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Characterizing Depth Distortion under Different Generic Motions
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Abstract. Given that errors in the estimates for the intrinsic and extrinsic camera parameters are inevitable, it is
important to understand the behaviour of the resultant distortion in depth recovered under different motion-scene
configurations. The main interest in this study is to look for generic motion type that can render depth recovery more
robust and reliable. To this end, lateral and forward motions are compared both under calibrated and uncalibrated
scenarios. For lateral motion, we found that although Euclidean reconstruction is difficult, ordinal depth information
is obtainable; while for forward motion, depth information (even partial one) is difficult to recover. In the uncalibrated
case, with fixed intrinsic parameters, the preceding statements still hold. However, if intrinsic parameter variations
are allowed, then for lateral motion, depth relief can only be preserved locally. In general, lateral motion yields
a distortion relationship that belongs to the projective transformation of a very simple type, while the distortion
transformations for general motions including forward motion belong to the Cremona transformation. As an aside,
we also provide an analysis of the distortion in the depth recovered using the least square procedure as compared
to the epipolar reconstruction approach.

Keywords: structure from motion, visual perception, uncalibrated motion analysis, depth distortion, shape
representation

1. Introduction

The estimation of the 3-D motion and structure is
notorious for its noise sensitivity; a small amount of
error in the image measurements can lead to very
different solutions. Structure from motion (SFM) algo-
rithms proposed in the past decade faced this problem
to varying extent. This has led to many error analysis
(Adiv, 1989; Daniilidis and Spetsakis, 1996; Dutta and
Snyder, 1990; Thomas et al., 1993; Weng and Huang,
1991; Young, 1992) in the past. Recently, there have
been a number of papers further investigating the error
behaviour of SFM algorithms, specifically its local
minima and ambiguities (Oliensis, 1999; Soatto and
Brockett, 1998). The view has also been expressed
(Oliensis, 2000) that since current SFM algorithms
perform well only in restricted domains, and different

types of algorithms do well on quite different types of
sequences, it was important to evaluate the limits of
applicability of these algorithms. That is, each algo-
rithm should be evaluated specifically against likely
problem conditions. If such understanding could be
achieved, it then becomes possible to fuse the re-
sults of several algorithms, and might even be the best
strategy.

The main concern of these previous approaches
seems to be on the reliability of the motion estimates.
The corresponding problem of the reliability of the
depth estimates has been dealt with to a lesser extent.
While some of the works (Weng and Huang, 1991;
Szeliski and Kang, 1997; Grossman and Victor, 2000)
predicted the sensitivity of the depth estimates to small
amounts of image noise, the situation where the er-
rors in the depth estimates arise from the erroneous
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3-D motion parameters has not been dealt with, except
in the case of critical surface pairs (Horn, 1987;
Negahdaripour, 1989). In the case of uncalibrated mo-
tion, the projective transformation is used to charac-
terize the effect of unknown intrinsic parameters on
the recovered depth. Again, the general behaviour of
the distorted depths arising from errors in these cam-
era parameters are not dealt with, except for the case
of special motions termed as critical motions (Kahl,
1999; Sturm, 1997). The need to characterize such
depth distortion arising from errors in the motion es-
timates prompted the work of Cheong et al. (1998),
which gave an account of the systematic nature of
the errors in the depth estimates via the so-called
iso-distortion framework. It showed that under this
case, the transformation from physical to perceptual
space is more complicated than that of the projective
transformation, and belongs to the family of Cremona
transformations.

The results of Cheong et al. (1998) not only cor-
roborate the view that recovery of metrical depth in-
formation is in general very difficult, but also show
that even recovery of partial depth such as ordinal
depth information might not be possible under all
situations. The latter result lends support to Olien-
sis’ view (Oliensis, 2000) that SFM algorithms per-
form well only in restricted domains—in this case
it is possible to perform partial depth recovery un-
der lateral motion—and that it is important to eval-
uate the limits of applicability of these algorithms.
We adopted this viewpoint, and this paper attempts
to characterize the reliability of depth recovery un-
der different motion-scene configurations. In partic-
ular, we made use of the iso-distortion framework
put forth in Cheong et al. (1998) to investigate
motion types that allow robust recovery of depth
information.

The current work differs from the works of Oliensis
(1999) and Soatto and Brockett (1998) since it deals
with the reliability of the depth estimates rather than
that of the motion estimates. In general, the reliabil-
ity of a reconstructed scene might have quite a dif-
ferent behaviour from that of the motion estimates.
For instance, if the motion contains dominant lateral
translation, it might be very difficult to lift the ambigu-
ity between translation and rotation. However, in spite
of such ambiguity, certain aspect of depth information
seems recoverable with robustness. Indeed, in the bi-
ological world, lateral motions are often executed to
judge distance and relative ordering. On the other hand,

psychophysical experiments (Ullman, 1979) reported
that under pure forward translation, human subjects
were unable to recover structure unless favorable con-
ditions such as large field of view exist. Thus it seems
that not all motions are equal in terms of robust depth
recovery and that there exists certain dichotomy be-
tween forward and lateral translation. In the case of
uncalibrated motion, in spite of uncertainty in the fo-
cal length which further compounds the recovery of
motion parameters, certain qualitative aspect of the re-
covered depth such as parallelism seemed not to be
affected (Bougnoux, 1998; Cheong and Peh, 2000).
Thus it is important to treat the question of the relia-
bility of depth reconstruction in its own right. In ad-
dition, this would allow us to address the fundamental
issue: Do we need to perform calibration of intrinsic
parameters in order to recover certain aspects of depth
robustly?

If we understand the reliability of the depth estimates
under different motion-scene configurations, we can
design good motion strategy to reveal reliable depth in-
formation. The idea of executing intelligent controlled
movements so as to accomplish tasks robustly is of
course the central tenet of the active vision paradigm.
While there have been many motion-based works un-
der this paradigm, we find that most of them dealt with
problems whose purpose is to perform robust navi-
gation. For instance, Santos-Victor et al. (1993) and
Coombs and Roberts (1993) present methods to steer
a camera between two walls, and to veer around ob-
stacles, both methods being based on simple analysis
of the optical flow without going through depth recov-
ery. Much less analysis has been conducted on how
to execute movements so as recover interesting struc-
ture information (besides that used for avoiding ob-
stacles in navigation). While Chaumette et al. (1994)
dealt with the optimal estimation of 3-D structures
using visual servoing, the errors they dealt with con-
cerned only discretization and measurement errors, and
the analysis was applied only to specific shape prim-
itives such as spheres and cylinders. In this paper,
we address depth recovery under the case where the
3-D motion parameters themselves are estimated with
some errors and where the scene in view is arbitrary in
shape.

