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Abstract
Numerous existing object segmentation frameworks

commonly utilize the object bounding box as a prior. In this
paper, we address semantic segmentation assuming that ob-
ject bounding boxes are provided by object detectors, but no
training data with annotated segments are available. Based
on a set of segment hypotheses, we introduce a simple vot-
ing scheme to estimate shape guidance for each bound-
ing box. The derived shape guidance is used in the sub-
sequent graph-cut-based figure-ground segmentation. The
final segmentation result is obtained by merging the seg-
mentation results in the bounding boxes. We conduct an
extensive analysis of the effect of object bounding box accu-
racy. Comprehensive experiments on both the challenging
PASCAL VOC object segmentation dataset and GrabCut-
50 image segmentation dataset show that the proposed ap-
proach achieves competitive results compared to previous
detection or bounding box prior based methods, as well as
other state-of-the-art semantic segmentation methods.

1. Introduction
Object classification, detection and segmentation are the

core and strongly correlated sub-tasks [21, 28, 5] of object

recognition, each yielding different levels of understand-

ing. The classification tells what objects the image con-

tains, detection further solves the problem of where the ob-

jects are in the image, while segmentation aims to assign
class label to each pixel. In the case of semantic segmen-
tation (see Fig. 1), the possible class labels are from a pre-

defined set, which has attracted wide interest in computer

vision [18, 19, 5, 1, 3, 8].

Bottom-up approaches extract various low and mid-

level image features and try to find homogeneous segments

based on these image cues. Li et al. [7] proposed a method

where figure-ground hypotheses are generated by solving

constrained parametric min-cut (CPMC) [8] problems with

various choices of the parameter. The hypotheses are ranked

and classified by making use of support vector regression

(SVR) based on their “objectness”. Analogous to average
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Figure 1. Semantic segmentation by using object bounding boxes.

and max-pooling, second order pooling is applied in [6] to

encode the second order statistics of local descriptors inside

a region. By applying this pooling technique a significant

improvement can be achieved leading to the state-of-the-art

performance [12]. CPMC-based works [7, 8, 6] alleviate

the problem by exploiting object-level segments that have

quite high overlap with ground truth objects. However, they

still cannot guarantee the perfect classification and ranking

of the segments, especially for visually confusing categories

(e.g. cats and dogs).

Küttel et al. [17] proposed a figure-ground segmentation
framework, in which the training masks are transferred to

object windows on the test image based on visual similarity.

Then, these masks are used to derive appearance and loca-

tion information for graph-cut-based minimization. In [15],

similar idea is proposed and a class-independent shape prior

is introduced to transfer object shapes from an exemplar

database to the test image. This prior information is en-

forced in a graph-cut formulation to obtain figure-ground

segmentation. Generally, bottom-up methods without mod-

elling objects globally tend to generate visually consistent

segmentation instead of semantically meaningful ones.

Top-down approaches generally rely on acquired class-

specific information. Shape model can also guide top-down

segmentation. Brox et al. [5] applied so-called poselets to

predict masks for numerous parts of an object. The poselets

are aligned to the object contours, and then they are aggre-

gated into an object. Arbeláez et al. [1] proposed region-

based object detectors that integrate top-down poselet de-

tector and global appearance cues. This method [1] pro-

duces class-specific scores for the regions and aggregates

multiple overlapping candidates through pixel classification
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Figure 2. Overview of the proposed approach. First, the object bounding boxes with detection scores are extracted from the test image.

Then, a voting based scheme is applied to estimate object shape guidance. By making use of the shape guidance, a graph-cut-based figure-

ground segmentation provides a mask for each bounding box. Finally, these masks are merged and post-processed to obtain the final result.

in order to get the final segmentation results. The main chal-

lenge is to obtain object shape templates, especially for ob-

jects with relatively large intra-class appearance and pose

variations.

Ladicky et al. [18] proposed a multilevel hierarchical

conditional random field (CRF) model to incorporate in-

formation from different scales, which is combined with

top-down detectors and global occurrence information [20].

