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Abstract A large class of visual systems in the biological
world often has multiple eyes in simultaneous motion and
yet has little or no overlap in the visual fields between the
eyes. These systems include the lateral eyes found in many
vertebrates and the compound eyes in insects. Instead of
computing feature correspondences between the eyes, which
might not even be possible due to the lack of overlap in the
visual fields, we exploit the organizational possibility of-
fered by the eye topography. In particular, we leverage on
the pair of visual rays that are parallel to each other but
opposite in direction, and compute what we call the quasi-
parallax for translation recovery. Besides resulting in parsi-
monious visual processing, the quasi-parallax term also en-
hances the information pick-up for the translation, as it is
almost rotation-free. The rotation is subsequently recovered
from a pencil of visual rays using the individual epipolar
constraints of each camera. As a result of using these dif-
ferent and appropriate aspects of visual rays for motion re-
covery, our method is numerically more effective in disam-
biguating the translation and rotation. In comparison to the
gold standard solution obtained by the bundle adjustment
(BA) technique, our method has a better Fisher information
matrix for a lateral eye pair, as well as a superior experimen-
tal performance under the case of narrow field of view. For
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other eye configurations, the two methods achieve compa-
rable performances, with our linear method slightly edging
the nonlinear BA method when there exists imperfection in
the calibration.
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1 Introduction

Marr’s computational vision paradigm has influenced deeply
the development of computer vision. While Marr is correct
in his observation that understanding the physical workings
was not going to be enough and that we would also need to
understand how the system was organized at a higher level
(the computational question), it has led to a marginalization
of the importance of the bodily aspect of the vision system.
For although it is probably true to say that a computational
understanding is in principle independent of the details of
any specific implementation in hardware, the computational
activities (especially for biological systems) are certainly
heavily sculpted by the hardware implementation. With this
in mind, we might ask ourselves if we have overlooked the
wealth of organizational possibilities that are offered by the
varieties of eye topography found in nature.

Contemporary research in robotics and AI viewed vision
processing as the activity of an essentially situated agent: in
particular, an agent that is at home in its proper bodily and
environmental niche. It is likely to exploit just about any
mixture of bodily and environmental resources along with
significant interpenetration of perception, thought and ac-
tion. Yet the computer vision community has been primarily
concerned with camera-type eyes that are frontally placed,
forgetting that for many vertebrates, the eyes are laterally
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placed, not to mention the vast array of eye types that exist
in the invertebrate world. In this paper, we look at the dif-
ferent topography of the eyes found in both vertebrates and
invertebrates and see how the visual system can press max-
imal benefit from the opportunities afforded by a particular
class of bodily realization that encompasses many animals.

Theories about how insects exploit their compound eyes
and the environment to carry out visuomotor tasks have been
advanced indeed. For instance, in navigation, it was found
that flying insects (Srinivasan et al. 1991) are able to center
their flight path in a corridor by balancing the image motion
in their two eyes. In addition, honey bees have been shown to
regulate flight speed by trying to keep the overall image mo-
tion as constant as possible (Srinivasan et al. 1996). Such co-
operation between bodily and environmental factors has also
been implemented in various biomimetic approaches. The
centering behavior of bees inspired the “bee-bot” (Coombs
and Roberts 1993). By balancing the maximal flow on both
sides, bee-bot centered its course between the nearest ob-
jects. While correcting its course, bee-bot’s camera actively
counter-rotated to prevent the rotatory flow from contami-
nating the flow field. Other tasks investigated include alti-
tude control landing (Srinivasan et al. 2001) and view-based
navigation (Franz et al. 1998a). However, no work exists on
general ego-motion estimation that exploits the structure of
the compound eye. The view seems to be that due to the
limited neural resources of the insects, general ego-motion
recovery is difficult; it is believed that only aspects of the
ego-motion that are tailored to various visuomotor tasks are
recovered. We show, however, that general ego-motion re-
covery can be achieved without resorting to complex and
computationally expensive algorithms if we make use of the
special arrangement of the compound eye.