In the face of such errors, what motion strategy
should we adopt to recover robust depth information?
If self motions can be controlled perfectly or if there are
no other constraints, then of course any pure translation
would be a good motion strategy. However in the case
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where rotation often accompanies translation, such as
in the case of the human visual system, the rotation
inevitably confounds the recovery of the translation.
The question becomes: What kind of translation is the
best strategy, given the mechanical constraints of the
visual systems? Or consider the case where the cam-
era is equipped with a zoom lens and the focal length
can be freely varying across frames, or in the human
visual system where the intrinsic parameters vary from
fovea to the periphery, and also with time and external
factors. While the estimation of the intrinsic parame-
ters from the direct observation of the environment is
a solvable problem, most approaches face numerical
difficulties in estimating these parameters accurately.
Given some errors in these intrinsic parameters, how
would this affect our choice of motion strategy? Eluci-
dating these questions forms the subject of this paper.
In view of the various results that seem to imply that
not all motions are equal in terms of depth recovery,
we seek to use the iso-distortion framework to ana-
lyze the nature of the depths recovered under two ma-
jor types of motions—lateral and forward motion. In
this paper, we use three parameters to describe the in-
trinsic optical parameters, namely, the focal length of
the optical sensor and the principal point position. We
consider the case where these parameters are unknown
but fixed and the case where they are varying. Lastly,
in the appendix, we consider the effects that different
schemes of recovering depth (in particular, the least
square procedure and the epipolar reconstruction ap-
proach) would have on the geometries in the attendant
depth distortions.

The organization of this paper is as follows. First,
we briefly review in Section 2 the iso-distortion frame-
work requisite for subsequent analysis in this paper.
Then, in Section 3, we consider various aspects of
depth recovery under generic types of calibrated mo-
tion. This is followed by similar analyses for the case
of uncalibrated motion in Section 4. In particular, we
first look at the perceived space obtained with inac-
curate estimates of the fixed focal length f and the
fixed principal point (Ox , Oy). Then we allow for a
dynamically changing focal length which results in
a zoom field and a changing principal point in the
motion recovery process. In Section 5, we conduct
experiments to verify the various theoretical predic-
tions. The paper ends with a conclusion of the work
and an appendix comparing the different distortion
geometries resulting from different methods of depth
recovery.

2. Iso-distortion Framework

In Cheong et al. (1998), the geometric laws under which
the recovered scene is distorted due to some errors in the
estimated motion parameters is represented by a dis-
tortion transformation. The distortion in the perceived
space can then be visualized by looking at the locus
of constant distortion. This approach was termed the
iso-distortion framework.

We adopt the standard perspective image formation
model. A camera is moving rigidly with respect to a co-
ordinate system OXYZ fixed to its nodal point O with a
translation (U, V, W ) and a rotation (α, β, γ ); the im-
age plane is located at a focal length f pixels from O
along the Z -axis; a point P at (X, Y, Z) in the world
produces an image point p at (x, y) on the image plane
where (x, y) is given by (

f X
Z ,

f Y
X ). The resulting op-

tical flow (u, v) at an image location (x, y) can then
be expressed with the following well-known equations
(Longuet-Higgins, 1981):

u = utrans + urot

= (x − x0)
W

Z
+ αxy

f
− β

(
x2

f
+ f

)
+ γ y

(1)
v = vtrans + vrot

= (y − y0)
W

Z
+ α

(
y2

f
+ f

)
− βxy

f
− γ x

where (x0, y0) = ( f U
W , f V

W ) is the focus of expansion
(FOE), Z is the depth of a scene point, utrans, vtrans are
the horizontal and vertical components of the flow due
to translation, and urot, vrot the horizontal and vertical
components of the flow due to rotation, respectively.

Since the depth can only be derived up to a scale
factor, we can set W = 1 without loss of generality.
Then the scaled depth of a scene point recovered can
be written as

Z = (x − x0, y − y0) · (nx , ny)

(u − urot, v − vrot) · (nx , ny)
(2)

where (nx , ny) is an unit vector which specifies a
direction.

If there are some errors in the estimation of the ex-
trinsic parameters, this will in turn cause errors in the
estimation of the scaled depth, and thus a distorted ver-
sion of the space will be computed. Denoting the esti-
mated parameters with the hat symbol (ˆ) and errors in
the estimated parameters with the subscript e (where
error of any estimate r is defined as re = r − r̂), the
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estimated depth Ẑ can be readily shown to be related
to the actual depth Z as follows:

Ẑ = Z

(
(x − x̂0, y − ŷ0) · (nx , ny)

(x − x0, y − y0) · (nx , ny) + (
urote , vrote

) · (nx , ny)Z + (ue, ve) · (nx , ny)Z

)
(3)

where (ue, ve) is a noise term representing error in the
estimate for the optical flow. In the forth-coming anal-
ysis we do not attempt to model the statistics of the
noise and we will therefore ignore the noise term, that
is, (û, v̂) = (u, v).

From (3) we can see that Ẑ is obtained from Z
through multiplication by a factor given by the terms
inside the bracket, which we denote by D and call the
distortion factor. The expression for D contains the
term (nx , ny) which in this paper does not necessarily
refer to the image intensity gradient direction. Its value
depends on the scheme we use to recover depth. For
instance, the normal flow approach (Fermüller, 1995)
recovers depth along the normal direction in which
case (nx , ny) is the gradient direction. In the optical-
flow based approach, however, a possible scheme is to
recover depth along the estimated epipolar direction,
based on the intuition that the epipolar direction con-
tains the strongest translational flow. It means that we
first project optical flow along the direction emanating
from the estimated FOE and then recover depth along
that direction, i.e. (nx , ny) = (x−x̂0,y−ŷ0)√

(x−x̂0)2+(y−ŷ0)2
, or in the

case of Ŵ = 0 where the estimated FOE is at infinity,
(nx , ny) = − (Û ,V̂ )√

Û 2+V̂ 2
. In the forthcoming analysis, we

will study the properties of the recovered depth based
on the epipolar reconstruction approach. Another im-
portant alternative of recovering depth, which we do no
more than performing a brief analysis in this paper, is
the linear least square reconstruction approach where
(nx , ny) = (u− ˆurot,v− ˆvrot)√

(u− ˆurot)2+(v− ˆvrot)2
. See the appendix for the

derivation of this expression, as well as the statistical
and geometrical reasons for not choosing this scheme
of reconstructing depth as the main focus of the present
study.

Upon substituting the corresponding value of
(nx , ny) for the case of epipolar reconstruction ap-
proach, we obtain the following expression for the dis-
tortion factor:

D = (x − x̂0)
2 + (y − ŷ0)

2

(x − x0, y − y0) · (x − x̂0, y − ŷ0) + (
urote , vrote

) · (x − x̂0, y − ŷ0)Z
(4)

For specific values of the parameters x0, y0, x̂0, ŷ0,

αe, βe, and γe, and for any fixed distortion factor D,

Eq. (4) describes a surface f (x, y, Z) = 0 in the xyZ-
space, which we call an isodistortion surface. This iso-

distortion surface has the obvious property that points
lying on it are distorted in depth by the same multiplica-
tive factor D. The systematic nature of the distortion
can then be made clear by looking at the organization
of these iso-distortion surfaces. Sometimes to facili-
tate the pictorial description of these surfaces, we slice
them with planes parallel to either the xZ-plane or the
xy-plane. We call the curves thus obtained on the pla-
nar slice the iso-distortion contours. Some examples
are plotted in Fig. 1(a) and (b); these plots show that
the distortion in general is far more complicated than
usually expected.

