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Abstract—Bayesian theory is of great interest in pattern classification. In this paper, we present an approach to aid in the effective

application of Bayesian networks in tasks like video classification, where descriptors originate from varied sources and are large in

number. In order to extend the application of conventional Bayesian theory to the case of continuous and nonparametric descriptor

space, dimension partitioning into attributes by minimizing the discrete Bayes error is proposed. The partitioning output goes to the

dimensionality reduction module. A new algorithm for dimensionality reduction for improving the classification accuracy is proposed

based on the class pair discriminative capacity of the dimensions. It is also shown how attributes can be weighed automatically in a

single-label assignment based on comparing the class pairs. A computationally efficient method to assign multiple labels on the

samples is also presented. Comparison with standard classification tools on video data of more than 4,000 segments shows the

potential of our approach in pattern classification.

Index Terms—Content-based retrieval, discrete bayes error, partitioning, dimensionality reduction, multiple labels assignment,

Bayesian networks.
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1 INTRODUCTION

CLASSIFICATION is an essential step in pattern recognition
tasks and diagnosis systems. Designing accurate

classifiers from preclassified data has become a very active
research topic in machine learning and data mining.

One of the best known classifiers is the Bayesian
network. Bayesian network shows the dependence-inde-
pendence relations in an understandable form that renders
the tasks of decomposition, feature selection, or transforma-
tion more principled [3], besides providing a sound
inference mechanism. However, Bayesian Network requires
a priori knowledge of many probabilities, which are usually
estimated based on assumptions about the form of the
underlying distributions. Second, there is a significant
computational cost required to determine Bayes optimal
hypothesis in the general case of multiple-label. This paper
presents new approaches to pattern classification based on
Bayesian theory with application to the field of Content-
Based Retrieval (CBR).

The goal of CBR systems is to retrieve images or video
sequences (called, in short, segments) as per the interest of
the user (for review on CBR, refer to [4]). The challenges
inherent in video classification in CBR systems include,
among others, 1) forming close association between the
descriptor space and the meaningful classes, 2) performing

automatic meaningful dimension evaluation on only a few

relevant dimensions (in contrast to the user assigning

weights to the dimensions or presuming equal weights for

all the dimensions), 3) dealing with the large dimensionality

of the descriptor space in an efficient and effective manner,

and 4) providing coexistent labels to a multimedia content,

which can be later on matched with the user’s query.
The novelty of our approach lies in how the conditional

probabilities are estimated by discretizing the descriptor

space followed by dimensionality reduction. The theoretical

foundation for dimension partitioning and dimensionality

reduction is presented; it is premised on the reduction of

Bayes error of classification. The complexities arising from

the characteristic descriptor space are also considered in the

knowledge extraction module. The resulting Bayesian

Network discerns the data into cliques by learning with

the preclassified samples and associates each clique of data

points in the multidimensional space to one of the classes.

Multiple labels assignment and a meaningful evaluation for

the single label assignment are achieved too.
We will be using the following notations for feature,

descriptor, dimension, and attribute in this paper (consis-

tent with MPEG-7 [29]). A feature is a perceptual attribute

of the video that signifies something to a human observer,

i.e., color, texture, shape, motion, etc. A descriptor is a

numerical structure that describes a feature, i.e., average

color, histogram color, etc. A dimension is one of the

dimensions of a multidimensional descriptor. For example,

the descriptor “average color” might have three dimen-

sions, one each for average red component, average blue

component, and average green component. A dimension

when discretized into a number of partitions forms several

attributes, which are binary in nature.
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The paper is organized as follows: Section 2 presents a
background to CBR system along with the feature extrac-
tion process. Section 3 deals with the discretization of
dimensions and dimensionality reduction, which are the
parts of the knowledge extraction module. Probabilistic
modeling and inference are discussed in Section 4. Experi-
ments and comparison with a few classification tools are
presented in Section 5. Conclusion and the scope for future
work follow in Section 6.

2 BACKGROUND

2.1 Overview of the CBR System

Fig. 1 depicts an overview of the CBR system. The video
data is stored in a database in the form of segments (i.e., a
continuous unit of video data representing one single class
or meaning). A number of descriptor extractors labeled as
Visual Modulei; ði ¼ 1; 2; . . . ;NÞ derive characteristics of a
segment, and the output of these descriptor extractors is a
N-dimensional vector, some dimensions of which are
probably redundant. The knowledge extraction module
performs partitioning of the descriptor vectors based on
increasing the discrimination among classes. This is
followed by a selection of the best few dimensions which
can help distinguish classes when considered in pairs.
During the learning or modeling phase, this module
discerns the probabilities of the classes against each
attribute (or subdimension). On the other hand, during
the querying phase, it instantiates the Bayesian Network
with appropriate parameters.

Mapping of these descriptors with higher-level associa-
tion is required to furnish high-level classes and is
performed by the Bayesian network. Bayesian Network
assigns a single label or multiple labels like “interesting,”
“soccer,” “tennis,” etc., on the segment as per the design
paradigm of the system. These labels are stored in the
database along with the segments and through query
manager and querying session are matched to the user’s
choice and retrieved.

2.2 Feature Extraction

Descriptors can be classified as global or local [22]. Global
or coarse-grained feature extraction techniques transform

the whole image into a functional representation where

minute details within the individual portion of the multi-

media are ignored. It offers low-computational complexity

at the cost of high percentage of false matches. At another

level of granularity there exist local descriptors, which

exhibit a fine-grained approach in analyzing data into

segmented smaller regions. Although working with local

descriptors implies increasing the complexity in the feature

extraction process and increasing the dimension of the

descriptor space, local descriptors are nevertheless em-

ployed in our CBR system as they provide more effective

characterization of a class.

In order to have complete understanding of the work, a

discussion of the descriptors is presented. It can be seen that

the descriptors come from highly varied sources and a

priori normalization might not work. The high dimension-

ality associated with these descriptors poses further

challenges. The descriptors which we use in our work are

given in Table 1. Feature extraction process was done for a

domain comprising of diverse video classes was selected as

shown in Table 1. The sequences were recorded from TV

using VCR and grabbed in MPEG format. The size of the

training database was 3,600 sequences each with frame

dimension 352� 288. The size of the test database was

900 sequences comprising of an equal number of sequences

for each class. The results presented throughout this paper

are based on these descriptors and the video database. The

details of these descriptors are as follows, some of which

can be found in MPEG-7 documentation [29]:

1. Region Shape. This descriptor can describe any
shape consisting of either a single region or a set of
regions. It employs a set of ART (Angular Radial
Transform) coefficients. Twelve angular and three
radial functions are used to give 36 dimensions to
this descriptor.

2. Homogeneous Texture. Many natural and man-
made objects are distinguished by their texture. It
uses the energy and energy deviation in a set of
frequency channels. The extraction is done by first
filtering the image with a bank of orientation and
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scale-tuned filters (modeled using Gabor functions)
using Gabor filters to give 62 dimensions.