Among vertebrates, the divorce of theoretical attention
from the non-frontal eyes in the computer vision commu-
nity is even more pronounced. Frontal eyes, where two eyes
simultaneously gain very similar views of the same objects
that lie in front of the head, as in humans, has received
the most attention. However, in the great majority of ver-
tebrates, each eye views a quite different part of the space
that surrounds the head with various degrees of overlap of
view between the two eyes. While there are computational
works that look at a stereo pair or multiple cameras in si-
multaneous motion (Baker et al. 2004; Tsao et al. 1997;
Zhang 1995), either with a fixed or varying epipolar geom-
etry, their concerns are quite different. Stereo matching or
feature tracking over multiple frames often plays an impor-
tant role in such systems, and as such, corresponding points
are needed. In our case of laterally placed eyes, correspon-
dence of features between the two eyes is not even possi-
ble. Indeed, even in the insect eye system where the eyes
are closely spaced, the visual field is so narrow that there
might be little overlap between eyes. Thus the aforemen-
tioned multiple-cameras-in-motion models which require

correspondences are not applicable. Are there, then, other
affordances that exist in such an arrangement of multiple
eyes, each covering different parts of the visual field, and
each experiencing slightly different motions related to each
other via some rigid transformation? Do we just fuse the
multiple inputs in a loosely coupled manner, that is, esti-
mating the ego-motion of each camera independently and
combining these ego-motions at the last stage? Or is there a
tighter constraint at the lower level that allows a stable and
preferably parsimonious solution for ego-motion recovery?

Biological systems in general seem to exploit the motion
input from the different parts of the visual field. In verte-
brates with laterally positioned eyes, such as rabbits and
birds, as well as in arthropods equipped with panoramic
vision, there are extensive spatial pooling of motion infor-
mation and interactions between inputs from the opposite
visual directions and they were shown to increase the sen-
sitivity to particular types of optic flow field (e.g. rabbits:
Leonard et al. 1988; birds: Wylie and Frost 1999; bee: Ib-
botson 1991; moth: Kern 1998; fly: Haag and Borst 2001).
Such exploitation of bodily factors results in parsimony of
visual processing that is needed for integrated visuomotor
coordination.

Despite the biological evidence of such leveraging of mo-
tion information from opposite directions, it is certainly not
the case that such a scheme is fully explored or understood
computationally. The detailed mathematical aspect of the ac-
tual motion estimation is very much an open research ques-
tion. As far as the authors are aware, save the works of Lim
and Barnes (2007, 2008), Thomas and Simoncelli (1994) for
the case of spherical cameras, there has been no work in the
computational vision literature that looks at pooling optic
flow inputs from opposite directions of the visual fields and
investigate how such a pair of flows can be exploited in a
tighter manner for ego-motion estimation.

In this paper, we pursue this strategy of pooling motion
information from visual fields that are 180◦ opposite to each
other for general ego-motion estimation. Such a strategy can
be applied to a variety of vision systems, including the com-
pound eye system and the system with laterally-positioned
eyes. We show that such a pair of flows provide a mea-
surement akin to parallax, and as in traditional parallax, it
enhances information pickup for translation. This approach
of pairing optic flows afforded by the physical arrangement
of the cameras is in contrast to current works in computa-
tional vision, where the general motivation of having mul-
tiple cameras is to obtain feature matches across multiple
viewpoints or to collect the optical flows from all the cam-
eras, so as to resolve the inherent ambiguity in the ego-
motion estimation problem. In that sense, the input from the
multiple cameras is not fully exploited at the optic flow level
in these conventional approaches; the redundancy enters the
story only via the 3D relationships (i.e. the rigid transfor-
mations) that exist between the ego-motions experienced
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by each camera. The decoupling of the global translation
and rotation is only initiated at the endpoint of a complex
process which usually involves nonlinear estimation algo-
rithm. Lastly, we also develop a mathematical understanding
of our formulation in terms of its stability and robustness,
and show how we have made the most of the information
present in visual rays that are parallel but 180◦ opposite in
direction.

The organization of this paper is as follows. Section 2 re-
views the biological and the biomimetic robotics literature
and discusses the wide variety of eye designs found in the
vertebrates and the invertebrates. Section 3 seeks to situate
our proposed method in the vast Structure from Motion lit-
erature, relating our work to other research efforts and par-
adigms. Section 4 discusses the approach and contribution
of this paper and lists those systems to which our approach
applies. Section 5 introduces our quasi-parallax formulation
in details, using first a basic setup with a single pair of cam-
eras with opposing visual fields, and then an extended ver-
sion that handles multiple pairs. To improve the robustness
and accuracy of our linear algorithms, a Total Least Squares
approach with an appropriate normalization scheme is pre-
sented. Section 6 studies the inherent ambiguity in our for-
mulation using Fisher Information matrix and compares it
against the “gold standard” solution obtained by the Bundle
Adjustment method. Section 7 reports a set of experiments
that were conducted using both “realistic” scenes adapted
from range image input, and visual images of real scenes.
Our method was fully evaluated under different scenarios,
and its performance was compared against the Bundle Ad-
justment algorithm. Finally this paper ends with discussion
and conclusion in Sect. 8.