Algebraically, it was shown from Cheong and Ng
(1999) that the transformation from physical to per-
ceptual space belongs to the family of Cremona trans-
formations. We recapitulate some notations that will be
useful for this paper. We denote the homogeneous co-
ordinates of a point p3 by [X ,Y,Z,W], which is re-
lated to the non-homogeneous co-ordinates (X, Y, Z)

by (X, Y, Z) = [ X
W , Y

W , Z
W , 1]. Denoting the homo-

geneous co-ordinates of the estimated position P̂3 by
[X̂ , Ŷ, Ẑ, Ŵ], we look for a distortion transformation
φ : P3 → P̂3. Note that to obtain the estimated X̂ , we
use the back-projection given by X̂ = x Ẑ

f = D xZ
f =

DX; similarly, Ŷ = DY . The image [X̂ , Ŷ, Ẑ, Ŵ] of a
point [X ,Y,Z,W] can then be expressed as follows:

[X̂ , Ŷ, Ẑ, Ŵ] = [φ1, φ2, φ3, φ4]

Similarly, the inverse transformation φ−1 : P̂3 → P3

can be expressed as:

[X ,Y,Z,W] = [
φ−1

1 , φ−1
2 , φ−1

3 , φ−1
4

]
where the quantities φi are homogeneous polynomi-
als in [X ,Y,Z,W] and φ−1

i are homogeneous poly-
nomials in [X̂ , Ŷ, Ẑ, Ŵ]. In general, these homoge-
neous polynomials are of degree greater than one. The

resulting transformation φ is a Cremona trans-
formation; such transformation is bijective almost
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Figure 1. Families of iso-distortion contours in the x Z -plane, parameterized by x0, y0, x̂0, ŷ0, y, αe, βe and γe . The number beside each contour
denotes the distortion factor D of that contour. INF denotes ∞. (b) illustrates the effects of including second order terms on the iso-distortion
contours of (a), with FOV = 50◦.

everywhere except on the set of fundamental elements
where all the φi ’s vanish, under which the correspon-
dence is one-to-many. However, under some special
cases, the transformation may reduce to that of a pro-
jective transformation, in which case the homogeneous
polynomials φi and φ−1

i are of degree one.
Even from such brief geometric and algebraic anal-

yses, it is clear that in general it is very difficult to
recover metric depth accurately. What is less clear is
the feasibility of recovering some of the less metri-
cal depth representations often argued by researchers.
For instance, the ordinal representation of depth con-
stitutes one such reduced representation of depth. In
many cases, knowing that ordinal depth is preserved
is enough for us to carry out some visual tasks. Un-
fortunately, the distortion equation in the most general
case (as illustrated in Fig. 1) shows that it may not be
possible to recover even ordinal relationships under all
situations. Nevertheless, in the ensuring sections, we
shall show that there exists generic motions that allow
robust recovery of partial depth information. In particu-
lar, we shall show that when translation is coupled with
rotation, with known or unknown intrinsic parameters,
lateral motion is better than forward motion in terms of
yielding ordinal depth information and other aspects of
depth recovery.

Before embarking on such analysis, we would like
to make a few reasonable assumptions. Since these
generic types of motions are likely to be purposely ex-
ecuted for depth recovery, we expect that the agent ex-
ecuting such motion is at least aware that such generic
type of motion is being executed. That is,

• When lateral motion is executed, Ŵ = W = 0.
• When forward motion is executed, Û = U = V̂ =

V = 0

Furthermore, we make an assumption that will al-
low us to better grasp the geometrical organization
of the iso-distortion surfaces: within a limited field
of view, quadratic terms in the image co-ordinates
are small relative to linear and constant terms. This
is typically the case when the field of view is small
or when the visual system focuses its attention on
the foveal region. Furthermore, we assume that the
contribution of γe is small, so that (urote , vrote) be-
comes (−βe f, αe f ). In typical visual systems, rota-
tion about the optical axis is usually not executed un-
less as a result of perturbation. In any case, given their
typical magnitudes, these terms do not qualitatively
affect the organization of the iso-distortion surfaces
(see Fig. 1(b)).
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3. Depth Recovery under Calibrated Motion

3.1. Lateral Motion

We derive the distorted depth under lateral motion fol-
lowing the same procedure as in Section 2, except
that we express the translational parameters in Eq. (3)
in terms of U and V to handle the case of FOE at
infinity:

Ẑ = Z

(
(Û , V̂ ) · (nx , ny)

(U, V ) · (nx , ny) + Z(βe, −αe) · (nx , ny)

)

(5)

For the epipolar reconstruction scheme of recover-
ing depth, since the estimated FOE lies in the infin-
ity, all (nx , ny) will be in the same direction given by
− (Û ,V̂ )√

Û 2+V̂ 2
. For notational convenience, we can set this

(nx , ny) to be (1, 0) via a rotation of the x- and y-axes
without loss of generality (it can be easily shown that
even without such a change in the coordinate system,
the distortion expression obtained has identical form).
After this simplification, we obtain the distortion factor
as follows:

D = Û

U + Zβe
(6)

Figure 2. Families of iso-distortion contours for lateral motion in calibrated case. The parameters are: U = 0.81, Û = 1.0, and βe = 0.001
for (a) and βe = −0.001 for (b).

where U, Û and βe are understood to be the corre-
sponding quantities in the rotated coordinate system.
Thus the equation of the iso-distortion surface is:

Z = 1

D

Û

βe
− U

βe

which represents plane parallel to the image plane.
Figure 2 depicts how the perceived space is distorted.

It shows that there exists a D = 1 iso-distortion surface
which divides the whole space into two parts: one in
which the space is expanded (D > 1) and the other
in which the space is compressed (D < 1). Its equation
is given by Z = Û−U

βe
. Whether the D values increase

or decrease with Z depends on the sign of βe. However,
we shall show later that in both cases, we are able to
recover the ordinal depth, provided that we take proper
care of the sign. An estimated depth will be negative if
it falls between the region bounded by the D = 0 and
the D = −∞ surfaces. In this case, the D = 0 surface
is always located at infinity as its equation is given
by Z = ±∞, and the D = ±∞ surface is located at
Z = − U

βe
.

3.2. Forward Motion

For the case of forward motion, we again make use
of the assumptions stated at the end of last section.
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Conducting “epipolar reconstruction,” the direction
(nx , ny) can be expressed as (x,y)√

x2+y2
. Substituting into

Eq. (3), we obtain:

Ẑ = Z

(
x2 + y2

x2 + y2 + Z(−βe f, αe f ) · (x, y)

)
(7)

or expressing Ẑ in terms of DZ, the above equation can
be expressed as:

x2 + y2 +
(

DZf

D − 1

)
(−βex + αe y) = 0 (8)

For a particular value of D, the corresponding iso-
distortion surface is a cone. The D = ±∞ surface is
of special interest as all other region in space where D
is negative is encompassed by the cone formed by this
D = ±∞ surface. This negative volume is illustrated
schematically in Fig. 3(a). If we slice these cones with
planes parallel to the image plane, we obtain a family
of circles, each with center at (

DZf βe

2(D−1)
, − DZf αe

2(D−1)
) and

radius as 1
2 | D

D−1 |Z f
√

β2
e + α2

e . It can also be shown
readily that all D surfaces intersect on a common line,
which is the Z -axis (see Fig. 3(a)). In other word, on this
line, the distortion factor is undefined, or equivalently,
the Z -axis is the fundamental element of the distortion
transformation.