3. GoF Color. The group-of-frames (GoF) color de-
scriptor defines a structure required for representing
the color descriptors of a collection of video frames
by means of the scalable color descriptor. The
individual histogram of a video frame is an 32-bin
quantized HSV color histogram. The three subde-
scriptors used are average histogram, median
histogram, and intersection histogram.

4. Color Layout. This descriptor specifies the spatial
distribution of the color of a representative frame.
Six, three and three DCT coefficients of the color
component Y, Cb, and Cr, respectively, constitute
the dimensions of this descriptor.

5. Color Structure. It is a color descriptor that captures

both the color content and the structure of the

content via the use of a structuring element. Color
structure descriptor containing 128 bins is computed

based on unification of the bins of the 256-bin

HMMD color space histogram.

6. Edge Components Histogram. This descriptor re-
presents the spatial distribution of four directional

edges and one nondirectional edge in each 16 non-

overlapping subimages. For each subimage, a local

edge histogram with five bins is generated.

7. Other descriptors. In these descriptors, the image is

represented in RGB color space. The descriptor

Average color has three dimensions containing the

average value of three components R, G, and B.

Histogram color is the 32-bins quantized histogram

for the three components R, G, and B. Other

descriptors are based on a grid layout strategy of
MPEG-7. Each frame is split into a set of equally

sized 4� 4 rectangular regions and each region is

described separately. Motion Motkn is the number of

pixels moved from frame n� 1 to the next frame n

given as:

Motkn ¼
X
i

X
j

hðfnði; jÞ � fn�1ði; jÞÞ > Tmi;

ði; jÞ 2 kth subimage;

ð1Þ

where fnði; jÞ is the pixel value at ði; jÞ coordinates of
nth frame. Tm is a suitably chosen threshold. The
predicate hðfnði; jÞ � fn�1ði; jÞÞ > Tmi is either 0 or 1.
For calculating intensity variation IV k

n , the average
of intensity difference from frame n� 1 and frame n
is taken:

IV k
n ¼ 1

sizeðsubimageÞ
X
i

X
j

fnði; jÞ � fn�1ði; jÞ;

ði; jÞ 2 kth subimage:

ð2Þ

Edge density is calculated by finding the edges in a
frame. Then, a percentage count of pixels with edge
intensity greater than a threshold is taken for each
subimage.

Let us present the difficulty in estimating the probability
density functions (PDFs) and in the subsequent classifica-
tion with an example of descriptor values for a class. Fig. 2
shows a typical histogram plot for a descriptor. Unlike the
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TABLE 1
Set of Descriptors Used and Set of Video Classes

Fig. 2. Histogram plot of frequency of occurrence against the values of a
descriptor for an Educational video. On X-axis are histogram bins. Each
bin has data points within a range of values. On Y-axis is the number of
points in the bin with the total number of samples being 400. Note that
Curve 1, Curve 2, and Curve 3 belong to the same class.



assumed unimodal Gaussian distribution, the distribution
could be multimodal. Estimating the PDFs in such situa-
tions is an extremely difficult problem. On the other hand,
techniques that are based on dividing the descriptor space
into small regions and estimating the probability could be
effective.

3 KNOWLEDGE EXTRACTION

In this section, details of discretization of descriptors and
dimension selection methods are presented. Fig. 3 depicts
the functionality of the knowledge extraction module
during the two phases, the training phase and the querying
phase. During the training phase, the descriptor vectors
corresponding to all the classes are passed to the discretiza-
tion algorithm (DABER) and the resulting partitions along
with the corresponding probabilities of the classes form the
input to the dimensionality reduction algorithm (CpDDR).
By employing discretized partitions, CpDDR can make an
effective decision in selecting the dimension set F , which
can distinguish one class against another. During the
querying phase in which the instantiation of the Bayesian
network and the subsequent evaluation have to take place,
the partitions (i.e., attributes) corresponding to each of the
selected dimensions sf 2 F are passed to the inference
module.

3.1 Discretization of Dimension

Dealing with multimodal continuous variables constituting
a multidimensional descriptor space without making
assumptions about the underlying probability is a compli-
cated task. When descriptors have continuous values, a
standard approach (like in [31]) is to compute the
conditional probability density by assuming that, within
each class, the values for a descriptor are normally
distributed about some mean. Mean and standard deviation
of a class for a descriptor are evaluated using a common
statistical approach. It was shown in Pazzani [30] that
Gaussian assumption of numeric data may lead to poor
performance in many practical systems like electrical faults.
He suggested the discretization of the variables into a small
fixed number of partitions for each descriptor.

It is not optimal to have fixed partitions all of equal sizes
as some partitions become densely populated leading to
poor discrimination (see several examples and analysis in
[8]). Thus, we propose a statistical approach for finding the

boundary points of a variable number of partitions. The
discretization algorithm gives optimum number of parti-
tions and with good discriminability between the classes
based on the Discretely Approximated Bayes Error Rate
(DABER). The derivation of DABER is shown below
followed by the description of the algorithm in detail.

Let �i denote the a priori class probability of video class
i, 1 � i � jV j , and pðs jviÞ be the conditional probability
density of s, the descriptor vector for a video segment,
given that it belongs to class i. jV j is the number of video
classes. pðsÞ, the probability distribution function of s, is
given by:

PjV j
i¼1 pðs j viÞ�i. The Bayes error which is

associated with Bayes classifier is given by [18]:

Es ¼
Z
R

½ 1�max
i

pðvi j sÞ � pðsÞds; ð3Þ

where R is the descriptor space and pðvi j sÞ is the a
posteriori probability of class vi, i ¼ 1; 2; 3; . . . ; jV j .

Evaluating the Bayes error Es might entail the complex-
ity of evaluating the multidimensional integral of unknown
multivariate functions and therefore, in practice the Bayes
error can be computed directly only for a limited number of
problems. Approximations and bounds on the Bayes error
are instead commonly calculated. In [37], the outputs of
various classifiers are used to calculate the upper and the
lower bounds on the Bayes error rate. Similarly, an
approximation of the Bayes error was used by Kohn et al.
[23] based on a nonhomogeneous, nonlinearly separable
terminal multidimensional box as a class discriminability
measure after the completion of the partitioning process.

In our approach, the computation of the Bayes error rate
and the partitioning process are made interdependent to
each other and the partitioning process iterates on each
dimension. Let there be Nj

pðtÞ partitions of dimension sj 2 s
at the particular time instant t of the process. Consider any
arbitrary partition l resulting from the discretization
process. This partition might contain data points from more
than one class. LetmðlÞ be the total number of data points of
all classes in the partition l and mði j lÞ be the total data
points from class i in the partition l.