2 Biological Vision Systems for Motion Estimation

2.1 Vertebrate Eyes: The Case of Birds

In birds, the second largest group of vertebrates after fishes,
the assumption of stereopsis has been questioned. It is
pointed out in Davies and Green (1994) that stereopsis in-
volves considerable neural processing and is too slow to
control the estimation of distance and depth when a bird is
landing upon a perch. The interactions between both eyes
might instead have to do with motion processing.

Many species do not use vision to guide bill or feet posi-
tion in foraging, but rely upon tactile cues from the bill tip
to locate items, or filter feed from surface waters, and do not
provision their young. In these species, maximum binocular
field width is only about 10◦, and the binocular field may be
only 5◦ wide at the horizontal. Even in species whose vision
is used for the accurate control of bill position when pecking
or lunging at prey, the maximum width of the binocular field

lies between 20◦ and 30◦. Examples of such birds are found
in the eagles, herons, albatrosses, and hornbills. Such in-
terspecific comparison of the available binocular field casts
doubts on the utility of stereopsis for general scene percep-
tion and locomotion, except for visuomotor tasks involving
close objects such as the bills.

The majority of these birds, despite their narrow binocu-
lar fields, are capable of fast flight and maneuvering within
both open and woodland habitats. This suggests that the con-
trol of flight in both open and complex woodland habitats
does not require extensive frontal binocularity. Watching a
sparrowhawk executing complex maneuvers to pursue agile
preys through dense foliage tends to underscore its amazing
visuomotor coordination, possibly achieved with only mo-
tion cues.

2.2 Invertebrate Eyes: The Case of Insects

Invertebrates have the greatest variety of eye types, and
probably the most adaptable. The first remarkable fact about
its adaptability is that the layout of ommatidia is often
matched to the spatial layout of the habitat, with higher con-
centration of ommatidia in some region termed as the acute
zone. This is a remarkable demonstration of the kind of close
interaction between the vision system and the environment.
Even the morphology of the compound eye itself adapts to
the environmental surroundings and actions!

As far as motion processing is concerned, besides the
kind of processing dedicated to specific reflexive responses
such as collision avoidance and landing, general ego-motion
recovery is understood to benefit from the spherical field of
view (FOV) of the compound eyes. Optic flow at positions
that are 180◦ apart on a connecting meridian allows disam-
biguation of translation and rotation. During forward trans-
lation the optic flow across both eyes is directed backward.
In contrast, during a pure rotation about the animal’s ver-
tical axis, optic flow is directed backward across one eye,
but forward across the other eye. Such a strategy of pooling
optic flow from both eyes appears to be adopted generally
by arthropods (e.g, crab: Blanke et al. 1997; bee: Ibbotson
1991; moth: Kern 1998; fly: Haag and Borst 2001). For in-
stance, the well-studied “HS” cells of the fly pool optic flow
from both eyes to estimate rotation and provide information
for optomotor control and trajectory stabilization. Anyone
who has ever observed blowflies chasing each other will be
conversant with the breath-taking aerial acrobatics these tiny
animals can produce, often among dense and complex envi-
ronment.

3 Review of Computational Literature

Ego-motion estimation methods typically consider a monoc-
ular camera in motion or equivalently, camera views ob-
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tained from multiple positions. These include the classi-
cal two-view methods (linear subspace Heeger and Jepson
1992, eight-point algorithm Hartley 1997) and the multiple
view approaches (multiple view tensor Hartley and Zisser-
man 2000). The two-view methods suffer from the bas-relief
ambiguity between translation and rotation, which cannot
be removed by any statistical schemes, according to Xiang
and Cheong (2003). Multiple-frame algorithms attempt to
overcome this inherent limitation by incorporating redun-
dancy from multiple frames but other difficulties set in such
as tracking features over multiple frames.

