit to represent the saliency of tri

at time t. We measure sit using the median value of the

distances between tri and all the others, i.e.,

sit = median{dt(tri, trk), trk ∈ Tt, k �= i}, (1)

where Tt is the set of trajectories present from t to t+ T .

After calculating sit of all trajectories present at t, we can

use a threshold ψ to extract those trajectories of high sit. Our

intuition is that the background is usually the largest object

in the scene, and thus, for any particular trajectory in the

background, there usually exist a large amount of trajecto-

ries elsewhere in the scene that move in a similar manner

and hence its median value sit will be small. To set a proper

ψ, we can fit a 1D Gaussian Mixture Model (GMM) with

two components f(s) =
∑

c=1,2 πcN (s|μc, σc), where N
is a Gaussian with mean μc (μ1 < μ2) and standard devia-

tion σc, and πc is the mixing coefficient. A straightforward

way to set ψ is to use the mean value of μ1 and μ2, i.e.,

ψ = μ1+μ2

2 . However, this is not reasonable when μ1 is

very close to μ2, indicating that the GMM process fails to

isolate the foreground component so that both of the two fit-

ted components mainly contain the background trajectories.

We thus compare the difference between μ1 and μ2 against

a threshold ρ to determine whether it falls into this situation,

and if so, ψ should be set relying only on μ1, i.e.,

ψ =

{
μ1+μ2

2 , if μ2 − μ1 > ρ,

μ1 +
ρ
2 , otherwise.

(2)

The ρ in (2) controls the sensitivity of motion detection: The

lower ρ is, the more trajectories will be detected as moving.

For every time instant, we perform the GMM based seg-

mentation iteratively. This is because if one foreground ob-

ject possesses larger motion contrast than another one, it

would likely happen that one component generated by the

C

C

c

c

L

hj

H h h=[ ... ]1 L-1

Figure 3. The extraction of the MBH set. hj contains two compo-

nents from Iu and Iv respectively. Here we only show one.

GMM fitting contains the object with larger motion con-

trast, while the other contains the background and the ob-

ject with smaller motion contrast. Thus, a further GMM fit-

ting process excluding the trajectories that are already clas-

sified as foreground is needed to extract the object with s-

maller motion contrast. In our algorithm, the iteration is

stopped when all remaining trajectories are classified as

background.

In a video shot, some objects may be stationary in the

beginning but move later. Therefore, we carry out the pro-

posed GMM based segmentation in a sliding window man-

ner with the window size set as T . The complete algorithm

is summarized in Algorithm 1.

4. Trajectory Co-Saliency
Given two videos Va and Vb, we denote the trajectories

remaining in Va and Vb after the initial background sub-

traction as Fa = {tr1a, ..., trma } and Fb = {tr1b , ..., trnb }
respectively.

4.1. Trajectory Feature Distance Measurement

Given a trajectory tri of length Li with its local neigh-

borhood of C × C pixels in each frame, a 3D volume of

size C × C × Li can be obtained. From each pair of suc-

cessive frames, we extract the MBH h as follows: 1) Com-

pute dense optical flow u and v (which we already obtained

during the dense trajectory generation step), 2) Treating the

two “flow images” Iu, Iv independently, compute the corre-

sponding gradient magnitudes and orientations, and 3) Use

them to weigh the votes into local orientation histograms

(refer to [5, 23] for details). We set the block size C = 32,

the cell size c = 16 and the bin number b = 16 in each

cell for full orientation quantization (See Fig. 3). Based on

these, two histograms with 2×2× b = 64 bins are obtained

from Iu and Iv respectively; we simply concatenate them

to generate a 128-bin histogram. We next normalize the fi-

nal 128-bin histogram using its �2-norm. The MBH feature

helps to suppress the non-informative constant motion in-

duced by camera motions.

After extracting all the MBH features of tri, we can rep-

resent tri using Hi = [hi
1, . . . ,h

i
Li−1]. To measure the fea-
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ture distance between two inter-video trajectories, all hi
k in

Hi should be treated as elements of a set, in view of the lack

of temporal alignment. Thus, a set-to-set similarity defini-

tion is required. The straightforward “min-dist” measure

[25] could have been used. However, this measure discards

most of the information from Hi, which is not desirable s-

ince even two very different types of actions may share the

same local feature at some time instant. Here we propose to

take advantage of the accumulated energy of each bin of the

MBHs across frames, and the temporal correlation between

these bins. We first compute

Pi =
1

Li − 1
HiHiT. (3)