The Bayes error rate corresponding to dimension sj alone
is given by

Esj ¼
Z
Rj

½ 1�max
i

pðvi j sjÞ � pðsjÞdsj; ð4Þ
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where pðvi jsjÞ is the a posteriori probability of class vi and

can be approximated to mði j lÞ=mðlÞ for lth partition of

dimension sj. Using dsj ffi 4sj, the probability distribution

of dimension can be written as

pðsjÞ ffi
mðlÞPNj

pðtÞ
k¼1 mðkÞ

h i
�4sj

: ð5Þ

This assumes that, in a partition, the feature points are

uniformly distributed. In general, we could try to estimate

the probability distribution within each partition using the

mixture of Gaussian distributions. However, it is compli-

cated and computationally expensive task. Of course, if our

classification step considers each of these partitions as a

binary attribute as we do, the two approaches would give

almost identical final performance. Esj can be, therefore,

written as:

Esj ffi
XNj
pðtÞ

l¼1

½1�max
i

mði j lÞ=mðlÞ� � mðlÞ

½
PNj

pðtÞ
k¼1 mðkÞ� � 4sj

4sj

¼ 1PNj
pðtÞ

k¼1 mðkÞ

XNj
pðtÞ

l¼1

½mðlÞ �max
i

mði j lÞ�:

ð6Þ

This equation implies that the Bayes error would be less if

the partition contains most of the sample points from one of

the classes. The discrete approximated Bayes error El
sj

for

partition l alone can be written as:

El
sj

ffi 1PNj
pðtÞ

k¼1 mðkÞ
½mðlÞ �max

i
mði j lÞ� ¼ DABERl

j: ð7Þ

The DABER algorithm is delineated below in detail.

DABER Algorithm

Formation Phase :

while (some-dimensions-left) {

choose one of the unprocessed dimension sj;

sort_on_dimension(data,s_j); /* Sort data on sj */

/* start forming a new partition l */

while (Upper_limit(l) < maximum_value(sj,data) {

if (DABERl
j > �err) /* discriminability is poor */

if (densityðlÞ > � )

/* Only high density partition should be divided */
{Ptopt = Find-optimum-DABER-point(l);

divide_the_partition(l, Ptopt);

/* Divide at optimum point */

Set_Lower_limit(l) = Ptopt; }

/* Start growing from optimal point */

Upper_limit(l) = Upper_limit(l) + step_increment; }

If (number_of_partitionsðsjÞ > �) discard_dimension(sj);

/* Irrelevant dimension */
} /* Take another dimension */

Merging Phase :/* See if two consecutive partitions l1 and l2

can be merged */

if combined_DABER(l1; l2Þ < # /* # > �err */

merge_partitions(l1; l2);

The DABER algorithm discretizes the data on each of the
dimension sj separately in two phases: formation phase and
merging phase. In formation phase, first the data is sorted on
sj. An expanding window that starts from minimum value
of sj is then considered. The window expands in the
direction of the increasing value of dimension sj in steps of
step increment. A partition is formed when the DABER
value falls below a threshold �err and the partition density is
at least greater than � threshold. An optimal point for the
partition is found iteratively on all the dimension value in
the partition by minimizing the sum of the two partitions
that would result from choosing that point. The partition is
formed with the lower limit set to the least value of the
expanding window and the upper value set to the optimal
point. The expanding window then considers all points
above optimum value for possibility of new partition and the
process repeats till the maximum value points are consid-
ered. Large number of partitions could serve as an indication
that there is a large overlap between the probability
distributions of classes and, therefore, the dimension is not
useful. The merging phase serves to refine the partitions in
second pass. Adjacent partitions are combined with the
resulting partition has DABER value below threshold #. Let
js j be the number of features and t be the number of training
samples, then it can be seen that DABER algorithm is
Oðjs j ½t logðtÞ þ t2�Þ, i.e., Oðjs j t2Þ.

The DABER threshold �err and the density threshold �
control the number of discretized dimensions (i.e., attri-
butes). On increasing the value of �err or alternatively on
decreasing �, the number of partitions can be increased. The
trade off in performance by increasing the number of
partitions is the increase in size of Bayesian CBR network. It
has been argued in [19] that the structure of AI tools like
Neural networks and support vector machines needs to be
altered with changes in the dimensionality of the descriptor
space, i.e., the size of the input vector, or with changes in
the size of the training data.

In contrast, changing the two parameters of the
CBR system, �err or �, do not affect the performance of
our CBR system as long as � and � are fixed such that the
number of partitions is not too small leading to poor
discrimination. This would be demonstrated later by
experimental results on varying training size and varying
the dimensionality. Since, each dimension is treated
independently of the other dimensions in the discretiza-
tion algorithm, the number of dimensions does not affect
the output of an individual dimension as well as the
processing time per dimension. Varying the training size
could alter the performance significantly if the distribution
characteristics of classes are altered. However, assuming
the classes (which is the case with domain like multi-
media) have structure in their elements, a reasonable set
of training samples can represent the data.

DABER algorithm constructs a set of hyperrectangular
parallelepiped partitions such that the faces are perpendi-
cular to the dimension axes and located at the maxima and
minima of the samples in the partition. These hyperrectan-
gles are disjoint in relation to each other, except for their
boundaries. For example, if there are only two dimensions,
a partition can be defined as rectangle fðxmin; yminÞ;

234 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 2, FEBRUARY 2004



ðxmax; ymaxÞg, where ðxmin; yminÞ and ðxmax; ymaxÞ are the
coordinates of the diagonal ends of the rectangle. The value
xmin and xmax are the minimum and the maximum values,
respectively, for dimension x in the partitions. Since DABER
algorithm considers each dimension separately, it can work
even in tasks with a large numbers of dimensions or with
correlated data. Correlation of data is handled appropri-
ately in our dimensionality reduction algorithm presented
in the next section (Section 3.2).

Corresponding to the above algorithm, the probability
distribution of the classes over the partitions of a chosen
dimension of histogram descriptor is depicted in Fig. 4. The
X-axis is marked by the partitions 1 to 10 while the classes (1
to 9) are marked on the Y-axis. Thus, a class distribution
along the partitions can be determined by viewing parallel
to the X-axis from the mark of the class.

Many noteworthy observations can be made from the
figure. A significant number of partitions have only a few of
the classes as the most dominant classes. For example,
partition 1 has class 2 as the distinctly prominent class and
similarly partition 10 has class 3 as the prominent class. Still
there is ambiguity in making clear decision on the basis of
one dimension. However, the ambiguity can be resolved
with good accuracy when more than one dimensions of the
descriptor space are considered because each meaningful
dimension would add cues for characterization. The second
observation from Fig. 4 is that the relevance of a dimension
for each class is appropriately calculated based on distribu-
tion of the class over the descriptor space. For a class like 1,
which has wide distribution, this particular dimension is
not so relevant as this is meaningful for class 2 or class 8.
Thus, for the purpose of distinguishing class 2 points from
that of class 8, the dimension could be effectively used.