Boix et al. [3] proposed so-called harmony potential, which

integrates global category label information as well as ob-

ject detectors in order to better fuse global and local infor-

mation. Although CRF-based models have strong general-

ization capability to integrate different cues from different

scales, the modelling and training of these kinds of methods

are relatively difficult due to the large number of parame-

ters.

In this paper, we propose an efficient, learning-free de-

sign for semantic segmentation when the object bounding

boxes are available (see Fig. 1). Its key aspects and contri-

butions (see Fig. 2) are summarized as below:

• In some situations, training data with annotated seg-

ments are not available, making learning based meth-

ods including the state-of-the-art CPMC-based frame-

works [7] infeasible. However, the object bound-

ing boxes can be obtained in a much easier way, ei-

ther through user interaction or from object detector

which also provides class label as additional informa-

tion. Here, we propose an approach based on detected

bounding boxes, where no additional segment annota-

tion from the training set or user interaction is required.

• Shape information can substantially improve the seg-

mentation [25]. However, to obtain shape information

is sometimes quite challenging because of the large

intra-class variability of the objects. Based on a set

of segment hypotheses, we introduce a simple voting

scheme to estimate the shape guidance. The derived

shape guidance is used in the subsequent graph-cut-

based formulation to provide the figure-ground seg-

mentation.

• Comprehensive experiments on the most challenging

object segmentation datasets [12, 22] demonstrate that

the performance of the proposed method is competitive

or even superior against to the state-of-the-art methods.

We also conduct an analysis of the effect of the bound-

ing box accuracy.

2. Related Work
Numerous semantic segmentation methods utilize the

object bounding box as a prior. The bounding boxes are pro-

vided by either user interaction or object detectors. These

methods tend to exploit the provided bounding box merely

to exclude its exterior from segmentation. A probabilis-

tic model is described in [27] that captures the shape, ap-

pearance and depth ordering of the detected objects on the

image. This layered representation is applied to define a

novel deformable shape support based on the response of

a mixture of part-based detectors. In fact, the shape of a

detected object is represented in terms of a layered, per-

pixel segmentation. Dai et al. [11] proposed and evaluated

several color models based on learned graph-cut segmen-

tations to help re-localize objects in the initial bounding

boxes predicted from deformable parts model (DPM) [13].

Xia et al. [26] formulated the problem in a sparse recon-

struction framework pursuing a unique latent object mask.

The objects are detected on the image, then for each de-

tected bounding box, the objects from the same category

along with their object masks are selected from the training

set and transferred to a latent mask within the given bound-

ing box. In [16] a principled Bayesian method, called OBJ
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CUT, is proposed for detecting and segmenting objects of

a particular class label within an image. This method [16]

combines top-down and bottom-up cues by making use of

object category specific Markov random fields (MRF) and

provides a prior that is global across the image plane using

so-called pictorial structures.

In [24], the traditional graph-cut approach is extended.

The proposed method [24], called GrabCut, is an iterative

optimization and the power of the iterative algorithm is used

to simplify substantially the user interaction needed for a

given quality of result. GrabCut combines hard segmenta-

tion by iterative graph-cut optimization with border matting

to deal with blurred and mixed pixels on object boundaries.

In [22] a method is introduced which further exploits the

bounding box to impose a powerful topological prior. With

this prior, a sufficiently tight result is obtained. The prior

is expressed as hard constraints incorporated into the global

energy minimization framework leading to an NP-hard in-

teger program. The authors [22] provided a new graph-cut

algorithm, called pinpointing, as rounding method for the

intermediate solution.

In [9], an adaptive figure-ground classification algorithm

is presented to automatically extract a foreground region us-

ing a user provided bounding box. The image is first over-

segmented, then the background and foreground regions are

gradually refined. Multiple hypotheses are generated from

different distance measures and evaluation score functions.

Finally, the best segmentation is automatically selected with

a voting or weighted combination scheme.

3. Proposed Solution
In this section, we introduce the proposed solution in de-

tails. For a given test image, first the object bounding boxes

with detection scores are predicted by object detectors. The

detection scores are normalized and some bounding boxes

with low scores are removed (see Section 3.1). A large

pool of segment hypotheses are generated by purely apply-

ing CPMC method [8] (without using any learning process),

in order to estimate the object shape guidance in a given

bounding box. The shape guidance is then obtained by a

simple but effective voting scheme (see Section 3.2). The

derived object shape guidance is integrated into a graph-cut-

based optimization for each bounding box (see Section 3.3).