It is evident that the diagonal elements of Pi are the

average energy of each bin and the non-diagonal ones

represent the temporal correlation between different bin-

s. We produce the final feature by taking the upper tri-

angle elements of Pi and rearranging them as pi �
[P11, P12, . . . , P1d, P22, P23, . . . , Pdd]. Then, we measure

the distance between two trajectories from different videos

as follows:

dinter(tr
i
a, tr

j
b) = ‖pi

a − pj
b‖2. (4)

4.2. Trajectory Grouping

We now associate each trajectory in a video with a tra-

jectory cluster, so that geometric coherence can be brought

to bear on the measurement of trajectory co-saliency. To

form the clusters, we adapt the trajectory grouping method

proposed in [13]. Given two trajectories tri and trj that co-

exist in a time interval [τ1, τ2], their distance is defined as

follows:

dijintra = max
t∈[τ1,τ2]

dijspatial[t] ·
1

τ2 − τ1

τ2∑
k=τ1

dijvelocity[k], (5)

where dijspatial[t] is the Euclidean distance of the trajectory

points of tri and trj at the time instant t, and dijvelocity[t] is

that of the velocity estimate. Then, the affinity between tra-

jectories i and j is computed as follows and stored in the

(i, j) entry of the affinity matrix W :

W(i, j) ={
0, if maxt∈[τ1,τ2] d

ij
spatial[t] ≥ 30,

exp(−dijintra), otherwise.

(6)

It enforces spatial compactness by setting the affinity to be

zero for trajectory pairs not spatially close. If two trajecto-

ries never co-exist at any time interval, the affinity between

them is also set to zero.

Assuming there are n trajectories, an n × n affinity ma-

trix W is constructed. Spectral clustering [10] is then used

to segment these n trajectories into K clusters. As for the

number of clusters K, we do not need to set it to be exactly

the number of objects or motions. We only need to ensure

the cluster size is large enough so that the cluster-to-cluster

matching procedure has enough number of trajectories to

make good decision. Thus, in our experiment, we simple

set K = ceil(n/200).

4.3. Graph Matching

Denote the trajectory clusters obtained from Fa and Fb

as Ca = {C1a, ..., CKa
a } and Cb = {C1b , ..., CKb

b } respective-

ly. Following the graph matching formulation in [8], the

matching score of two trajectory clusters Cha and Ckb (from

Ca and Cb respectively) can be computed as

S(Cha , Ckb ) =
1

|Cha |+ |Ckb |
{
max
x

xTMhkx
}

s.t.

{
x ∈ {0, 1}pq
X1q×1 � 1p×1,X

T1p×1 � 1q×1,

(7)

where | · | denotes the cardinality of a set; p and q denote the

number of trajectory candidates for matching in Cha and Ckb
respectively; X ∈ {0, 1}p×q is a binary assignment that rep-

resents possible trajectory correspondences; x ∈ {0, 1}pq
denotes a column-wise vectorized replica of X; the two-

way constraints of (7) ensure that there are only one-to-one

trajectory matches; Mhk is a pq × pq symmetric matrix

encoding geometric coherence, with its diagonal elemen-

t Mhk(il, il) representing the self-coherence of a trajectory

correspondence candidate (i, l), and the non-diagonal ele-

ment Mhk(il, jr) representing the pair-wise coherence of

two correspondence candidates (i, l) and (j, r). In other

words, Mhk(il, jr) is set to be small if the deformation be-

tween (i, j) and (l, r) is large.

In our implementation, we first initialize those inter-

video trajectory pairs with the top 0.01% smallest inter-

video feature distances (calculated in (4)) as the correspon-

dence candidates. Then, the graph matching is performed

only between those trajectory clusters Cha and Ckb contain-

ing at least 2 correspondence candidates, while the match-

ing scores S between those containing less than 2 corre-

spondence candidates are set to zero. To construct Mhk,

the unary terms Mhk(il, il) are set to 0 since all selected

correspondence candidates tend to have high and similar u-

nary affinity, rendering it unnecessary to differentiate them.