DABER algorithm strategy differs from several other
well known algorithms such as by Pfahringer [33] and by

Liu and Setiono [25]. Pfahringer partitions the variable
value to a large number of partitions in a binary tree and
uses the MDL metric in a best first search to determine best
partitions. Liu and Setiono partition the data in large
number of intervals and merge them based on �2 statistical
test. DABER algorithm takes a more fundamental approach
in the sense that the initial formation of partitions
themselves is a meaningful exercise for increasing the
classification performance.

3.2 Dimensionality Reduction

Multimedia classification is representative of a domain of
tasks involving high dimensionality of the descriptor
space and a large dissimilarity between the descriptors in
their range and distribution. Dimensionality reduction can
eliminate some irrelevant and/or redundant dimensions
of the descriptors. By using feature selection, classification
algorithms can in general improve their predictive
accuracy (as in [1]), shorten the learning period [25],
and result in saving in the memory requirements and the
computation time.

There are two techniques which are commonly found for
dimensionality reduction: one is to select a limited set of
“features” (here, “feature” is used as is generally used in
pattern recognition task and is equivalent to dimension in
our notation) out of the total set ([12]) and the other is to
extract a smaller set of “features” as linear or nonlinear
functions of the original set of “features” using Principal
Component Analysis (PCA) [39] or discriminant analysis
[17]. The present approach is based on the former technique
i.e., choosing few “features” from the original set because of
two reasons: First, the approach is more appropriate for
meaningful “feature” evaluation executed in the inference
module discussed later on and, second, in multimedia
classification, the queries could be partially specified, which
makes the task of obtaining transformed “features” using
PCA or discriminant analysis a formidable exercise. Some
of the well known “features” selection algorithms are not
apposite in their application in the domain of multimedia
classification. FOCUS [2] is intractable in data mining
applications with thousands or even hundreds of “features”
because it selects the minimal subset of “features” by
exhaustively examining all the subsets of “features.”
PRESET [28] works only in a noise-free domain. We devise
a class-pair distinctive “feature” selection which is efficient
in computation even for a large data and can work on noisy
data as well.

3.2.1 Relationship of Dimensionality Reduction with

Bayes Error

Let us revisit the basics of “feature selection” process that is
specifically employed to improve the classification accu-
racy. We would consider the “best” classifier (from the
theoretical standpoint), the Bayesian classifier. If the cost of
all types of correct classification is zero and the cost of all
types of incorrect classification is one, the optimal Bayes
decision rule assigns the sample to the class with the highest
a posteriori probability. Thus, the Bayes risk associated with
a given dimension set s reduces to the probability of error,
Es, which was defined in (3). In order to minimize the
classifier error rate, the most appealing function to evaluate
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Fig. 4. The probability distribution mðijlÞ of class i on a single dimension
of histogram descriptor partition l using DABER algorithm. For example,
for partition number 10, conditional probability of class 3 is around 0.6
and of class 4 is 0.2. The description of the descriptor and the set of
classes is given in Section 2.2.



the potency of a dimension to differentiate between the
classes is theEs function (see chapter 5 of [12]). A brute force
method to best select the dimensions using Es function
would be to select a combination with minimum classifica-
tion error among 2n � 1 combinations of all dimensions.
Therefore, the Es function has not been used in practical
applications because of its computational complexity;
instead, other measures for class separability were sought
such as Bhattacharya distance, Matusita distance, Patrick-
Fisher distance, and Shannon measure [5]. Note that all
these measures are related to theEs function as they provide
an upper bound to the error probability. However, they are
not ideal as they are not directly derived from the
expression of classification error. Besides, the reliability of
a separability measure depends on how tightly it bounds
the error probability. Thus, we would like to employ a
measure directly derived from the Es. Let us illustrate the
strength and weakness of Es function as a criteria for
dimensionality reduction.

Consider a classification problem with four video classes
ðv1; . . . ; v4Þ and five binary dimensions (or, in this case,
attributes) ðs1; . . . ; s5Þ as presented in Table 2. The entries in
the table represent the respective conditional probabilities
for the presence of the attribute given the classes. If the
prior probability of all the classes is equal to 0.25, the Es

values for all the attributes are given in Table 3 using (3) for
discrete case (i.e., attribute value is 0/1). An attribute si is
preferred to sj if Esi < Esj . Thus, the attribute s2 is preferred
over all other attributes. The a posteriori probabilities
P ðvkjsiÞ is calculated as

�kpðsijvkÞPjVj
l �lpðsijvlÞ

;

where �k is the a priori class probability of video class k
and pðsijvkÞ is the conditional probability density of
attribute si. Suppose, if s2 is selected and it becomes active
(i.e., s2 ¼ 1), then the approximate a posteriori probabilities
for the four classes are: P ðv1 j s2Þ ¼ 0:5, P ðv2 j s2Þ ¼ 0:25,
P ðv3 j s2Þ ¼ 0:25, and P ðv4 j s2Þ ¼ 0:005. In other words,
the likelihood of class v1 is doubled, while class v4 is
virtually eliminated. On the other hand, if s4 is selected, the
posterior probabilities of all the classes remain the same as
the priors regardless of the results observed for s4. Thus,
the Es rule is a good measure of how much a dimension
contribute to differentiating among the classes.

Though the individual merit of a dimension can be
assessed by the Es rule, the selection of a group of
dimensions for reducing the overall error is not straightfor-
ward. For example, if s2 and s3 are both selected, they both
have almost the same discrimination characteristics (i.e., the
ability to distinguish class v1 against all other classes
especially class v4). It can be seen from this example that a
good set of dimensions should discriminate every class
from other classes or in other words, they should reduce the
overlapping between the class probabilities. We discuss in
the following section our algorithm which involves rating
the dimensions based on the Es rule with the final selection
of good dimensions decided by how they differentiate
various different class pairs.

3.2.2 The Algorithm

In the two-class case, the error rate in (3) can be expressed as:

Es ¼ 1

2
1�

Z
R

j pðs j v1Þ�1 � pðs j v2Þ�2 j ds
� �

; ð8Þ

where �i is the prior probability of class vi. The integral in
the above equation is known as the Kolmogorov distance
[36] which is theoretically a sound distance measure as
compared to the other measures. Our distance measure is a
modification of the Kolmogorov distance for the discrete
case. To map the problem of multiple classes into two
classes, we consider all class pairs (vI; vj), i 6¼ j at a time.

Our dimensionality reduction algorithm is based on
choosing � dimensions (in our case � ¼ 2) for each class
pair (vI; vj) such that these � dimensions possess the highest
discriminability measure of class vi against class vj. Since
the probability inference module is based on comparing the
a posteriori probability of one class with that of another
class, this would result in optimally correct classification.

To derive discriminatory measure, we consider Kolgo-
morov distance KDsf for a dimension sf for discrete case
(from (8) considering two-class ðvi; vjÞ case):

KDsf ¼
XNf

p

l¼1

j pðslf j viÞ�i � pðslf j vjÞ�j j; ð9Þ

where Nf
p is the number of partitions of the dimension sf .