It is known that linear two-view methods yield biased
motion estimates and many nonlinear methods have been
proposed to overcome this problem. Among various meth-
ods, the bundle adjustment (Triggs et al. 2000) (referred
hereafter as BA) stands out with its optimal performance
and is regarded as the “Gold Standard”. By minimizing the
reprojection error between measured flows and estimated
flows, BA yields maximum likelihood estimates given a
Gaussian image noise.

Traditional parallax method (Longuet-Higgins and
Prazdny 1980) is a different approach to the SfM problem.
It separates the rotational flows from the translational flows
by observing that for near-coincident image points across
a depth discontinuity, the difference in their flows cancels
the rotational flow. Provided with sufficient number of such
points, this method is able to solve for the translation, after
which the rotation can be readily obtained. Unfortunately
it is very difficult to find enough nearby points with suffi-
ciently large depth differences, and thus its usefulness is lim-
ited. Alternative approaches called “plane+parallax” have
been proposed (Anandan and Irani 2002). They assume a
dominant plane in the scene or a piecewise planar world
model. The alignment with respect to this plane removes the
rotation and leads to an epipolar motion field (or a parallax
field), from which the ego-motion can be computed. How-
ever for a general scene with arbitrary structure, the planar
assumption might be violated.

In recent years, camera cluster in various configurations
has seen increasing popularity thanks to falling costs and
miniaturization. In tandem with this development, there
have been several theoretical analysis analyzing the prop-
erties of such camera clusters. Pless (2004) obtained a gen-
eralized epipolar constraint for multi-camera setup and com-
pared the fitness of several designs in resolving the rotation-
translation ambiguity via the Fisher information matrix.
Sturm (2005) considered a general imaging model that in-
corporates multiple-camera views and analyzed the geome-
try of the problem. The minimal information needed to solve
the motion recovery problem for a multiple-camera platform
was discussed in Stewenius and Astrom (2004). Both Stewe-
nius and Astrom (2004) and Sturm (2005) assumed that cor-
respondences were available, but as discussed in the preced-

ing sections, correspondences are difficult and computation-
ally expensive to obtain. The configuration of these multiple
cameras is in general arbitrary, and thus the algorithms pro-
posed are also general, independent of any specific camera
arrangement.

One of the works exploiting such multiple-camera system
in simultaneous motion is the Argus eye (Baker et al. 2004)
which consists of nine outward-pointing cameras. For each
camera, a set of camera motion candidates with the smallest
residual errors were found. The intersection of these candi-
dates when expressed in the global coordinates was taken as
the global motion. The fusion of information from the var-
ious cameras in the Argus Eye can be regarded as a loose
form of couplings (in the sense of Clark and Yuille 1994),
since the individual motion estimates are computed indepen-
dently and the fusion takes place only at the last stage.

In the work of Tsao et al. (1997), the epipolar constraints
of each camera are collected together, and a nonlinear resid-
ual function is obtained when the individual camera motions
are expressed in terms of the global motion. This nonlinear
function was then minimized to obtain the global motion.
Similar to works reviewed in the preceding paragraphs, the
multiple camera model analyzed is a general one, without
any attempt to exploit the constraints afforded by a particu-
lar configuration of the multiple-camera setup.

Neumann et al. (2004) proposed a linear plenoptic ap-
proach for motion estimation. Our work is similar to this
work in the sense that both methods are linearly formu-
lated and do not need correspondence. Like Neumann et al.
(2004), our work can be applied to a compound eye system,
but our formulation can also be applied to other eye topol-
ogy. There are, however, several major differences. First, our
linear method stems from considering projection rays that
are parallel but opposite in direction. In contrast, the linear-
ity of the plenoptic method comes from a five-dimensional
plenoptic function, which is unmeasurable in a conventional
camera. Due to this difference, our system can be built
from conventional pinhole cameras, whereas the plenoptic
method requires a specially designed sensor whose physical
structure is currently unrealizable. Secondly, in our method,
the translation is recovered from a quasi-parallax term where
information pick-up for translation is enhanced; whereas the
rotation is estimated in a separate post-translation step. In
this way, the coupling between the translation and the ro-
tation is minimized, since only those measurements best
suited for translation recovery (and rotation recovery re-
spectively) are utilized. In contrast, the plenoptic approach
solves for both the translation and the rotation simultane-
ously. Though the motion recovery enjoys the benefit of a
spherical FOV, it is not clear if the plenoptic approach is the
best way of removing the coupling between the translation
and the rotation.