The obtained segmentation results corresponding to differ-

ent bounding boxes are merged and further refined through

some post-processing techniques including morphological

operations, e.g. hole filling (see Section 3.4). The pipeline

of the proposed approach is presented in Fig. 2.

3.1. Bounding Box Score Normalization

In order to obtain the bounding boxes, we apply the

state-of-the-art object detectors provided by the authors

of [10, 28]. For a given test image, class-specific object

detectors provide a set of bounding boxes with class labels

and detection scores. For interacting objects (e.g. bike and

the human on Fig. 1), we need to compare the detection

results over the overlapping areas. While comparing two

objects taken from different classes, it is observed that the

higher score does not necessarily mean the higher probabil-

ity of being an object instance from the given class, since

the score value scales are class-specific.

In order to transform the detection scores, we introduce

some standardizing measures. The precision is the frac-

tion of retrieved objects that are relevant and the recall is

the fraction of relevant objects that are retrieved. The F-
measure is defined as the harmonic mean of the precision

and recall. By applying the different detection scores as

threshold values over the objects in the validation set, one

can estimate the precision over score (PoS) function for a

given class. Since the values of the PoS function are only

a function of the objects in the validation set, its piece-

wise linear approximation is pre-calculated over the interval

[0, 1].

By substituting the actual detection scores into PoS func-

tions, one can transform and compare the scores provided

by detectors from different classes. Nevertheless, for some

score values, the corresponding precisions are too low mak-

ing the PoS function unreliable. To overcome this problem,

let r∗c denote the recall value where the F -measure is maxi-

mal (i.e. the precision value is equal to the recall value) for

a given class c. Those detection scores whose recall values

are greater than r∗c imply that the precision (≤ r∗c ) is not re-

liable enough. Hence we apply r∗c as a threshold to restrict

the domain of the PoS function relating to the class c to the

interval [r∗c , 1], while leaving its value to be zero outside

this domain.

In our experiments, the bounding boxes that have lower

detection scores than a threshold value (τ ) are removed.

Note that we can use a common threshold value for all

classes, since the detection scores are now comparable.

3.2. Object Shape Guidance Estimation

After obtaining object bounding boxes, a figure-ground

segmentation is performed for each bounding box. As

figure-ground segmentation methods [17, 15] can benefit

significantly from the shape guidance, we introduce a sim-

ple yet effective idea to obtain the shape guidance. For this

purpose, a set of object segments serving as various hy-

potheses for the object shape, is generated for the given test

image. The object shape is then estimated based on a simple

voting scheme.

The segment hypotheses are generated by solving a se-

quence of CPMC problems [8] without any prior knowledge

about the properties of individual object classes. So, only

the unsupervised part of [8] is applied here without any sub-

sequent ranking or classification of the generated segments,
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Figure 3. Some exemplar images (top) and the estimated object shape guidance with shape confidence (bottom). (Best viewed in color.)

hence no training annotation is needed. This method [8]

provides visually coherent segments by varying the param-

eter of the foreground bias.

The information about the object localization is provided

by the bounding box, and hence we can crop the segments.

The small segments can be considered as noise whereas the

very large ones usually contain a large portion of the back-

ground region. Therefore, we omit those segments smaller

than γ1 = 20% or larger than γ2 = 80% of the bound-

ing box area. Let S1, . . . ,Sk ⊂ R
2 denote the regions of

the remaining cropped segments. Then the average map

M̄ : R2 → R is calculated for each pixel p as

M̄(p) =
1

k

k∑
i=1

i(p) ,

where i : R
2 → {0, 1} is the characteristic function of

Si for all i = 1, . . . , k. M̄ can be considered as a score

map, where each segment gives equal vote. Those regions

sharing more overlapping segments and thus higher scores,

have higher confidence to be the part of the object shape.