The conditional probability density pðslf j viÞ for a partition l
of a feature sf is the probability of a sample belonging to
class vi in partition l and is given by

pðslf j viÞ ¼
mði j lÞPNf
p

l¼1 mði j lÞ
: ð10Þ

The discriminatory capacity jPsf
ij j of a dimension sf for the

class pair ðvi; vjÞ is simply KDsf . jPsf
ij j is the absolute

difference between the probabilities of class vi and class vj
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taken over all the partitions of a dimension sf 2 s. If the
prior probabilities of all the classes are equal (i.e., there are
equal training samples for the video classes), jPsf

ij j can be
written as:

jPsf
ij j¼

XNf
p

l¼1

j pðslf j viÞ � pðslf j vjÞ j
2

: ð11Þ

Note that the discriminatory capacity jPsf
ij j is a relative

measure that lies between 0 and 1. A high value of jPsf
ij j

signifies that dimension sf can distinguish well class vi
samples and class vj samples.

Next, the Class-Pair Discrimination Measure (CPDMij)

for each class pair (vi, vj) is evaluated by summing jPf
ijj

over each dimension f, where f 2 s, as shown below:

CPDMij ¼
1

j s j
Xjsj
f¼1

jPf
ijj : ð12Þ

A high value of CPDMij indicates the relative ease of
classifying the pair ðvi; vjÞ. Such a class pair is called a
“highly separable” class pair. All class pairs ðvi; vjÞ,
1 � i; j �jV j , i 6¼ j, are sorted according to the magnitude
of CPDMij. The class pair ðvi; vjÞ with minimum CPDM
and those not yet covered are first examined to ensure that
the dimensions which distinguish “less-separable” class
pair are first chosen. The � dimensions which have
maximum discriminatory capacity jPsf

ij j in the class pair
ðvi; vjÞ are selected among the best � ð� �Þ dimensions.
Among � best dimensions, if some dimensions are already
included in the selected set, they are included in the �
count. This optimizes the selection algorithm for choosing
the minimum number of dimensions. Other class pairs are
similarly covered.

Notice that even class separability measures like Bhatta-
charya, Mitusita, etc., are for two-classes and an extension
to multiple class requires separate formulation. A common
strategy [12] is to calculate the overall discrimination power
DðsÞ of a dimension s by summing the distance dijðsÞ
between the two classes as follows:

DðsÞ ¼
X
i

X
j

�i�jdijðsÞ: ð13Þ

However, the major disadvantage of this approach is that
one large value of dijðsÞ may dominate the value for DðsÞ
and impose a ranking that reflects only the distance between
the most separable class pair. The details of the Class-pair
Discriminative Dimensionality Reduction (CpDDR) algo-
rithm based on using the CPDM are as follows:

CpDDR Algorithm

while (any-class_pair-unprocessed) {

choose_class_pairðvi; vjÞ ; /* i 6¼ j */

CPDMij = calculate_CPDMðvi; vjÞ
/* Calculate using Eq. 12 */
mark_class-pair_processedðvi; vjÞ }

/* Sort CPDM in nondescending order */

CPDMsorted = sort_order(CPDM);

/* CPDMsorted is an array */

while (all_pairs_covered(CPDMsorted) ==FALSE)

Take-the-next-uncovered-pair-in-orderðvi; vjÞ /* i 6¼ j */
{ /* Sort the dimensions index(f) on jPsf

ij j for pair ðvi; vjÞ
in descending order */

SORTED_F_ARRAY = sort_dimension_index(i,j);

/* Choose the � dimensions with highest

discriminability value jPsf
ij j */

chosen_SET = chosen_SET [
choose_�_dimension(SORTED_F_ARRAY)

} /* Take another pair */
OUTPUT(chosen_SET)

/* chosen_SET has the selected dimensions */

The above algorithm is based on selecting the dimen-
sions that are most effective in distinguishing one class from
another. The algorithm first computes the CPDMij values
for all class pairs. In each step, the least separable class pair
(vI; vj) is chosen among the class pairs that are not yet
considered. Next, all the dimensions are sorted based on
their discriminatory capacity. The next step is to select
� dimensions with highest discriminatory capacity (and
include them in output set of features). These � dimensions
best discriminate the least separable class pair ðvi; vjÞ.

In our experiments with nine classes and 593 dimen-
sions, the above algorithm selected 59 dimensions. For
experimentation, when the number of dimensions were
reduced to 59, the algorithm selected 29 dimensions. One
key observation from the experiment was that a few class
pairs had some common selected dimensions, which makes
dimensionality reduction process more meaningful.

Note that the CpDDR algorithm is based on the
assumptions that at least a few dimensions are relevant to
each class. This is because a simple comparison was
performed among the dimensions for selection. For making
the algorithm more generic for other purposes than pattern
classification, thresholding can be done on the discrimin-
ability measure of a dimension.

3.2.3 Comparison with Two Common Approaches

Our approach to dimensionality reduction is superior to the
standard statistical methods which have been used in
diverse applications involving regression or classification
tasks like classification of wood defects [14], or numeral
recognition [20]. These methods use measures like intraclass
variation, interclass variation, or correlation, etc., to
differentiate how well the dimensions differentiate between
the classes. Generally, the dimensions are rejected if their
intraclass variation is above a given threshold or their
interclass variation is below a given threshold. Addition-
ally, correlated dimensions can be eliminated from the
selection set. The normalized intraclass variation of dimen-
sion sf is given by:

IACV ðfÞ ¼
XjV j

i¼1

�2
fðiÞ; ð14Þ

where jV j is the number of classes and �2
fðiÞ is the variance.

The total interclass variation of dimension sf is given by:

IRCV ðfÞ ¼
XjV j

i¼1

XjV j

j¼1;j6¼i

j ~		fðiÞ � ~		fðjÞ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2f ðiÞ þ �2

f ðjÞ
q : ð15Þ
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Fig. 5 makes the comparison between the IACV algorithm
with ! ¼ 59 (the number of dimensions selected by CpDDR)
and CpDDR. It is interesting to note that the mean IACV of
dimensions selected by CpDDR, i.e., 0.26 is even higher than
the mean IACV of all dimensions, i.e., 0.21. Only 12 percent
of the dimensions are common in the two algorithms. The
difference in the functioning of the two algorithms can be
explained as follows: The IACV algorithm is based on
selecting the dimensions which have the least scatter of data
around one cluster within each class while CpDDR is based
on selecting dimensions which have minimum overlap
within the class pairs and, thus, highest discriminability.
The distribution of data (Fig. 2) shows that although the
data is distributed in the clusters for classes, each class
might have several of such cliques. Second, IACV makes no
reference to the distribution of data of another class.