If we further intersect these cones with planes paral-
lel to the xZ-plane, we obtain the iso-distortion contours
as shown in Fig. 3(b), (c) and (d), respectively for the
cases of y = 0, y = 50, and y = −50. Several salient
features can be identified from the plot:

1) As far as depth reconstruction is concerned, the key
observation here is that, unlike the case of the lateral
motion, the value of the distortion factor depends on
the image co-ordinate position, thus giving rise to
difficulty in depth reconstruction.

2) In terms of depth recovery, what the fundamen-
tal element Z -axis means is that around this re-
gion, the distortion factor changes value rapidly in
a small neighborhood (Fig. 3(b)), resulting in poor
depth estimates that are not even locally smooth.
As we move away from the fundamental element
(e.g. Fig. 3(c) and (d)), the distortion contours no
longer intersect together. Nevertheless, as Z → ∞,
the contours approach asymptotically towards the
line x = αe

βe
y, again resulting in rapidly changing

distortion values (on the line itself, D happens to
have the value of one in this case). The size of the

region where distortion changes rapidly depends
on the magnitude of αe, βe. In the limiting case
where αe, βe approach zero, this region shrinks to
the asymptotic line itself.

3) For forward motion, the D = 1 surface always coin-
cides with the plane Z = 0. This means that metrical
values of depths in the near ground can be judged
relatively accurately, which is not necessarily the
case for lateral motion.

3.3. Ordinal Depth

Looking at the specific case of the lateral motion, the
distortion factor expressed in Eq. (6) has the form 1

a+bZ ,
where a = U

Û
and b = βe

Û
are constants for all the scene

points. Such distortion has the effect of generating a
relief transformation which has some nice properties
(Koenderink and Van Doorn, 1995). In particular, con-
sider two points in space with depths Z1 > Z2. It can
be shown that, given the following conditions:

(a + bZ1)(a + bZ2) > 0 if a > 0

(a + bZ1)(a + bZ2) < 0 if a < 0

the transformation preserves the depth order of the two
points, that is, Ẑ1 > Ẑ2. Since a = U

Û
here, the condi-

tion a > 0 means that U and Û have the same sign. This
condition can easily be met by most visual systems;
thus we can just focus on the first condition. The re-
quirement (a + bZ1)(a + bZ2) > 0 simply means that
the two estimated depths have the same sign. However,
even if the two estimated depths have different signs,
we know that if a > 0, it is the greater depth whose
estimate will have a negative sign, which means that
we can always restore the correct depth order under all
conditions.

If we take into account the full rotational error flow
(γe and the second order terms), then the b term in the
transformation 1

a+bZ is no longer constant. What this
means is that global ordinality is no longer preserved;
we can only obtain ordinality within a neighborhood
where b can be approximately treated as constant (the
size of this neighborhood depends on the size of the
motion errors, the respective image co-ordinates, and
the depth differences). This means that even with lat-
eral motion, global ordinal depth information may not
be obtainable over a large field of view, or if motion
perturbation results in unaccounted-for rotation about
the Z -axis.

For the case of forward motion, even local ordinal
depth information is difficult to obtain, as the distortion
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Figure 3. Families of iso-distortion surfaces and contours for forward motion in calibrated case. The distortion surfaces are all cones in the
xyZ-space. In Fig. (a), the shaded region depicts the volume formed by the D = ±∞ surface. It contains all other cones with negative D values.
We also slice the iso-distortion surfaces with a frontal parallel plane. As can be seen, all cones intersect on the Z -axis. Figures (b), (c), and (d)
show the results of slicing the iso-distortion surfaces in Fig. (a) with the y = 0, y = 50, and y = −50 planes respectively. Parameters for these
plots are: f = 309.0, αe = 0.001 and βe = 0.001.

factor changes value significantly in a local region. Re-
gions near the fundamental element of the distortion
transformation (Fig. 3(a) and (b)) or near the asymp-
totic lines illustrated in Fig. 3(c) and (d) are particularly
susceptible to depth reversal. The size of the neigh-
borhood in which we can determine ordinal relation-
ship is in general small and depends on several factors.
If we again consider two points in space with depths

Z1 > Z2, we found that given the following condition,
the depth order will be preserved:

Z1 − Z2 + (b2 − b1)Z1Z2

(1 + b1Z1)(1 + b2Z2)
> 0

where b1=(
(−βe f,αe f )·(x1,y1)

x2
1 +y2

1
) and b2=(

(−βe f,αe f )·(x2,y2)

x2
2 +y2

2
).

From this expression, we can only say that, in general,
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the more we approach towards the image periphery, the
size of this ordinal neighborhood increases (this is also
reflected in Fig. 3, where the iso-distortion contours
become more parallel to the image plane near the pe-
riphery, i.e. less dependent on the image co-ordinates).
However, this increase in size in the image space prob-
ably does not signify much in the 3-D space due to the
large perspective effect at the periphery of the image
plane.

3.4. Distortion Transformation

Under lateral motion, we obtain from Eq. (6) linear
expressions in φi ’s; thus the distortion transformation
can be expressed with the following matrix:



X̂
Ŷ
Ẑ
Ŵ


 =




φ1

φ2

φ3

φ4


 =




Û 0 0 0

0 Û 0 0

0 0 Û 0

0 0 βe U






X
Y
Z
W


 (9)

It is obvious that the inverse transformation can be ex-
pressed as a matrix with similar form.

As can be seen, the original complex Cremona trans-
formation has now reduced to an invertible projective
transformation. Furthermore most of the elements of
the matrix representing the transformation are zero,
which means that it is really a “well-behaved” kind
of projective transformation. In particular, the tilt of a
surface, which represents the ordinal aspect of depth
information, is preserved although the slant is not. Fur-
thermore, looking at the matrix, if the term βe in the
last row approaches zero, the transformation will tend
to preserve the plane at infinity (i.e. it is an affine trans-
formation), in which case all the first order and sec-
ond order shapes are preserved. In general, the nice
properties of approaching such an affine transforma-
tion close enough may indeed be sufficient for most
vision systems.

For the case of forward motion, we obtain from
Eq. (7) homogeneous polynomials φi of degree three,
given by:

X̂ = φ1 = (X 2 + Y2)X
Ŷ = φ2 = (X 2 + Y2)Y
Ẑ = φ3 = (X 2 + Y2)Z
Ŵ = φ4 = (X 2 + Y2)W + (−βeX + αeY)Z2

Under this transformation, we can only say that a gen-
eral element is distorted into an element of the same

nature: a point remains as a point, a surface remains as
a surface, and a curve remains as a curve. By general
element, we mean that the element does not contain
any fundamental elements (in this case the Z -axis). If
an element is not general, then a point may blow up
into a plane, or a plane may reduce to a line under such
a transformation.