Other pertinent works are that of Lim and Barnes (2007,
2008), Thomas and Simoncelli (1994) which estimate the
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epipole in a spherical eye. These works are related to ours
in so far that they exploit the information present in an op-
posite pair of visual rays, which are termed as an antipodal
pair. However, such a camera system with a single view-
point is a serious qualification as far as modeling biological
visual systems is concerned, as most natural visual systems
such as the lateral eyes of vertebrates and the insect com-
pound eyes are not of a single viewpoint. For instance, in a
compound eye system, each ommatidium has its own opti-
cal center, situated on different parts of the substrate surface
or the head. Our paper examines fully the computational im-
plications of such eye arrangements found prevalently in the
animal kingdom. Furthermore, we use Fisher information
matrix to explicitly characterize the inherent ambiguity in
such eye arrangements, where each eye might only have a
small field of view. In comparison, the methods of Lim and
Barnes (2007, 2008), Thomas and Simoncelli (1994) have
little to say about these numerical aspects, since they start
with a spherical field of view, which hardly suffers from the
bas-relief ambiguity. Thus, it is unclear whether their good
performances benefit from the formulation, or simply result
from the spherical field of view. For instance, in Lim and
Barnes (2007), if all the antipodal pairs are closely clustered,
the great circles in their formulation would span a small an-
gle in their orientations; thus the intersections of these great
circles might not be well-localized enough for accurate epi-
pole estimation. Where applicable, further differences be-
tween (Lim and Barnes 2007, 2008; Thomas and Simoncelli
1994) and our work will be highlighted in later sections.

4 Linear SfM Based on Quasi-Parallax

This paper proposes a method for solving ego-motion and
applies to systems where there exists visual rays that are par-
allel to each other but facing the opposite direction, and the
entire system moves in tandem. These visual systems can be
realized in a variety of ways such as via the compound eye
or via the laterally placed pinhole cameras (for details, see
Sect. 4.2). We show that our formulation presses maximum
advantage from the physical structure of these visual sys-
tems, while conventional methods based on some nonlinear
constraints do not have the optimal way of combining infor-
mation and thus still suffer from the bas-relief ambiguity to
some extent, even for the gold-standard BA technique.

4.1 Outline of Our Approach

The main contribution of our paper lies in proposing a
method that utilizes different and appropriate ensembles of
visual rays for estimating translation and rotation respec-
tively. For translation recovery, we consider visual rays that
are parallel but facing the opposite direction. We call such

pairs of visual rays the matching pairs. In a geometrical
sense, this grouping operation that we perform is akin to that
in obtaining the parallax, as the matching pair have identical
rotational flows. However, we term the resulting difference
in motion flows as quasi-parallax, because it still contains
weak induced translational terms caused by the global rota-
tion, and thus carries terms determined by the rotational pa-
rameters. Despite this, the effect of the induced translational
terms has been largely reduced and thus the global transla-
tion can be accurately recovered. For the same reason, such
quasi-parallax term is clearly not suitable for rotation recov-
ery. Instead, the rotation is computed in a post-translation
step, by looking at the individual epipolar constraint of each
camera. In this way, we are able to press maximum advan-
tage from the diametrically opposite visual field available in
such visual system.

In the terminology of the plenoptic function, we are us-
ing parallel rays for translation recovery and a pencil of
rays for rotation recovery. Thanks to this two-staged re-
covery process, the translation can be recovered well even
with a dominant rotational flow; a good translation esti-
mate in turn benefits the rotation recovery. This is in con-
trast to those nonlinear computationally expensive methods,
which use the same input to estimate the translation and
the rotation together, and typically involve heavy optimiza-
tion over six motion parameters simultaneously (Pless 2004;
Triggs et al. 2000). In consequence, the estimate error of the
translation and that of the rotation are intertwined and affect
each other. This undesirable coupling effect is especially ob-
vious when either the translational flow or the rotational flow
is dominant.

To quantify the relative merits of our linear method and
the nonlinear BA, we use Fisher information matrix as a tool
to analyze the inherent ambiguity in the two formulations.
We show that our formulation has a more optimal integration
of the information from multiple cameras, in the sense that
it resolves the bas-relief ambiguity much better, especially
under small field of view.