As for the pair-wise terms Mhk(il, jr), we first compute

the relative polar coordinates of the trajectory pair (i, j),
i.e., cij = {(dτ1ij , θτ1ij ), . . . , (dτ2ij , θτ2ij )}, where [τ1, τ2] is the

time interval over which the trajectories i and j co-exist.

clr is similarly defined. Imposing strong inter-region geo-

metric coherence means that we demand cij and clr to be

similarly distributed. Assuming both d and θ are Gaussian-

distributed, M hk(il, jr) is then computed as M hk(il, jr) =
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Figure 4. The results of graph matching between trajectory clus-

ters. The matching scores by (7) are overlaid at the top.

exp{− 1
2 (Bh(dij , dlr) +Bh(θij , θlr))}, where Bh(·, ·) rep-

resents the Bhattacharyya distance between two Gaussian

distributions. To solve the optimization problem in (7), we

use the spectral matching proposed in [8].

Fig. 4 shows some graph matching results. It can be seen

in the second and third rows that there may be many corre-

spondence candidates not belonging to the common action.

However, the association of trajectory clusters and the in-

corporation of graph matching help to suppress the match-

ing scores of the erroneous matches and significantly boost

those of the correct ones (the first row in Fig. 4).

4.4. Co-Saliency Measurement

With the matching scores of all inter-video cluster pairs

at our disposal, we can now compute the co-saliency of a

trajectory in Fa w.r.t Fb as follows:

Mt(tria,Fb) = max
Ck

b∈Cb
S(Cha , Ckb ), tria ∈ Cha . (8)

which assigns the best cluster-to-cluster matching score of

Cha as the co-saliency of all trajectories within this cluster.

5. MRF Based Co-Segmentation

The final classification of the trajectories into com-

mon action and action outliers is cast as a binary label-

ing of a MRF. This is achieved by minimizing an ener-

gy function incorporating the trajectory co-saliency mea-

sure as the data term, subject to suitable smoothness mea-

sure. Formally, denoting the union set of Fa and Fb

as U = {tr1a, ..., trma , tr1b , ..., trnb }, our task is to find

Σ = {σ1
a, ..., σ

m
a , σ

1
b , ..., σ

n
b } so that σi

v ∈ {0, 1} indicates

whether triv belongs to the action outliers or the common

action.

The optimal binary labeling is computed by minimizing

the following energy function over the labels σa and σb:

ET (Σ,U) = E(σa,Fa,Fb) + E(σb,Fb,Fa), (9)

Figure 5. Better results can be obtained by MRF labeling rather

than simply thresholding the trajectory co-saliency. From left to

right: Original frames, the segmentation by thresholding the co-

saliency using γ = 0.2, and the segmentation using MRF labeling.

where

E(σv1 ,Fv1 ,Fv2) =
∑

triv1
∈Fv1

D
(
σi
v1
, triv1 ,Fv2

)

+λV
∑

{i,j}∈N
V (σi

v1 , σ
j
v1 , tr

i
v1 , tr

j
v1
),

which consists of a data term D and a smoothness term V ,

with λV as the weighing factor. The purpose of D is to

penalize the assignment of trajectories with low co-saliency

to the common action and vice versa. It is defined as:

D (σ, tr,F) = δσ,1(1− f(tr,F)) + δσ,0f(tr,F), (10)

where δ·,· is the Kronecker delta, i.e., δp,q = 1 if p = q and

otherwise δp,q = 0; f is in turn defined as

f(tr,F) = max
(
0, sign(M̂t(tr,F)− γ)

)
, (11)

in which M̂t(·, ·) linearly normalizes the trajectory co-

saliency Mt(·, ·) in (8) to [0, 1] and γ is a threshold.

The smoothness term V encourages the labeling to be

spatiotemporally consistent and is defined as

V (σi, σj , tri, trj) = (1− δσi,σj ) exp(−dijintra), (12)

where dijintra is calculated as in (5). To build the neighbor

pair set N , we use Delaunay triangulation to connect the

tracked points for each frame of a video. Any pair of tra-

jectories that are ever connected by one of the Delaunay

triangulations is considered to be a neighbor pair.

Since it is a binary labeling with the smoothness term

being a metric, the global minimum can be computed via

graph cuts [2]. Note that the labeling is processed at the

trajectory level rather than at the cluster level, since it is

easier to impose the spatiotemporal smoothness constrain-

t (12). This smoothness constraint helps to restore parts

of the common action that are not initially detected as co-

salient back to their correct group. The superiority of the

MRF labeling results is illustrated by Fig. 5.
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Figure 6. Co-segmentation of the Cha-cha-cha videos. From left

to right: original frames, ground truth, segmentation of [16], our

method with γ = 0.1 and that post-processed by [11].

video chacha1 chacha2 chacha3 chacha4

Labeling accuracy on dense trajectories (%)

ours (γ = 0.1) 98 98 97 98

Labeling accuracy on pixels (%)

ours (γ = 0.1) plus [11] 96 96 95 96

[16] 61 81 56 74

Table 1. Co-segmentation results of the Cha-cha-cha videos.