4. Depth Recovery under Uncalibrated Motion

4.1. Intrinsic Parameters Unknown but Fixed

The true optical flow can be expressed in the following
form to take into account intrinsic parameters:

u = 1

Z
((xs − Ox )W − f U) − β f

+ γ (ys − Oy) + O2
u (xs, ys)

v = 1

Z
((ys − Oy)W − f V ) + α f

− γ (xs − Ox ) + O2
v (xs, ys)

where (xs, ys) represents the image pixel location in
a new co-ordinate system with origin located at the
lower left corner of the image, (Ox , Oy) is the loca-
tion of the principal point in the new co-ordinate sys-
tem, and O2

u (xs, ys), O2
v (xs, ys) represent second order

terms in (xs, ys). Note that (xs, ys) is related to (x, y)

by (x, y) = (xs − Os, ys − Oy).
In the uncalibrated case, both the focal length and

the location of the principal point are unknown or esti-
mated with error. We denote the estimated focal length
and the estimated principal point as f̂ and (Ôx , Ô y)

respectively.
If the influence of the second order terms and γe is

ignored, we can rewrite the iso-distortion factors for
the case of lateral motion as:

D = f̂ Û

fU + 
βf Z

(10)

where U, Û and βe are again quantities in the rotated
coordinate system. For the case of forward motion, we
have:

D = x2 + y2

(x ′x + y′y) + (− 
βf x + αf y)Z

where (

βf ,

αf ) = (β f − β̂ f̂ , αf − α̂ f̂ , and (x ′, y′) =
(x − Oxe, y − Oye).
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Figure 4. Families of iso-distortion contours for forward motion in uncalibrated case with fixed intrinsic parameters. (a) Schematic represen-
tation of the iso-distortion surfaces in the xyZ-space, as in Fig. 3(a). (b) Iso-distortion contours obtained by slicing the iso-distortion surfaces
with the y = 0 plane. (Oxe, Oye) = (10, −10), β = 0, β̂ = −0.001, α = 0, α̂ = −0.001, f = 309.0, and f̂ = 280.0.

It can be seen from Eq. (10) that the error in the
principal point estimate has no impact on the depth re-
construction for the case of lateral motion at all, while
error in the focal length estimate alters some constant
parameters in the expression for the iso-distortion fac-
tor without changing its form. The upshot is that all
the previous results regarding ordinal depth is still ap-
plicable and that the distortion transformation is still a
projective transformation with Eq. (9) revised as:



X̂
Ŷ
Ẑ
Ŵ


 =




f̂ Û 0 0 0

0 f̂ Û 0 0

0 0 f̂ Û 0

0 0

βf fU






X
Y
Z
W




For the case of forward motion, we again resort to the
iso-distortion plot to visualize the distortion. Figure 4
shows that not much difference from Fig. 3 can be
found. Each iso-distortion surface is still a cone:

x2 + y2 + D

D − 1
((−Z


βf − Oxe)x

+ (Z αf − Oye)y) = 0 (11)

If we slice these cones with planes parallel to the im-
age plane, we obtain a family of circles, each with
center at (

D(Oxe+X

βf )

2(D−1)
,

D(Oye+Z αf )

2(D−1)
) and radius equal to

1
2 | D

D−1 |
√

(Oxe + Z

βf )2 + (Oye − Z αf )2. Slicing these

cones with planes parallel to the x Z -plane yields
the iso-distortion contours as illustrated in Fig. 4(b).
The distortion transformation remains a Cremona one;
we will not show the expressions for its homogeneous
polynomials φi and φ−1

i here.
As a whole, we can say that fixed uncalibrated intrin-

sic parameters may change the distortion factor equa-
tions, but they do not alter the essential properties of the
distortion for both the cases of lateral motion and for-
ward motion. For the case of lateral motion, depth order
is still preserved, given the same conditions stated in the
calibrated case. For the case of forward motion, as can
be seen from Fig. 4, there are regions which exhibit
large distortion variation as before and are therefore
likely to undergo depth reversal. The D = 1 surface
has also shifted away from the Z = 0 plane due to the
presence of the term (Oxe, Oye).

4.2. Intrinsic Parameters Unknown and Varying

Varying the focal length will result in a zoom field
(considering infinitesimal motion) which is hard to sep-
arate from a field of translation along the optical axis.
Usually a changing focal length will also be accom-
panied by a change in the principal point. We will see
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Figure 5. Families of iso-distortion contours for lateral motion with varying intrinsic parameters. The parameters are: U = 0.81, Û = 1.0,
β = 0, β̂ = −0.001, f = 309.0, f̂ = 330.0, Oxe = 10.0, ζue = 0.01, and ḟ

f = 0. The two figures illustrate the effects of the sign of
σe : σe = 0.01 for (a) and σe = −0.01 for (b). On the asymptote, the value of D is Û

U = 1.23.

that in such cases, depth ordinality in the global sense
is lost even for the case of lateral motion.

With focal length and principal point variation, the
resulting optical flow (u, v) can be expressed as:

u = 1

Z
((xs − Ox )W − fU ) − β f + γ (ys − Oy)

+ Ȯx + ḟ

f
(xs − Ox ) + O2

u (xs, ys)

v = 1

Z
((ys − Ox )W − f V ) + α f − γ (xs − Ox )

+ Ȯy + ḟ

f
(ys − Oy) + O2

v (xs, ys)

where (Ȯx , Ȯy) is the rate of change of the principal
point and ḟ is the rate of change of the focal length.

We assume that the principal point and focal length
and their corresponding change rates are all estimated
with errors. We make use of the following notations:
(ζue , ζve) = (Ȯx − ˆ̇Ox , Ȯy − ˆ̇O y) and σe = ḟ

f − (
ˆ̇f
f ).

4.2.1. Lateral Motion. Again, by an appropriate ro-
tation of the xy-coordinate system, we can express the
iso-distortion factor as follows:

D = f̂ Û

fU + ( 
βf − ζue + ḟ

f Oxe
)
Z − σexZ

(12)

from which the following can be derived:

Z = f̂ Û − DfU

D
( 
βf − ζue + ḟ

f Oxe − σex
)

The presence of an error in the zoom estimate σe

could significantly change the topological distribu-
tion of the iso-distortion surfaces. As illustrated in
Fig. 5, the iso-distortion contours become reciprocal
curves with a common vertical asymptote given by

x =

βf −ζue + ḟ

f Oxe

σe
. As can be seen, the position of

this asymptote depends very much on the zoom error
term σe. This means that any flow due to zoom motion
must be estimated accurately for meaningful depth in-
formation to be derived from lateral motion. When σe

approaches zero, the vertical asymptote approaches in-
finity, and the contours will tend to flatness again.

Algebraically, the distortion transformation can be
written as:



X̂
Ŷ
Ẑ
Ŵ


 =




f̂ Û 0 0 0

0 f̂ Û 0 0

0 0 f̂ Û 0

− f σe 0

βf −ζue + ḟ

f
Oxe fU






X
Y
Z
W
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It is still a projective transformation with a simple
form. However the presence of the σe term in the last
row of the matrix means that the distortion transfor-
mation is no longer a relief transformation (see also
Eq. (12)). Ordinality is only preserved if the image dis-
tance between two points satisfies certain inequality,
which we derive as follows. Consider two points with
true depth Z1 and Z2 respectively and that Z1 > Z2.
To determine the geometry of this local neighborhood
within which ordinal depth is preserved, we need to
determine the sign of Ẑ1 − Ẑ2. However, directly de-
ciding the sign of Ẑ1 − Ẑ2 is difficult; instead we con-
sider 1

Ẑ1
− 1

Ẑ2
. If Ẑ1 and Ẑ2 have same sign, then if

1
Ẑ1

− 1
Ẑ2

< 0, we can say that the depth order in the
perceived space is preserved.