The IRCV algorithm would choose ! dimensions with
maximum IRCV values. Fig. 6 presents the comparison
between CpDDR and IRCV. We found that the mean of
CpDDR selected dimensions, i.e., 68.66 is significantly
higher than the mean IRCV of all dimensions, i.e., 42.42.
The number of common dimensions selected by both
algorithms is 53 percent. This shows that the dimensions
selected by CpDDR have high IRCV values, in general.

However, there are two significant advantages of the
CpDDR over the IRCV algorithm: 1) The set of dimensions
selected by CpDDR necessarily has dimensions to distin-
guish every class-pair, which is not the case in IRCV. The
IRCV algorithm may choose dimensions, which may
distinguish only a few class pairs. 2) IRCV is based on the
“one cluster for one class” assumption. ~		fðiÞ used in (15)
would generally fail to give accurate representation for the
mean value of class data with arbitrary multimodal
distribution. The CpDDR, on the other hand, is more
generic for it can work with multimodal distribution
without making a priori assumption about the data.

Fisher’s Discriminant Analysis (FDA) approach is based
on both maximizing the between-class scatter and mini-
mizing the within-class scatter of the selected features.
However, FDA does not have a direct relationship to the
probability of error for the Bayes classifier, which is the
optimum measure of feature effectiveness. Second, in case
of higher dimension problems such as in CBR systems, use

of FDA is not suitable as regardless of the dimension of the
original patterns, the FDA transforms a pattern vector onto
a feature vector, whose dimension can be at most jV j �1,
where jV j is the number of classes [17]. Besides, within-
class scatter and between-class scatter are difficult to
compute effectively when the probability distribution is
multimodal (see Fig. 2) and the class patterns are
distributed in cliques.

4 THE PROBABILISTIC INFERENCE

In this section, the application of Bayesian network for
achieving coupling between the low-level dimensions and
the high-level classes is presented. The structure of the
network for CBR is first presented followed by the inference
mechanisms to assign either multiple-labels or single-label
to a video segment.

4.1 Bayesian Network

The practical difficulty in applying Bayesian methods is that
they typically require initial knowledge of many probabil-
ities. A second practical difficulty is the significant
computational cost required to determine Bayes optimal
hypothesis in the general case (multiple-labels).

Let the set of Video classes be denoted by V, the set of
dimensions by s, and the relation C � V� s represent the
pairwise causal associations between Video classes and
dimension values. Video class vi giving rise to dimension
value sf corresponds to a link in the graph. A subset of s,
denoted sþ, represents the set of all dimension values that
are present, while s� ¼ s� sþ represents the set of dimen-
sion values assumed to be absent. The computation of sþ and
s� from the possibly continuous values of the dimensions is
discussed later in this section. Each causal link between a
video class vi and a dimension value sf is associated with a
number cif 2 ð0; 1�, called causal strength from vi to sf ,
representing how frequently vi causes sf . In other words,
cif ¼ P ðvi causes sf j viÞ. If there is no causal link between vi
and sf , then cif is assumed to be zero. The evaluation of cif is
done in the learning module, which also constructs
dynamically the structure of the Network as discussed.

Let dimension sf be partitioned into Nf
p subdimensions

(or attributes), sfk for 1 < k < Nf
p . After the execution of the

DABER discretizing algorithm, each partitionðsfkÞ of a
dimension can be considered as a Boolean variable (see
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Fig. 5. CpDDR versus IACV algorithm. The total number of dimensions
was 593. The threshold for IACV algorithm was kept such that it selected
the same number of dimensions as CpDDR.

Fig. 6. CpDDR versus IRCV algorithm.



Fig. 7). At a particular instance, one and only one of the

attributes, denoted by s�fk , will have the status of being

present (i.e., True). The link probabilities are also redefined

as cifk denoting the causal strength from vi to attribute sfk .

Similarly, after partitioning, sþk refers to the set of all s�fk
present and s�k refers to the set of other attributes (i.e.,

those which are not present).

4.2 Noisy-OR Model of the Network

The effect of multiple classes on a common attribute is

modeled by a Noisy-OR gate. This assumes that the

mechanisms, whereby different classes can result in a given

attribute assignment, operate independently. Noisy-OR

gate is suitable when an attribute can be present only by

the class set, V. However, in real life, there is always a

possibility that an attribute may be present even when none

of the classes in V is present. Therefore, we permit leakage

in the Noisy-OR gate which assigns null hypothesis (H
)

with a finite value not necessarily equal to zero. A

hypothesis H consists of a set of classes (none, one, or

more than one). As discussed below, it would become clear

that null hypothesis (H
) is assigned when no class or a set

of class has sufficiently high probability. If �i is prior

probability of occurrence of video class vi, the probability of

null hypothesis P ðH
Þ is
Q

8vi2V ½1� �i�. The prior prob-

ability P ðHÞ of a hypothesis H can be decomposed as

follows:

P ðHÞ ¼
Y

8vi2H
�i �

Y
8vi 62 H

½1� �i�: ð16Þ

This can be expressed in terms of prior probability for H
 as

follows:

P ðHÞ ¼
Y

8vi2H

�i

1� �i
�
Y
8vi2V

½1� �i� ¼ P ðH
Þ
Y

8vi2H

�i

1� �i
:

ð17Þ

Leak probability corresponding to null hypothesis is
defined as c
fk ¼ P ðsfk j H
Þ. Thus, the probability that
sfk will occur given any combination of classes is

P ðsfk j HÞ ¼ 1� ð1� c
fkÞ �
Y

8vi2H
ð1� cifkÞ: ð18Þ

The Noisy-OR model has two assumptions: All the dimen-
sions and attributes are conditionally independent of each
other given any hypothesis, and the classes are marginally
independent. Using these assumptions along with condi-
tional independence property and letting qifk denote 1� cifk ,
P ðH; sÞ can be calculated as follows:

P ðH; sÞ ¼ P ðHÞP ðs j HÞ ¼ P ðHÞP ðs�k j HÞP ðsþk j HÞ

¼ P ðH
Þ �
Y

8vi2H

�i
1� �i

�
Y

sfk2s�k

q
fk �
Y

sfk2s�k

Y
8vi2H

qifk

�
Y

8sfk2s
�
fk

1� q
fk
Y

8vi2H
qifk

 !
ðusing ð17Þ and ð18ÞÞ:

ð19Þ

The implication of Noisy-OR model is that the truth of one
hypothesis upon observing the evidence depends strongly
on the truth of the other. Consider Fig. 7, if c1i1 ¼ 1 and
c2i1 ¼ 0, i.e., V1 class causes attribute si1 while V2 does not.
If attribute si1 becomes active on some assignment, the
likelihood of V2 reduces (this is called “explaining away”
effect [32]).