6. Experiment
6.1. Comparison with [16]

In this subsection, we apply our method on the Cha-cha-
cha videos from the Chroma database [20] and compare the

results with those reported in [16]. Since [16] presented

their results in terms of pixels rather than dense trajectories

like ours, we use the method of [11] to turn our trajectory

labels into pixel labels for comparison. The ratio of cor-

rect labels (labeling accuracy) is summarized in Table 1. It

can be seen that our method obtains at least 97% labeling

accuracy at the level of trajectories; for pixels, our method

achieves at least 95%, significantly better than the results of

[16] (74%). As reported in [16] and can be seen from the

third column of Fig. 6, its algorithm is sensitive to wrong

initial segmentation caused by those background contents

that confuse the objectness and saliency measures.

6.2. Experiment on a 80-pair Dataset

Dataset and Evaluation Method: We build a dataset

comprising 80 pairs of sequences containing a significant

amount of action outliers in the sense defined by this paper.

Among them, 50 are selected from the UCF50 [14] depict-

ing human actions. We should remark that these 50 human

action video pairs are temporally segmented, i.e., the tagged

actions appear throughout the clips. Another 30 pairs are

excerpted mainly from various BBC animal documentaries

depicting animal actions. Different from the collected hu-

man action videos, the animal action videos are relatively

longer (most of them have more than 300 frames) and the

tagged actions need not stretch over the entire videos. Ta-

ble 2 lists all the included action tags and the corresponding

number of pairs. Taken together, these 80 video pairs al-

low us to evaluate our algorithm’s performance on both the

spatial and temporal extraction of the tagged contents.

We have annotated all the common actions with bound-

ing boxes in order to quantify our common action extrac-

tion performance (Examples of the bounding boxes can be

Human Action Num. Animal Action Num.

Basketball Shooting 5 Big Cat Running 1
Bench Press 6 Big Cat Walking 3
Clean and Jerk 3 Bird Swallowing Prey 4
Fencing 6 Dragonfly’s Ovipositing Flight 2
Horse Riding 3 Frog Jumping off 1
Jumping Rope 5 Frog Calling 1
Lunges 6 Inchworm Moving 2
Pommel Horse 2 Kangaroo Jumping 3
Rope Climbing 1 Penguin Tobogganing 3
Skate Boarding 2 Penguin Walking 4
Skiing 6 Snake Slithering 3
Swing 5 Dolphin Breaching 3

Table 2. Action tags included in the dataset and the corresponding

number of pairs of sequences.

seen in Fig. 8 and Fig. 9). For the 30 animal action video

pairs, indices of all frames where the tagged actions appear

are also given. To evaluate the performance on action out-

lier detection, we measure the action outlier detection error

(AODE) as the number of bad labels of the action outliers

over the total number of action outliers, which is estimat-

ed by counting the moving trajectories outside the bound-

ing boxes. To evaluate the performance on spatial local-

ization, we define the localization score (following [13]) as

LOC = 1
T

∑T
t=1[

|At∩Lt|
|At| ≥ α], where [·] is the zero-one in-

dicator function, Lt andAt are respectively the set of points

inside the annotated bounding box and those belonging to

the detected common action at the time instant t, and α is

a threshold that defines the minimum acceptable overlap.

Moreover, we evaluate the coverage of our localization us-

ing COV = 1
T

∑T
t=1

Ar(At∩Lt)
Arg

, where Ar(·) is the area of

the minimum bounding box formed by a set of given points,

and Arg is the area of the given bounding box.

To evaluate the temporal localization performance, we

compute another two measures: missing rate (MR) and

false alarm rate (FAR). Denoting those frames where the

common action appears as active frame, MR then repre-

sents the rate of error of mistaking active frames for non-

active frames, whereas FAR represents that of mistaking

non-active frames for active frames. To determine whether

a frame in a clip is to be regarded as active or not, we first

find the frame in this clip that contains the maximum num-

ber of detected common action points and denote this max-

imum number as Nmax. Then, all frames in this clip that

contain more than ηNmax (η < 1) detected common ac-

tion points are regarded as active frames. As a baseline

comparison for temporal localization, we select a recent-

ly proposed method for unsupervised temporal commonal-

ity discovery (TCD) [4]. It uses a Bag of Temporal Words

(BoTW) model to represent video segments and then find-

s two subsequences from two different videos having the

minimum distance measure, with the constraint that both of

the subsequences are longer than a preset window length L.