1

Ẑ1

− 1

Ẑ2

=
f U

Û
(Z2 − Z1) + σe

Û
(x2 − x1)Z1Z2

f Z1Z2

Since the denominator on the right hand side of the
above equation is positive, the condition needed for
preservation of depth ordinality can be expressed as:

σe

Û
(x2 − x1) < − f

U

Û

(Z2 − Z1)

Z1Z2

If we further make the reasonable assumption that Û
and U have same sign, we have:

x2 − x1 < − f
U

σe

(Z2 − Z1)

Z1Z2
if

σe

Û
> 0 (13)

x2 − x1 > − f
U

σe

(Z2 − Z1)

Z1Z2
if

σe

Û
< 0 (14)

In either cases, given two fixed depths whose esti-
mates have same sign, the geometry of the local neigh-
borhood on the image plane is that of a half-plane. Fur-
thermore, it is noted that errors in the principal point
and the rotational parameter estimates do not influence
the properties of the neighborhood. The simple geome-
try of this local neighborhood means that if bounds can
be given to the various terms found in the inequalities,
the region of the neighborhood can be approximated.

4.2.2. Forward Motion. The expression for the iso-
distortion factor is complex:

D = x2 + y2

(x ′x + y′y) + (− 
βf + ζue − ḟ

f Oxe,
αf + ζve − ḟ

f Oye
) · (x, y)Z + σe(x2 + y2)Z

(15)

Each iso-distortion surface has the following expres-
sion:

x2 + y2 + D

D + Dσe Z − 1
((C1 Z − Oxe)x

+ (C2 Z − Oye)y) = 0 (16)

where (C1, C2) = (− 
βf +ζue − ḟ

f Oxe,
αf +ζve − ḟ

f Oye).
In the xyZ-space, each iso-distortion surface is no

longer a cone, but a third-order surface, due to the
σe term. Slicing these iso-distortion surfaces with a
frontal-parallel plane would still yield circles, all with
one end anchored at the Z -axis. Each circle has its
center at (− 1

2
D(C1 Z−Oxe)

D + Dσe Z−1 , − 1
2

D(C2 Z−Oye)

D + Dσe Z−1 ) and radius
as 1

2 | D
D + Dσe Z−1 |√(C1Z − Oxe)2 + (C2Z − Oye)2. As

Z → ∞, the circle radius becomes constant, that is, in
the xyZ-space, the iso-distortion surface forms a cylin-
der. Slicing these iso-distortion surfaces with the xZ-
plane yields the iso-distortion contour plot shown in
Fig. 6(b)

In contrast to the previous cases, each iso-distortion
surface now also approaches asymptotically towards
the frontal parallel plane given by Z = 1−D

Dσe
(see the

iso-distortion contour plots in Fig. 6). The asymptotic
plane of the D = ±∞ surface is determined by σe only
as the plane is given by Z = 1

σe
. Its position has partic-

ular significance as it determines the distribution of the
positive and negative distortion regions. If the sign of
σe is positive (Fig. 6(b)), then the space in front of the
image plane mostly experiences a positive distortion
factor, except for the small negative distortion region
enclosed by the D = ±∞ surface. Conversely, if the
sign of σe is negative (Fig. 6(c)), the distortion con-
figuration flips about the Z = 0 plane, and most of the
region in front of the image plane would have nega-
tive distortion factor. In other words, if we impose the
“depth is positive” constraint in our motion estimation
algorithm, the sign of the error for the zoom estimate
is more likely to be positive than negative.

Figure 6(d) shows that the larger σe is, the flatter the
iso-distortion contours will be. That is, the distortion
factor varies less with the image co-ordinate position.
Indeed by letting the σe term in Eq. (15) approach in-
finity, we obtain D = 1

1+σe Z which is a relief trans-
formation. This might seem to suggest that ironically,
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Figure 6. Distribution of iso-distortion surfaces and contours for forward motion with varying intrinsic parameters. (a) Schematic representation
of the iso-distortion surfaces in the xyZ-space. The region where D is negative is not shaded due to the complexity of the region. Figure (b) depicts
the iso-distortion contours obtained by slicing the iso-distortion surfaces with the y = 0 plane. Figures (c) and (d) illustrate the effects of various

values of σe on the iso-distortion contours. In (a) and (b), (
ˆ̇f
f ) = −0.01. (c) Reverse the sign of σe: (

ˆ̇f
f ) = 0.01. (d) Large σe: (

ˆ̇f
f ) = −0.01. Other

parameters are the same for all the plot: β = 0, α = 0, α̂ = −0.001, β̂ = −0.001, ḟ
f = 0, f = 309.0, f̂ = 280.0, (Oxe, Oye) = (10.0, −10.0) and

(ζue , ζve ) = (0.01, −0.01) for (a) and (b); (
ˆ̇f
f ) = −20.0 for (c) and (d); y = 0 for (a), (b) and (c) and y = 50 for (d).

large error in estimating zoom field parameter will re-
sult in more “well-behaved” recovered depths, in the
sense of preserving its ordinality. However these re-
covered depths are very much compressed and 3-D in-
formation is to a great extent lost.

5. Experiments

This section presents the experiments carried out to
support the theoretical findings established in the pre-
ceding sections. Specifically, we want to demonstrate
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that lateral motion is more amenable to preserv-
ing ordinal depth and yields a less distorted scene
reconstruction.

We used SOFA image sequences1 for conducting ex-
periments. SOFA is a package of 9 synthetic sequences
designed for testing research works in motion analysis.
It includes full ground truth on motion and camera pa-
rameters. Sequence 1 and 5 (henceforth abbreviated as
SOFA1 and SOFA5) were chosen for our experiments,
the former depicting a lateral motion and the latter a
forward motion. Both of them have an image dimen-
sion of 256 × 256 pixels, a focal length of 309 pixels
and a field of view of approximately 45◦. Camera fo-
cal length and principal point were fixed for the whole
sequence. The optical flow was obtained using Lucas
and Kanade’s method (Lucas, 1984), with a temporal
window of 15 frames. Depth was recovered for frame 9.

The 3-D scene for SOFA1 consisted of a cube
resting on a cylinder (Fig. 7(a)). The camera trajec-
tory was a circular route on a plane perpendicular to
the world Y -axis, with constant translational parame-
ter (U, V, W ) = (0.8137, 0.5812, 0) and constant ro-
tational parameters (α, β, γ ) = (−0.0203, 0.0284, 0).
The resulting motion is a constant lateral translation
with quite significant rotational components. If the ob-
server or the system is aware that a lateral motion is
being executed, then Ŵ = 0, and the following equa-
tion will be used to recover depth:

Ẑ = − f̂ (Û , V̂ ) · (nx , ny)

(u, v) · (nx , ny) − ( ˆurot, ˆvrot) · (nx , ny) −
( ˆ̇f

f x,
ˆ̇f
f y

)
· (nx , ny)

ignoring terms involving the principal point (since
they have little effect on depth reconstruction, we ig-
nore them in the experiments). The erroneous mo-
tion estimates were arbitrarily fixed at (Û , V̂ ) = (1, 0)

and (α̂, β̂, γ̂ ) = (−0.0213, 0.0274, 0.001). We further
chose the scheme where the depth was recovered along
the estimated epipolar directions. Since we estimated
(Û , V̂ ) to be (1,0), it means that (nx , ny) would be fixed
in the horizontal direction (1, 0).