The generated segments partially cover the object, nev-

ertheless, some segment among S1, . . . ,Sk may still be in-

accurate, and thus decrease the reliability of the shape guid-

ance. We select the best overlapping segment that aligns

well to the object boundary. The main challenge lies in how

to identify such segments. Let Mt = {p ∈ R
2 | M̄(p) ≥

t}, and then the “best” segment is estimated as the solution

of the problem:

i∗ = argmax
i∈{1,...,k}

{
max

t≥μmax(M̄)

|Mt ∩ Si|
|Mt ∪ Si|

}
,

where μ = 0.25 ensures a minimal confidence in the se-

lection. The final object shape guidance is achieved by re-

stricting the domain of M̄(p) based on the “best” segment,

more precisely M(p) = M̄(p) i∗(p). This approach pro-

vides the shape guidance as well as the shape confidence

score for each pixel. Some examples of the estimated shape

guidance are shown in Fig. 3.

3.3. Graph-cut Based Segmentation

We follow popular graph-cut based segmentation algo-

rithms [4, 8], where the image is modelled as a weighted

graph G = {V, E}, that is, the set of nodes V =
{1, 2, . . . , n} consists of super-pixels, while the set of edges

E contains the pairs of adjacent super-pixels. For each node

i ∈ V a random variable xi is assigned a value from a finite

label set L. An energy function is defined over all possible

labellings x = (x1, x2, . . . , xn) ∈ Ln [4]:

E(x) =
∑
i∈V

ui(xi) +
∑

(i,j)∈E
vij(xi, xj) . (1)

The first term ui, called data term, measures the disagree-

ment between the labellings x and the image. The second

term vij , called smoothness term, measures the extent to

which x is not piecewise smooth. The data term should

be non-negative, and the smoothness term should be a met-

ric. The segmentation is obtained by minimizing Eq. (1) via

graph-cut [8].

The data term ui involves a weighted combination of

color distribution and shape information with the weight

α ∈ [0, 1]

ui(xi) = −
{
α log

(
A(xi)

)
+ (1− α) log

(
S(xi)

)}
. (2)

It evaluates the likelihood of xi taking on the label li ∈ L =
{0, 1} according to appearance term A and shape term S,

where 0 and 1 respectively represent the background and

foreground.

Let Vf and Vb denote the initial seeds for foreground and

background regions, respectively. Vf and Vb are estimated

based on the ratio of their overlap with the estimated shape

guidance M = {p ∈ R
2 | M(p) > 0}, obtained in Sec-

tion 3.2. By introducing the notation Ri for the region of

the ith super-pixel, we define Vf and Vb as

Vf ={i ∈ V : |Ri ∩M| > δ1|Ri|} ,
Vb ={i ∈ V : |Ri ∩M| < δ2|Ri|} ,

where δ1 = 0.2 and δ2 = 0.8. The appearance term A is

defined as

A(xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if xi = 1 and i /∈ Vb
0 if xi = 1 and i ∈ Vb
0 if xi = 0 and i ∈ Vf
pb(xi)/pf (xi) if xi = 0 and i /∈ Vf
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where pf (xi) and pb(xi) return the probabilities of xi being

foreground and background, respectively, for the ith super-

pixel. The probabilities are computed based on colors for

each pixel and the average value is calculated for a given

super-pixel. In order to estimate the probability density

functions over the seeds of Vf and Vb, we apply Gaussian

mixture model with five components.

M can be considered as a confidence map, since its value

for each pixel is calculated based on the number of over-

lapping segments. The shape term S(xi = 1) for the ith

super-pixel is simply calculated by the average value of M
over the overlapping area with the given super-pixel. Then

S(xi = 0) = 1 − S(xi = 1) is readily obtained. Note that

this shape term immediately incorporates the spatial differ-

ence between the super-pixels and the shape guidanceM.

The smoothness term penalizes different labels assigned

to adjacent super-pixels:

vij(xi, xj) = [xi 	= xj ]e
−d(xi,xj) ,

where [xi 	= xj ] = 1, if xi 	= xj and 0 otherwise. The

function d computes the color and edge distance between

neighbouring nodes for some β ≥ 0:

d(xi, xj)=max
(
gPb(xi), gPb(xj)

)
+β

∥∥c(xi)−c(xj)
∥∥2

,
(3)

where gPb(xi) returns the average of the values provided

by edge detector globalPb [2] for each pixel belonging to

the ith super-pixel and c(xi) denotes the average RGB color

vector over the given super-pixel.