In the experiment, we use the MBH as the basic feature for

input to TCD (as this method is feature-neutral). In par-

ticular, only those MBHs along the trajectories detected as
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Criteria LOC LOC LOC COV AODE
(α = 0.9) (α = 0.7) (α = 0.5) (%) (%)

Human Action (50 video pairs)

Mean 0.76 0.89 0.91 61.78 13.58
Median 1.00 1.00 1.00 70.58 11.04

Animal Action (30 video pairs)

Mean 0.82 0.89 0.93 38.98 12.00
Median 0.93 1.00 1.00 39.46 3.20

Table 3. Common action extraction results of our method.

moving by the initial figure-ground segmentation (Sect. 3)

are fed to the BoTW model.

Experimental setting: We set the sampling density of

the trajectory tracker [19] as 4 (only every 4th pixel in the

x and y direction is taken into account) for the human ac-

tion clips and 8 for the animal action clips. We discard all

trajectories whose lengths are less than 8 frames. For the

motion based figure-ground segmentation, ρ in (2) is set as

ρ = 3. The threshold γ in (11) is set as γ = 0.2 and the

scalar parameter λV in (10) is set as λV = 50.

Experiment results: Table 3 presents the quantita-

tive results of the spatial localization performance of our

method. It can be seen that our method has an average lo-

calization score more than 0.75 even when the threshold α
is as high as 0.9. Moreover, the trajectories that are extract-

ed as common action cover more than 60% and 35% of the

annotated bounding boxes for the human action dataset and

the animal action dataset respectively. The figure is signif-

icantly lower for animal actions due to the substantial pos-

tural variation in some categories (e.g. the Black Skimmer

and Shoebill in example (1) of Fig. 9), compounded by the

much more irregular outlines of the animals that are not well

fitted by a rectangular box. As for the subtraction of action

outliers, our method is able to detect more than 85% and

90% of the action outliers for the human action dataset and

the animal action dataset respectively.

In Fig 7, we depict the MR and FAR of our method and

the TCD [4] with various settings of η and window length-

s. It can be seen that our method can achieve a low MR as

well as a low FAR (especially for η between 0.1 and 0.3),

significantly outperforming TCD [4]. One reason for the

unsatisfactory performance of TCD is that it heavily pred-

icates on the assumption that the common action from two

different videos shares the same entries of the built BoTW

whereas the temporal action outliers fall into other entries.

This is, however, usually not the case when the BoTW is

based on low-level features such as the MBH and no learn-

ing process is used to discard the uninformative ones. An-

other important shortcoming of TCD is that it cannot deal

with spatial action outliers, i.e., those extraneous actions co-

existing with the common action.

Some qualitative results of our method are also depicted

in Fig. 8 and Fig. 9. It can be seen that the proposed figure-

ground segmentation based on 2D motion cues is able to

subtract most of the still background across a wide vari-

ety of motion-scene configurations. However, it has poor
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Figure 7. Temporal localization performance on the animal action.

performance when the camera undergoes complex motion-

s; nevertheless, after further co-segmentation, most of the

background is finally removed as action outliers (see exam-

ples (3), (5), (9) and (10) in Fig. 8). The results shown in

Fig. 9 demonstrate that the proposed method is able to spa-

tially and temporally locate the tagged common action. It

can be seen from examples (3) and (4) of Fig. 9 that our

method succeeds in distinguishing different actions of the

same species having nearly the same appearance. Further-

more, some of the common actions can be identified across

rather different bird species (example (1) of Fig. 9), ignor-

ing the peculiarities of appearance.

7. Conclusions
We have presented a video co-segmentation framework

for common action extraction using dense trajectories. Giv-

en a pair of videos that contain a common action, we first

perform motion based figure-ground segmentation within

each video as a preprocessing step to remove most of the

background trajectories. Then, to measure the co-saliency

of the trajectories, we design a novel feature descriptor to

encode all MBH features along the trajectories and adap-

t the graph matching technique to impose geometric co-

herence between the associated cluster matches. Finally,

a MRF model is used for segmenting the trajectories into

the common action and the action outliers; the data terms

are defined by the measured co-saliency and the smooth-

ness terms are defined by the spatiotemporal distance be-

tween trajectories. Experiments on our dataset shows that

the proposed video co-segmentation framework is effective

for common action extraction and opens up new opportuni-

ty for video tag information supplementation.
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