We first simulated the case where there are no errors
in the intrinsic parameters. Using the erroneous motion
estimates, we performed depth reconstruction. The re-
sults were illustrated in Fig. 7(b) and (c). In Fig. 7(b),
the recovered depths were depicted using a color cod-
ing scheme; cool colors such as deep blue meant that
the object points were close to the observer, while warm
colors such as red represented points that were far away
from the observer. The mapping between the colors

and the depth ranges was performed individually for
each experiment so as to render the plots readable. In
Fig. 7(c), the reconstructed 3-D depths were displayed
using a 3-D plot viewed from the side. As these fig-
ures showed, the reconstruction is good despite signif-
icant errors in both the estimates for the translational
and the rotational parameters. Depth orders were pre-
served for most of the feature points, except for those
which were probably affected by noise. Figure 7(c)
also showed that although all the recovered depths were
under-estimated, they tend to be under-estimated more
at the points which have larger physical depths. This
phenomena can be explained by the iso-distortion con-
tours in Fig. 2, where it was shown that the value of the
iso-distortion factor decreases with depth.

Next we simulated the case where the intrinsic pa-
rameters are fixed and estimated with errors. Adding an
error to the focal length ( f̂ = 330.0) yielded Fig. 7(d),
depicting the case of fixed intrinsic parameters esti-
mated with errors. No significant difference can be ob-
served from that of Fig. 7(b); this corroborates our
theoretical prediction that an erroneous focal length
will not influence the distortion properties for the
case of lateral motion. Finally, we simulated the case
where the intrinsic parameters are varying and esti-
mated with errors. Figure 7(e) were obtained when we

assumed an erroneous zoom field with
ˆ̇f
f = −0.01

(or σe = 0.01). This was the situation analyzed in
Section 4.2.1, whereby we concluded that if σe

Û
> 0, or-

dinal depth will be preserved only if the image distance
between the two feature points satisfies the inequality
(13). Figure 7(e) showed clearly that in a local region
ordinal depth was preserved, but for points which were
far from each other, such as the points which were on
the top face of the cylinder and on either sides of the
cube, some depth orders were reversed. We also found
that the recovered depths on the left side of the im-
age were under-estimated more than those on the right
side. This is consistent with the iso-distortion contours
depicted in Fig. 5.

Since no ground truth for the depth orders is avail-
able for the SOFA sequences, it is difficult to obtain
comprehensive numerical results on the correctness of
the recovered depth orders. Nevertheless, we observed
that for the points on the top face of the cylinder in
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Figure 7. Motion sequences and depth reconstructions for SOFA1 ((a) to (e)) and SOFA5 ((f ) to (i)). (a) SOFA1 frame 9. (b), (c) Recon-
struction with true focal length and zoom parameter (i.e. no zoom). (d) Reconstruction with erroneous focal length f̂ = 330.0 and true zoom

parameter. (e) Reconstruction with true focal length and an erroneous zoom field of
ˆ̇f
f = −0.01. Other parameters were the same through-

out (b) to (e): (Û , V̂ , Ŵ ) = (1, 0, 0) and (α̂, β̂, γ̂ ) = (−0.0213, 0.0274, 0.001). (f ) SOFA5 frame 9. (g) Reconstruction with accurate motion
parameters. (h) Reconstruction with errors only in the extrinsic parameters. (i) Reconstruction with erroneous focal length f̂ = 280.0 and a

large erroneous zoom field of
ˆ̇f
f = −20.0. (h) and (i) have the same translational and rotational parameter estimates: (Û , V̂ , Ŵ ) = (0, 0, 1) and

(α̂, β̂, γ̂ ) = (−0.001, −0.001, 0.01).
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Table 1. Rates of correct ordinal depth recovery
for points on the cylinder’s top face (SOFA1).

Figures 7(b) and (c) Figure 7(d) Figure 7(e)

92.42% 92.50% 82.28%

SOFA1 (which are delineated in Fig. 7(a) and accounts
for 4328 of the 5092 feature points), the true depth or-
ders are known—the larger the y value is, the larger the
Z value. For this particular region, the rates of correct
ordinal depth recovery were calculated and tabulated
in Table 1.

The SOFA5 sequence was used to perform ex-
periments to verify predictions in the case of for-
ward motion. The 3-D scene for SOFA5 comprised
of a pile of 4 cylinders stacking upon each other and
in front of a frontal-parallel background (Fig. 7(f)).
The camera trajectory for SOFA5 was parallel to the
world Z -axis and the corresponding translational and
rotational parameters were (U, V, W ) = (0, 0, 1) and
(α, β, γ ) = (0, 0, 0) respectively. We assumed that the
observer or the system is aware that a forward motion
is being executed, i.e. Û = V̂ = 0. Performing epipo-
lar reconstruction, the equation for calculating depth
for each feature point would be (again ignoring terms
involving the principal point):

Ẑ = x2 + y2

(u, v) · (x, y) − ( ˆurot, ˆvrot) · (x, y) − ˆ̇f
f (x2 + y2)

In Fig. 7(g), (h) and (i), the recovered depths
were again rendered using the color coding scheme.
Figure 7(g) depicted the case of no errors in the extrin-
sic and the intrinsic parameters. As could be seen, even
for the case of no errors in the motion parameters, the
ordinality of the depths recovered was error-prone, pos-
sibly as a result of the noise in optical flow computation.
Figure 7(h) depicted the case of erroneous extrinsic pa-
rameters. The depths recovered in the lower right part
of the image were expanded while those on the upper
left part were compressed. Such distortion was consis-
tent with the iso-distortion contours depicted in Fig. 3.
Figure 7(i) was obtained when we estimated an arbi-
trarily large zoom field which in actual fact was zero.
This corresponds to the case where some intrinsic pa-
rameters’ variations are not estimated correctly. The re-
sultant iso-distortion contours should approximate that
of Fig. 6(d), although we did not introduce any error in
the principal point estimate in our experiments. As pre-

dicted, the depths recovered seemed “better” than that
of Fig. 7(h) in the sense that there was no systematic
bias in the global arrangement of the depths. However,
the recovered depths were compressed within a very
small range, which meant that most of the depth de-
tails were lost. Thus it still cannot be deemed a good
reconstruction.

Since no ground truth on the depth is available, we
conducted the following check on the depth orders re-
covered. We singled out those points on the cylinders as
foreground points and the points on the frontal-parallel
plane as background points. We then compared the re-
covered depth of each foreground point with that of
each background point. The former should be smaller
than the latter if the depth order is preserved. Although
such a test is not a comprehensive one, it gives a fair
indication on the rates of correct ordinal depth recovery
under various error scenarios. Using 1509 foreground
points and 5925 background points, we obtained the
following results. With true 3D motion (Fig. 7(g)),
75.14% of such foreground-background depth orders
were preserved. Most of these errors were randomly
distributed in spatial location, as could be seen from
Fig. 7(g), and could be attributed to image noise. This
result also corroborates our hypothesis that forward
motion is not well suited for depth recovery, the dis-
tortion configuration of the perceived space being very
sensitive to noise perturbations. For comparison, in the
case of SOFA1 (lateral motion configuration) under no
errors in the motion parameters, the rate of correct ordi-
nal depth recovery for points on the cylinders top face
was a much better figure of 92.89%.2 For the case of
forward motion with errors in the extrinsic parameters
(Fig. 7(h)), the rate of correct ordinal depth recovery
dropped to an almost chance level of 56.60%. Adding
an error to the focal length estimate ( f̂ = 280) yielded
a similar figure of 56.91%. With a small zoom error of
0.01, we obtained 56.67%. These two scenarios were
not illustrated in Fig. 7. Finally, for the case of large
zoom error of 20 (Fig. 7(i)), we obtained a poor result
of 50.15%, confirming our earlier prediction that under
this scenario, ordinal depth recovery is in practice very
difficult.