3.4. Merging and Post-processing

After obtaining figure-ground segmentations for the

bounding boxes, the results are projected back to the im-

age and merged. In case of intersecting areas, the label with

higher detection score is assigned to the given region. If

the detection scores are equal to each other, then the larger

region is retained.

In order to remove some artifacts, morphological hole

filling is also applied. Finally, the super-pixels are fur-

ther refined by using super-pixels extracted on a finer level

(i.e. 300 super-pixels) that align better with the real ob-

ject boundaries. On the finer scale, if a super-pixel has

an overlap with the coarse segmentation result larger than

γ3 = 80%, then its label will be set as the category of the

coarse region.

4. Experimental Results
We conduct comprehensive experiments to demonstrate

the performance of the proposed method and also present

comparison with previous methods. Most of the experi-

ments were run on the PASCAL VOC 2011, 2012 object

segmentation datasets [12] consisting of 20 object classes

Figure 4. Effect of the distortion of bounding box.

and an additional background class, where the average im-

age size is 473 × 382 pixels. This dataset [12] is among

the most challenging datasets in the semantic segmentation

field. The Intersection over Union (IoU) [12] measure is

applied for quantitative evaluation.

In our experiments, we generated on average 547 seg-

ment hypotheses for each image by following [8]. For all

images n = 200 super-pixels are obtained by [23]. The

weights α and β (in Eq. (2) and Eq. (3)) are set to 0.5 ac-

cording to cross validation experiments on VOC 2011 val-

idation dataset. To solve graph-cut-based optimization we

use the method in [4].

4.1. Proof of the Concept

In order to evaluate the impact of different parts of the

proposed approach, a series of experiments has been con-

ducted on the VOC 2011 validation dataset containing 1112

images. Note that ground truth bounding box information

is also available for these images. We evaluated the qual-

ity of the segmentation results provided by the shape guid-

ance M that is merged directly without running graph-cut

optimization, referred as GT-S. GT-GC denotes the results

obtained by the graph-cut formulation (Eq. (2)) when the

shape guidance model is omitted (α = 1). Finally, GT-S-

GC denotes the case where α = 0.5 is set in Eq. (2). We

ran our proposed method with different settings, i.e. GT-S,

GT-GC and GT-S-GC, for all images and obtained the av-

erage accuracy, calculated as the average of the IoU scores

across all classes, 56.7%, 63.13% and 72.64%, respectively.

The significant improvement from the GT-GC to GT-S-GC

validates the effectiveness of the shape guidance in the pro-

posed segmentation framework.

We have assumed that the bounding boxes provided by

the object detectors are accurate enough, which is some-

times not the case. Here, we also analyze the effect of the

bounding box accuracy. We evaluated the proposed method

with different settings (GT-S, GT-GC and GT-S-GC) on var-

ious sets of bounding boxes with different accuracies. We

should remark that the accuracy of object detectors is also

evaluated by the IoU measure. Since the ground truth is

given, we can generate new bounding boxes for each ob-
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Table 1. Comparison of segmentation accuracy provided by previous methods on VOC 2011 test dataset [12].
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g

BONN-SVR [7] 84.9 54.3 23.9 39.5 35.3 42.6 65.4 53.5 46.1 15.0 47.4 30.1 33.9 48.8 54.4 46.4 28.8 51.3 26.2 44.9 37.2 43.3
BONN-FGT [14] 83.4 51.7 23.7 46.0 33.9 49.4 66.2 56.2 41.7 10.4 41.9 29.6 24.4 49.1 50.5 39.6 19.9 44.9 26.1 40.0 41.6 41.4
NUS-S 77.2 40.5 19.0 28.4 27.8 40.7 56.4 45.0 33.1 7.2 37.4 17.4 26.8 33.7 46.6 40.6 23.3 33.4 23.9 41.2 38.6 35.1
Brooks 79.4 36.6 18.6 9.2 11.0 29.8 59.0 50.3 25.5 11.8 29.0 24.8 16.0 29.1 47.9 41.9 16.1 34.0 11.6 43.3 31.7 31.3