With regards to numerical implementation, we adopt data
normalization and the Total Least Squares approach (TLS)
so that the system is well-conditioned and robust to noise
perturbation. Compared to Linear Least Squares, TLS is
more robust for our errors-in-variables system. Our quasi-
parallax method also improves the feasibility of the tradi-
tional parallax idea: we only require a matching pair of
points in two cameras to have some depth difference, in-
stead of requiring two coincident points in the same camera
to have depth difference. Clearly, this assumption is much
more readily satisfiable, considering that each camera faces
opposite directions and is likely to view scenes with differ-
ent depths.

There are other advantages to our formulation. Like the
traditional parallax method, our method is based on opti-
cal flows; thus no stereo correspondence is needed. Another
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important advantage of our algorithm is that the length of
the baseline (the distance between the camera centers) is
not necessary for the motion estimation, as we show in the
next section. This advantage renders our method suitable for
cases where the baseline might be difficult to measure.

In sum, the contribution of this paper lies in the follow-
ing. First, we analyze the aptitude of a class of eyes (possess-
ing the common characteristics of having matching pairs of
visual rays) for SfM. Then a linear algorithm is put forth
to address both the geometrical and numerical difficulties
associated with the motion estimation problem. Geometri-
cally, we are able to make full use of the inherent robustness
of such wide-FOV camera clusters by tightly coupling the
information from each individual camera at the flow level.
We make use of the quasi-parallax to accurately recover the
translation by weakening the rotation. The robustness of the
algorithm is enhanced as we eschew correspondences and
do not require strict parallax. Numerically, with appropriate
data normalization and the TLS approach, the linearization
proves to behave well, with both the translation and rotation
being recovered well with very little biases. Compared to
nonlinear methods, our method runs at a much less compu-
tational cost and is much faster.

4.2 Physical Realization

The following paragraphs give examples of visual systems
to which our method can be applied.

4.2.1 Artificial Compound Eye

The recent development of reconfigurable soft lithography
using polydimethylsiloxane (PDMS) allows the creation of
unconventional three-dimensional (3D) polymeric optical
systems similar to biological ones, which are themselves
constructed from biological polymers.

Such technology allows ommatidia to be arranged nor-
mal to a sphere, more faithful to their natural counter-
parts. Hornsey et al. (2004) constructed an optic dome cov-
ered with eyelet lenses made of glass fiber bundles. The
first artificial ommatidia by self-aligned microlenses and

Fig. 1 An artificial compound eye fabricated by the biologically in-
spired 3D optical synthesis method from Jeong et al. (2006)

waveguides were created by Kim et al. (2005). This was fol-
lowed by a 3D compound eye with self-aligned waveguides
and individual microlens units on a spherical surface by
Jeong et al. (2006) as shown in Fig. 1. The ommatidia were
arranged along a hemispherical polymer dome such that
each points to a different direction, allowing for a wide FOV,
similar to that of the natural eye. Neumann et al. (2004) also
presented a design concept for a compound eye sensor and
showed how it can be used to solve the ego-motion estima-
tion problem. All these visual systems, by virtue of their
wide FOVs, possess matching visual rays.

4.2.2 Lateral Eyes

The visual system of many vertebrates has eyes that are not
frontally placed. Each eye views different parts of the world
with little or no overlap in the visual fields. Any visual sys-
tem configured in this fashion can obtain matching rays in
the entire or part of the visual field of each camera, and it
has the virtue of simplicity in construction.

4.2.3 Conical Mirror

The conical mirror camera has become quite popular in bio-
mimetic vision systems since it provides a 2D model of the
almost omnidirectional insect eye, and it is relatively easy
to construct (Chahl and Srinivasan 1997; Franz et al. 1998b;
Huber and Bülthoff 1998). Referring to Fig. 2, if the up-
per limiting ray lu is above the horizon (this is the case if
α > 90◦ and R > −h cosα tan α

2 ), then matching pairs of vi-
sual rays can be found. In particular, if we let θ(l) denote the
angle made by the visual ray l with the horizon, then those
visual rays li with |θ(li)| < min(|θ(l1)|, |θ(lu)|) and which
are mapped inside the circular disk with radius ρmax in the
image plane would have matching pairs.