4.3 Multiple Labels Assignment

The computational complexity of exact inference on
Bayesian networks is NP-hard. For small networks, in-
ference is still practical. However, for large, richly con-
nected networks, exact inference becomes intractable with
increasing evidence. Given the intractability of exact
inference on large, complex networks, researchers have
pursued general purpose approximate methods based on
stochastic sampling such as likelihood weighting ([21]) and
Markov chain Monte Carlo simulations (Pearl [32]). For
multiply connected networks, the standard ways of dealing
with loops are clustering and conditioning. Clustering (as
given in Lauritzen and Spiegelhalter [24]) involves forming
compound variables in such a way that the resulting
network of clusters is singly connected. Conditioning
involves breaking the communication pathways along the
loops by instantiating a select group of variables. Both the
methods are liable to combinatorial problems if there are
many intersecting cycles. Cooper [10] has shown that the
problem of inference to obtain conditional probabilities in
an arbitrary belief network is NP-hard. This suggests that it
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Fig. 7. Schematic CBR Belief Network. Each of the partition of a dimension becomes an independent binary attribute (active 1 or passive 0) which
can be caused by one or more classes.



will be quite useful to look for approximate or bounding
methods rather than exact algorithms.

To find the most probable hypothesis, a search in the
space of 2jV j possible hypotheses is required. An efficient
algorithm could be implemented by requiring that a video
class � be added to a hypothesis H (initially H
) only when
there is an increase in the posterior probability, i.e., when
P ðH [ � j sÞ is greater than P ðH j sÞ. Formulating the
comparative probability MH

� as follows:

MH
� ¼ PðH [ � j sÞ

PðH j sÞ ¼ Pðs j H [ �ÞPðH [ �Þ
Pðs j HÞPðHÞ ¼ PðH [ �; sÞ

PðH; sÞ :

The MH
� is a measure of the increase or decrease in the

degree to which the hypothesis H explains dimension
value s due to the addition of the video class �. Using (19),
we derive a simple form of MH

� for the CBR Bayesian
Network. Note that the first term and the third term are
independent of the hypothesis in (19) and, hence, they will
cancel out on taking ratio in MH

� . The second term deals
with the prior probabilities of the classes only and,
therefore, will evaluate to ��

1���
which is the a priori odds

to class �.
The fourth term involves more computation than any

other term in (19) as it involves multiplying over all
attributes that are not present and all classes. Due to the
special structure of the CBR network, it reduces toQ

8sfk2s�k
qvsfk when we take the ratio.

Thus, MH
� reduces to the following:

MH
� ¼ ��

1� ��
�

Y
8sfk2s�k

qvsfk �

Q
8sfk2s

�
fk

ð1� q
fkq�fk
Q

8vi2H qifkÞQ
8sfk2s

�
fk

ð1� q
fk
Q

8vi2H qifkÞ
:

ð20Þ

The MH
� of a class � for a hypothesis H cannot be less

than the MHþ
� of � for any extension of H, i.e., Hþ (for

proof, see the appendix). This implies that, if MH
� � 1,

then � can be eliminated as a path for exploring as an
extension to H since it cannot lead to a more probable
hypothesis. Thus, the only classes which need to be
considered are those for which the MH

� is greater than 1.
This provides a strong pruning heuristic for limiting the
size of search tree.

4.4 Single Label Assignment

If we let vt; vt 2 V, be interpreted as the class that is present,
a relative likelihood measure for a label vt given sþ can be
derived from (19) as

Lðvt; sþÞ ¼
�t

1� �t

Y
sf2sþ

c
wf

tf

Y
sl2s�

ð1� ctlÞwl : ð21Þ

This is the special case for a system where a segment is
exclusively and necessarily (i.e., leak probability c
fk is zero)
labeled by one of the video class vmax with the highest
likelihood measure Lmax. There is refinement in (19) where
it was assumed that all the dimensions had the same
weightage in computation of the likelihood measure. In
practice, different dimensions play different degree of
importance in making a final decision for vmax and the
relevance of a dimension sf is reflected in its weight wf .

This approach of weighing the dimensions is similar to
that of some of the present CBR systems such as QBIC [16],
Virage [15], and JACOB [7] which use a weighted linear
method to combine the similarity measures of different
dimensions. They rely on the user to specify the relative
weights to the dimensions. However, a user has to be
knowledgeable in the details of the system to be able to
assign accurate weights. In contrast, in our system the
relevant dimensions for a class are automatically assigned
more weightage as compared to the other dimensions. The
relative probability RPC(t,z) of one class t over another class
z can be written as:

RPCðt; zÞ ¼ Lðvt; sþÞ
Lðvz; sþÞ

¼ �t

1� �t
� 1� �z

�z
�
Q

sf2sþ c
wf

tf

Q
sl2s� ð1� ctlÞwlQ

sf2sþ c
wf

zf

Q
sl2s� ð1� czlÞwl

:

ð22Þ

The classification task can be restated as assigning the
class “t” if RPCðt; zÞ � 1, 8 z. Since the task involves
iterative comparison among class pairs, weights can be
assigned to the dimensions in a manner to enhance the
distinction between the two classes. One approach which
takes care of that is by employing the discriminatory
capacity jPsf

tz j of a dimension sf for class pairðvt; vzÞ as
weight where 0 �jPsf

tz j� 1. The dimensions which have
higher discriminatory capacity are more relevant in the
computation of relative probability of one class over
another. The logarithm of RPC can be taken after assigning
weights in the above manner, as the number of dimensions
could be very large and computation could easily result in
an overflow beyond the numeral representation of a
computer.

logðRPCðt; zÞÞ ¼ logð�tÞ�logð�zÞþlogð1� �zÞ � logð1� �tÞ
þ
X
sf2sþ

jPsf
tz j logðctfÞ � logðczfÞ
� �

þ
X
sl2s�

jPsl
tzj logð1� ctlÞ � logð1� czlÞ½ �;

ð23Þ

where logð0Þ should be treated as logð�Þ where � � 1.

5 EXPERIMENT AND COMPARISON

In this section, experiments using real video sequences are
discussed. A comparison in performance is made with some
standard classification tools. Some advantages of the
present framework are highlighted in the ensuing discus-
sion. The experimental details were presented in Section 2.2.

The ideas of performing association and classification in
content-based classification are beginning to develop with
the application of tools like Neural networks (for example,
see Doulamis et al. [13]), decision trees (see Demsar and
Solino [11]) and K-nearest neighbor classifier (see Yang and
Kuo [40]). These works have different paradigms of
operation from our CBR system in the sense that they do
not envisage autonomous development of high-level classes
from the knowledge extraction processes as we do. We
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would like to present a comparison of our approach with
Neural Networks (ANN), Support vector machines (SVM),
K-Nearest Neighbor classifier (KNN), and decision trees.