Xia et al. [26] 82.3 48.2 23.2 38.7 36.1 49.0 62.4 40.6 39.6 13.1 38.4 21.6 37.8 49.7 48.4 53.2 25.5 36.0 31.5 46.8 48.8 41.5
Arbeláez et al. [1] 83.4 46.8 18.9 36.6 31.2 42.7 57.3 47.4 44.1 8.1 39.4 36.1 36.3 49.5 48.3 50.7 26.3 47.2 22.1 42.0 43.2 40.8

DET1-Proposed 83.4 51.2 23.4 40.6 32.4 51.3 63.5 52.8 44.9 14.2 45.8 20.2 39.6 53.5 51.7 45.4 38.4 44.5 32.3 48.6 49.5 44.1

Table 2. Comparison of segmentation accuracy provided by previous methods on VOC 2012 test dataset [12].
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O2P-CPMC-CSI 85.0 59.3 27.9 43.9 39.8 41.4 52.2 61.5 56.4 13.6 44.5 26.1 42.8 51.7 57.9 51.3 29.8 45.7 28.8 49.9 43.3 45.4
CMBR-O2P-CPMC-LIN 83.9 60.0 27.3 46.4 40.0 41.7 57.6 59.0 50.4 10.0 41.6 22.3 43.0 51.7 56.8 50.1 33.7 43.7 29.5 47.5 44.7 44.8
O2P-CPMC-FGT-SEGM 85.1 65.4 29.3 51.3 33.4 44.2 59.8 60.3 52.5 13.6 53.6 32.6 40.3 57.6 57.3 49.0 33.5 53.5 29.2 47.6 37.6 47.0
NUS-DET-SPR-GC-SP 82.8 52.9 31.0 39.8 44.5 58.9 60.8 52.5 49.0 22.6 38.1 27.5 47.4 52.4 46.8 51.9 35.7 55.3 40.8 54.2 47.8 47.3
UVA-OPT-NBNN-CRF 63.2 10.5 2.3 3.0 3.0 1.0 30.2 14.9 15.0 0.2 6.1 2.3 5.1 12.1 15.3 23.4 0.5 8.9 3.5 10.7 5.3 11.3

DET2-Proposed 82.9 49.1 30.5 44.6 36.6 59.5 65.7 53.0 51.9 21.8 41.5 25.0 44.9 54.7 49.4 49.6 33.2 49.6 37.5 53.1 48.7 46.8
DET3-Proposed 82.5 52.1 29.5 50.6 35.6 59.8 64.4 55.5 54.7 22.0 38.7 24.3 48.3 55.6 52.9 52.2 38.2 49.1 35.5 53.7 53.5 48.0

Figure 5. The most common cases of mis-detection of the objects

due to rare pose, cluttered background and occlusion.

ject in the validation dataset by modifying the corner points

of the bounding boxes. Thus, we randomly modified the

ground truth bounding boxes based on uniform distribution

to achieve 5%, 10%, . . . , 50% distortions in the accuracy.

Fig. 4 shows the performance of the different settings of the

proposed method for given distortions in detection. As can

be seen on Fig. 4, more accurate bounding boxes lead to bet-

ter performance in segmentation, since it provides not only

more accurate localization, but also more accurate cropped

segments to estimate the shape guidance. Furthermore, the

shape guidance term provides important top-down guidance

prior that improves the final results.

4.2. Comparison with the State-of-the-arts

Here, we present a comprehensive comparison with the

state-of-the-arts. The PoS functions for different object

classes were estimated on the detection validation dataset,

which is also available in [12]. The threshold value for the

bounding boxes τ is set to 0.2 based on cross-validation.

VOC 2011 test dataset Table 1 shows the detailed com-

parison of the proposed method with previous approaches

on the VOC 2011 segmentation challenge. Among the

competing methods, BONN-SVR [7] and BONN-FGT [14]

also utilize detection annotations in the training stage. The

methods NUS-S and Brooks apply CRF-based framework

to integrate information cues from different levels. Xia et
al. [26] and Arbeláez et al. [1] are two state-of-the-art de-

tection based methods. The results of the proposed method

are obtained by applying the state-of-the-art object detec-

tor [10, 28], referred as DET1-Proposed.