6. Conclusions and Future Directions

This paper presented an investigation on the reliability
of depth recovery given some errors in the estimates
for the intrinsic and extrinsic parameters. Specifically,
we sought for some generic motion types that rendered
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depth recovery more robust and reliable. Lateral and
forward motions were compared both under calibrated
and uncalibrated scenarios. For lateral movement, we
found that although Euclidean reconstruction is diffi-
cult, the resulting distortion in the structure possesses
many nice properties. For the case of calibrated motion,
the distortion preserves the depth relief, which means
that ordinal depth is preserved. In the uncalibrated case,
if the intrinsic parameters are fixed, the situation re-
mains largely the same. If focal length variation is also
allowed and the resulting zoom field is not estimated
correctly, the ordinal depth can be preserved only lo-
cally. In all these three cases, the transformations from
the physical space to the perceived space are projec-
tive transformations and have very simple forms. For
forward movement, whether calibrated or uncalibrated,
depth information (even partial one) is hard to recover,
except for those points close to the observer. Again,
if the intrinsic parameters are fixed but estimated with
some errors, things change very little from that of the
calibrated case. If intrinsic parameters’ variations are
allowed, a large error in the zoom estimate has in the-
ory the potential of improving ordinal depth recovery,
although the resultant drastic loss of 3-D depth infor-
mation would mean that this recovery is in practice very
much suspect. The transformation relating the physical
space to the perceived space is a Cremona transforma-
tion of degree three. Experiments conducted seemed to
support the preceding theoretical predictions.

The conclusion is that under lateral movement, while
it might be very difficult to resolve the ambiguity be-
tween translation and rotation, ordinal depth can be
recovered with robustness. Conversely, it seems to ex-
plain the psychophysical phenomenon that under pure
forward translation, human subjects were unable to
recover structure unless favorable conditions such as
large field of view exist. In the case of uncalibrated
motion, in spite of uncertainty in the focal length, the
qualitative aspect of the recovered depth indeed is not
affected, regardless of whether it is a lateral or a forward
motion. Thus as far as depth recovery is concerned, if
the intrinsic parameters are fixed, then calibration of
these parameters are not the determining factors for
accurate ordinal depth recovery. However, if the intrin-
sic parameters are allowed to vary, then it is important
to estimate the zoom field correctly, although it is safe
to forgo the variation of the principal point for depth
reconstruction purpose. Otherwise, even in the case of
lateral translation, global ordinality of depth will be
lost.

This work represents the first step towards achiev-
ing partial scene understanding. More work needs to
be done to build up such understanding under differ-
ent motion-scene configurations. These capabilities, to-
gether with the ability to characterize the robustness of
the partial depth information, would be important for
many applications such as robotics, active vision and
multimedia video indexing.

Appendix: Using the Linear Least Square Scheme
to Recover Depth

For any SFM algorithm based on optical flow as input,
after obtaining the 3-D motion parameters, the next
task would be to recover depth for each scene point
according to Eq. (2). For notational convenience, we
re-write them as follows:

Ẑ = ê · n
r̂ · n

(17)

where ê = (x − x̂0, y − ŷ0), r̂ = (u − ˆurot, v − ˆvrot) and
n = (nx , ny). If there is no error in the optical flow and
the 3-D motion estimates, the choice of n is immaterial,
for any direction can give rise to correct depth recov-
ery. However, when the 3-D motion estimates contain
errors, ê and r̂ would not be parallel, and choosing dif-
ferent n will yield different depth recovery, which leads
to different depth recovery schemes. In particular, the
standard linear least square estimate ẐLLSR is given by
Ẑ which minimizes the “estimated measurement error”
‖ê − Ẑ r̂‖, from which the following is obtained:

ẐLLSR = ê · r̂
r̂ · r̂

In other words, n is given by r̂
‖r̂‖ , instead of ê

‖ê‖ in the
case of epipolar reconstruction.

Statistically, while the least square scheme is opti-
mal given the necessary conditions, it must be noted
that this approach has a serious qualification. In this
problem, not only the observation term ê contains er-
ror, the measurement matrix also contains errors since
the entries of the matrix are themselves estimates. Such
errors, depending on their magnitudes, could be malign
and affect the validity of the least square procedure.

There are also geometrical reason for not choosing
to study the linear least square scheme, as we shall see
in the following brief study of the distortion properties
under the linear least square scheme.
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Figure 8. Families of iso-distortion contours using the linear least square scheme for depth reconstruction. (a) Lateral motion with U = 0.81,
Û = 1.0, V = 0.58 and V̂ = 0.4; (b) forward motion case with y = 0; (c): forward motion case with y = 100. All the other parameters are identical:
αe = 0.001, βe = 0.001 and f = 309.0.

In the lateral motion case, the iso-distortion factor
for the linear least square reconstruction scheme can
be expressed as:

D = (Û , V̂ ) · (U + Zβe, V − Zαe)

(U + Zβe)2 + (V − Zαe)2
(18)

where we have made the same assumptions as in
Section 2. Figure 8(a) shows that the iso-distortion sur-
faces are also planes parallel to the image plane, identi-
cal to the case of epipolar reconstruction scheme. How-
ever, Eq. (18) shows that the distortion transformation
does not belong to the class of relief transformation;
thus there is no guarantee that the depth orders will be
preserved.

In the forward motion case, the equation for the iso-
distortion factor is:

D = (x, y) · (x − βe f Z , y + αe f Z)

(x − βe f Z)2 + (y + αe f Z)2

Figures 8(b) and (c) show the iso-distortion contours
for the forward motion case. Different y values will
yield different distributions of iso-distortion contours.
These contours are more or less similar to the contours
we obtained using the epipolar reconstruction scheme.
For instance, the D = 1 contour still lies on the x-axis,
and depth orders will in general not be preserved.

In conclusion, it is evident that different (nx , ny)

would result in different distortion geometries. We are
not trying to argue for any particular approach of re-
covering depth, but whichever scheme is adopted, it is
the attendant distortion geometry that we are interested

in. From this brief analysis, it seems that, geometri-
cally, the “epipolar reconstruction approach” has cer-
tain favourable properties; it leads to the ordinal depth
being preserved in the case of lateral motion, which is
not so for the least square approach.

Notes

1. courtesy of the Computer Vision Group, Heriot-Watt University
(http://www.cee.hw.ac.uk/ mtc/sofa).

2. No ground truth was available for comparing the relative accu-
racy of the optical flow fields computed for SOFA1 and SOFA5,
but from a visual inspection of the flow fields computed, they ap-
peared to be of similar quality and thus should not be a significant
factor contributing to the different rates of correct ordinal depth
recovery.
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