5.1 Comparison

Some of the most well-known decision tree algorithms are
C4.5 [34] and its improved successor C5.1 We chose a C5
decision tree package for the purpose of comparison since
it has many nice features like accurate and fast rule sets
and fuzzy thresholding. The application of SVM to a
domain of more than two target classes is still in the
development phase; however, we use SVMTorch2 C++
package [9] where the iterative process is performed by
treating one class as þ1 and the others as �1, thereby
getting jV j SVM models, where V is the set of classes. In
neural networks, a feedforward backpropagation network
was used with two hidden layers consisting of 150 neurons
and 100 neurons. The training function used was the
resilient backpropagation (“trainrp”). It is one of the best
learning functions for classification problems, is not
sensitive to the fine settings of training parameters and
converges faster than other functions. The transfer func-
tions employed were ftansig; tansig; tansigg, where tansig
is the hyperbolic tangent sigmoid transfer function. Single-
label derivation (24) was used that performs meaningful
dimension evaluation on Bayesian networks.

For the purpose of comparing performance, two sets of
experiment were done under these conditions: a) with
varying size of the training data and b) with varying
number of dimensions. The type a experiment evaluates the
generalization properties of the classification approach in
relation to the nonlinear input-output mapping while the
type b experiment demonstrates the effect of dimensionality
on the performance.

Fig. 8 illustrates the comparison of the percentage
classification accuracy on the type a experiment. The

number of dimensions kept for this experiment set was

593 and the size of training data was varied by randomly

selecting equal percentage of sequences for each class. Our

approach is denoted as MBN (Modified Bayesian Network)

and backpropagation networks as MLP. MBN has overall

best performance, whereas KNN is the second best. It is

interesting to note that the MBN performance is above

90 percent even with 10 percent of training samples, when

the dimension space is relatively sparse. While in other

methods, exact values are used; in the MBN approach, a

partition is the basic unit of representation, which can

provide good approximation when query point lies in the

vicinity of the exact point. The second best performance of

KNN could be attributed to the strategy of working in local

regions as opposed to estimating some parameters for the

entire descriptor space. However, in KNN, the boundaries

are not so well defined as in MBN and, therefore, the

boundary points are misclassified. Besides, in MBN, only

meaningful dimensions are employed for inference.
Fig. 9 shows the classification accuracy of the various

tools for a varying number of dimensions. The number of

dimensions selected in MBN and its accuracy are also

shown. The strategy in selecting dimensions was to select

equal number of dimensions, as much as possible, from the

descriptors in Table 1. With 10 dimensions only, the best

performance was that of MBN and KNN (90 percent). It is

noteworthy to observe that increasing the number of

dimensions from 5 to 20 results in better performance by

most of the tools and it appears that with a very few

dimensions, information on distinction between the classes

was less. The distinction achieved by a large number of

dimensions shows the effectiveness of local feature extrac-

tion over the global one. On increasing the number of

dimensions to more than 20, MBN gets sufficient mean-

ingful dimensions and its performance is consistently more

than 93 percent.
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Fig. 8. Performance with varying size of training data. The number of classes was 9 and the dimensions was fixed at 593.

1. http://www.rulequest.com/see5-unix.html.
2. http://www.idiap.ch/learning/SVMTorch.html.



5.2 Discussion

MBN offers significant advantages over other approaches in
the domain of multimedia classification as it can be
concluded from the experiments that MBN has good
generalization capability as well as consistently good
performance. The mechanism to support partial query by
the user and also to label multiple classes on a single
image/video segment, which gives multiple perspective to
one image/segment, is provided. MBN neither require
normalization of different dimensions nor the aid of an
expert knowledge base.

On the other hand, tools like Neural networks suffer
from the curse of dimensionality and it has been suggested
in the literature [19] that the only practical way to overcome
it is to incorporate prior knowledge about the function over
and above the training data, which is known to be correct.
However, this exercise is very difficult. In SVM, only a
fixed (usually small) number of training-set vectors
determine the parameters of the decision rule and, since
no probability density is estimated, it becomes highly
sensitive to the curse of dimensionality [35]. With a finite
training sample, a high-dimensional feature space is almost
empty [6] and many separators in SVM tool may perform
well on the training data, but only few would generalize
well. It has been shown by Wetson et al. [38] that both
linear SVMs and nonlinear SVMs perform badly in the
situation of many irrelevant features and they show how
SVM performance can be improved by feature selection. In
fact, we have shown in our previous work [27] that feature
selection can improve SVM accuracy to 88 percent on
similar video classification problem.

The performance of tools is also dependent on the
distribution of the data. For instance, SVM is a useful tool to
classify populations characterized by abrupt decreases in
the density functions. However, in the real world, we have
neither Gaussian populations nor data with sharp linear
boundaries. KNN works well when there is a distribution of
class clusters far apart from each other.

KNN also depends on the computation of distance
measure and/or normalization of dimensions, which is not
a simple task. Decision trees do not perform optimally with
multimodal distribution. They also lack the correlation
among dimensions in higher dimensions. While MBN
considers the projection of the whole problem space, the
decision tree, when selecting the best dimension, only
considers a subregion corresponding to the current path in
the tree. MBN performance is not critically dependent on
any small part of the model, while decision trees are much
more susceptible to small alterations in the model. It is also
important to note that it is not a straightforward task in the
AI tools considered, except MBN, to assign multiple labels
to a segment.

6 CONCLUSION AND FUTURE WORK

The main contribution of this paper is in presenting an
approach where the steps in classification are derived from
Bayesian theory. The discretization process developed was
based on reducing the classification error on each dimen-
sion and it generalizes the application of the Bayesian
network to a larger domain than those having Gaussian
distribution of data or discrete data. A new dimensionality
reduction method was presented which selects the dimen-
sions with high class-pair discrimination capacity. It was
compared with some standard algorithms. It was shown
how multiple labels can be assigned to a multimedia data
unit using Bayesian inference. The technique for single-label
assignment was based on meaningful dimension evaluation
in accordance with their significance in distinguishing the
classes. Finally, the performance of our approach was
compared with some standard classification tools.

Our work was based on assuming that the dimensions
have direct causal relationship with the classes. However,
in some practical situations, there could be intermediate
nodes required to model the CBR system. Hidden nodes
and, subsequently, the structure learning algorithm (like
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[26]) would be then necessary in such cases. The discretiza-
tion and dimensionality reduction algorithms would have
to be extended for these cases.

APPENDIX

On taking the ratio of MH
� with MH

� , we get:
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¼
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Substituting q
fk
Q

8vi2H qifk as xfk and
Q

8vj2Hþ;vj 62H qjfk as
yfk , the above equation can be written as

MH
�
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�

¼
Y

8sfk2s
�
fk

1� xfkq�fk
1� xfk

� 1� xfkyfk
1� xfkq�fkyfk
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�
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1þ x2fkq�fkyfk � xfkðq�fk þ yfkÞ
1þ x2fkq�fkyfk � xfkð1þ q�fkyfkÞ

:

Since 0 � q�fk ; yfk � 1, ð1þ q�fkyfkÞ � ðq�fk þ yfkÞ. Each

term in the iteration of sfk � 1 and, hence, MH
�

MHþ
�

� 1.
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