It can be seen from Table 1 that our proposed method

achieves superior results as compared to both other de-

tection based methods and the VOC 2011 winner BONN-

SVR [7]. Among the 21 classes including the background,

DET1-Proposed achieves the best performance in 7 classes

with an average accuracy of 44.1%, which is 0.8% higher

than that of the VOC 2011’s winner.

To the best of our knowledge, this is the best result re-

ported on this dataset, when all the training data are strictly

from the VOC 2011 dataset. Note that in this work, we do

not mean to claim that our method is always superior over

CPMC-based method [7]. It is predictable that, the CPMC-

based method [7] could achieve better results with more an-

notated data or more accurate detection information. For

instance, [6] reported a better performance of 47.6% by us-

ing extra annotation data besides the VOC 2011 training set

(more than 13000 images with ground truth semantic edge

annotation) to train the model. However, the proposed unsu-

pervised framework is competitive even without annotated

segments from either the training set or external dataset.

VOC 2012 test dataset Table 2 shows the detailed com-

parison of the proposed method to top-performing algo-

rithms on the latest VOC 2012 segmentation challenge.

Easy to observe that almost all methods are combination

of previous methods. The first three competing methods

are based on CPMC [8]. O2P-CPMC-CSI utilizes a novel

probabilistic inference procedure, called composite statisti-

cal inference (CSI), in which the predictions of overlapping

figure-ground hypotheses are used. CMBR-O2P-CPMC-

LIN applies a simple linear SVR with second order pool-

ing [6]. O2P-CPMC-FGT-SEGM is based on the origi-

nal BONN-SVR [14, 6] approach. UVA-OPT-NBNN-CRF

applies a CRF-based framework with naive Bayes nearest

neighbour (NBNN) features. NUS-DET-SPR-GC-SP is the

VOC 2012 winner, which is also a detection based method
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Figure 6. Some exemplar results on VOC 2012 test dataset [12] provided by our proposed method (DET3-Proposed). The results are

overlaid on the images with white boundaries and different colors correspond to different categories. (Best viewed in color.)

based on [26] followed by an MRF refinement process.

For some images, however, the current state-of-the-art

object detector in [10, 28] (referred as DET1) cannot pro-

vide bounding boxes with higher score than τ leading to

mis-detection of the objects. This is often due to rare pose,

cluttered background and occlusion (see Fig. 5). As demon-

strated in Section 4.1, increasing detection accuracy will

improve the segmentation performance. Therefore to fur-

ther validate our claim in practical cases, we designed a

boosted “object detector” (referred as DET2). DET2 pre-

dicts some bounding boxes based on segmentation results

obtained from [3] only for the images without bounding box

prediction from DET1, otherwise, the bounding boxes from

DET1 are considered. DET3 directly obtains bounding

boxes from segmentation results of NUS-DET-SPR-GC-SP,

which is our submitted methods to VOC 2012 challenge.

The results in Table 2 show that DET2-Proposed per-

forms the best in 3 out of the 21 categories while DET3-

Proposed performs the best in 8 out of the 21 the categories,

which is the highest among all the competing methods. Fur-

thermore, DET3-Proposed achieves the best average per-

formance of 48%. Note that only the estimated bounding

boxes are used in our solution, which contain much less in-

formation than the segmentation results, hence the improve-

ment of 0.7% from NUS-DET-SPR-GC-SP (47.3%) is rea-

sonable. Although DET2 and DET3 implicitly use ground

truth segments which seems to contradict with our claim

that no annotated segments are needed, we aim to further

validate that better detection leads to better segmentation

(see Section 4.1) in practical cases. DET2 and DET3 just

demonstrate the potential improvement when more accurate

detector is available.

Some qualitative results are shown in Fig. 6 containing

images with single object as well as images with multi-

ple interacting objects with rigid transportation tools, ar-

ticulated animals and indoor objects. Based on these re-

sults, it is fair to say that the proposed method can well

handle background clutters, objects with low contrast with

the background and multiple objects, as far as the detection

is accurate enough. However, there are some failure cases

mainly due to mis-detection and inaccurate bounding box

Figure 7. Some failure cases obtained by the proposed method

(DET3-Proposed). The results are overlaid on the images with

white boundaries and different colors correspond to different cat-

egories. (Best viewed in color.) The first image is due to mis-

detection of the small horse. The second one is due to wrong

bounding box prediction, since the cloth is labelled as person and

the parrot (bird) is mis-detected. The third one is due to inaccurate

bounding box prediction (i.e. wrong label for the bottle) resulted

in inaccurate estimation in the graph-cut formulation.

prediction or wrong class labelling (see Fig. 7).

GrabCut-50 dataset We also compare the proposed

method to the related segmentation frameworks guided by

bounding box prior [24, 22, 9]. For this sake, these experi-

ments were run on the GrabCut-50 [22] dataset consisting of

50 images with ground truth bounding boxes. The error-rate

(denoted by ε) is computed as the percentage of mislabeled

pixels inside the bounding box.

In these experiments, we generated the segment hypothe-

ses for the whole image instead of the object bounding

boxes. 400 and 800 super-pixels are extracted for graph-

cut optimization and super-pixel refinement, respectively.

In post-processing, the threshold γ3 is set to 0.4 due to

the much smaller size of the finer-scale super-pixels com-

pared to the settings in the PASCAL VOC experiments. Fi-

nally, we applied morphological filtering (i.e. morphologi-

cal opening and closing), instead of hole filling.

The results are shown in Table 3. Compared to the state-

of-the-art methods CrabCut [24], GrabCut-Pinpoint [22]

and F-G Classification [9], it is evident that the proposed

method is superior in its better performance. GrabCut-

Pinpoint uses an iterative solution and relies on the assump-

tion that the bounding box is tight, which is not always true.

Some qualitative results are shown in Fig. 8. Note that

this dataset [22] is easier than the VOC dataset [12] and con-

tains only 50 images with single object in each image. The

proposed method provides the error ε = 7.08% in the worst
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Table 3. Comparison with bounding box prior based algorithms on

GrabCut-50 dataset.
Method Error-rate ε

GrabCut [24] 8.1%

GrabCut-Pinpoint [22] 3.7%

F-G Classification [9] 5.4%

Proposed method 3.3%

ε = 1.21% ε = 2.94% ε = 3.11%

ε = 3.32% ε = 4.50% ε = 7.08%

Figure 8. Some segmentation results, overlaid on the images with

blue color and white boundary, on the GrabCut-50 dataset [22]

obtained by the proposed method.

case (see the last image on Fig. 8), which means that the

performance is almost saturated in this dataset [22]. This

also concludes that better bounding box prior significantly

improves the final segmentation results.

Furthermore, we ever ran the DET1+GrabCut method

as a baseline on the VOC 2011 dataset, and obtained the

accuracy of 37.2%, which is much lower than our 44.1%.

Therefore the superiority of the proposed framework over

Grab-Cut [24] is further validated.

5. Conclusions
In this paper, we proposed a detection based learning

free approach for semantic segmentation without the re-

quirement of any annotated segments from the training set.

Furthermore, a simple voting scheme based on a gener-

ated pool of segment hypotheses, is proposed to obtain

the shape guidance. Finally graph-cut-based formulation is

used to perform semantic segmentation. Extensive results

on the challenging VOC 2011 and VOC 2012 segmentation

datasets as well as the GrabCut-50 dataset demonstrate the

effectiveness of the proposed framework.

Some general observations from the results are that the

proposed method performs nearly perfectly in those cases

with single object, while for images with multiple objects

or interacting objects, the performance depends on the ac-

curacy of the bounding box. Therefore, one of the main

limitations of this approach is that the object detector in-

herently affects the segmentation performance. However,

when no training data is available but the detection is given,

this approach could act as a valid alternative approach for

semantic segmentation.

With better object detectors, such as one that could well

handle partial objects and occlusions, huge improvement

could be expected for object segmentation performance. In

addition, better ways to obtain the shape guidance and han-

dle multiple interacting segments are also worth exploring

to further refine the existing detection-based segmentation

methods.
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