Fig. 2 Imaging geometry for a conical mirror camera from Chahl and
Srinivasan (1997). N , camera nodal point; T , tip of conical mirror; lu,
upper limiting ray; h, horizontal ray; l1, lower limiting ray. The conical
mirror camera allows for capturing omnidirectional images without ro-
tating a camera. A ring-shaped visual field between l1 and lu is mapped
to a circular disk with radius ρmax in the image plane. The visual field
contains the horizon if α > 90◦ and R > −h cosα tan α

2
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5 Technical Details of our Approach

5.1 Prerequisites

Figure 3 shows the basic set-up of our system, configured
as a laterally placed pair of cameras. An extended set-up
involving more than two cameras is studied in Sect. 5.3.

Here, the two cameras face opposite directions and their
optical centers are of equal distance (termed as radius r)
from the global origin O . The two cameras are attached
rigidly to the body and move together according to a global
motion (v,ω) expressed in the world coordinate system
{O-XYZ}. The cth camera’s translation vc and rotation ωc

are related to the global motion by the following respec-
tively:

vc = RT
c · (ω × Tc + v), ωc = RT

c · ω (1)

where Rc and Tc denote the orientation and translation of
the cth camera relative to the world reference frame respec-
tively:

R1 =
⎡
⎣

1 0 0

0 1 0

0 0 1

⎤
⎦ , T1 =

⎡
⎣

0

0

r

⎤
⎦

R2 =
⎡
⎣

−1 0 0

0 1 0

0 0 −1

⎤
⎦ , T2 =

⎡
⎣

0

0

−r

⎤
⎦

Assuming the global motion executed by the system is given
by translation v = (U,V,W)T and rotation ω = (α,β, γ )T ,
the individual 3D motions of cameras are:

v1 = (U + βr,V − αr,W)T , ω1 = (α,β, γ )T

v2 = (−U + βr,V + αr,−W)T , ω2 = (−α,β,−γ )T
(2)

This paper adopts a perspective pinhole camera model with
known focal length f . Assuming (u, v) is the optical flow at

Fig. 3 Configuration of the laterally-placed pair of cameras. pcam1 and
pcam2 form a matching pair of points

image point (x, y) arising from a scene point with depth Z,
we have:

u = utr

Z
+ urot

= Wx − f U

Z
+ αxy

f
− β

(
x2

f
+ f

)
+ γy

v = vtr

Z
+ vrot

= Wy − f V

Z
+ α

(
y2

f
+ f

)
− β

xy

f
− γ x

(3)

where 1
Z

(utr, vtr) and (urot, vrot) are the components of the
flow due to the translation and the rotation respectively. Can-
celing the depth Z from the above two equations gives us the
differential epipolar constraint:

uvtr − vutr = urotvtr − vrotutr (4)

Fully expanding (4) yields many nonlinear terms on the
right-hand side, most of which are the coupling terms be-
tween translation and rotation generated by the products
urotvtr and vrotutr . This coupling contributes to the forma-
tion of the bas-relief valley under small FOV: the residue
caused by error in the translational estimate can be compen-
sated by suitable choice of error in the rotational estimate.

5.2 The Basic Two-Stage Recovery Algorithm

Our estimation algorithm consists of two stages where the
translation and the rotation are recovered separately. In
the first stage, the translation is estimated from the quasi-
parallax terms in which the translational flows are dominant.
Given the translational estimate, the second stage constructs
a linear system suitable for recovering rotation.

To obtain the quasi-parallax terms for translation recov-
ery, we collect from the camera pair projection rays that are
parallel but opposite in direction. Such pair of visual rays
project onto the two image planes a pair of image points,
which we term as the matching points. As in Fig. 3, pcam1

and pcam2 are a pair of matching points. pcam1 is projected
from visual ray O1P1 and pcam2 is projected from O2P2. If
the image coordinate of pcam1 is (a,−b), it is evident that
pcam2 should lie at the position of (a, b). In general, we use
pcam1 = (xi, yi) and pcam2 = (xi,−yi) to represent the ith
matching pair. In the cth (c = 1,2) camera, denote (ui

c, v
i
c)

as its optical flow measured at the ith matching pair. For no-
tational convenience, we omit the index i where it is clear
from the context, and thus 1

Z
(utr

c , vtr
c ) denotes the transla-

tional flow and (urot
c , vrot

c ) the rotational flow.
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5.2.1 Stage 1: Recovering the Global Translation

At the matching points, we substitute the respective camera
rotations in (2) into (3). It is clear that the rotational flows at
the pair of matching points are identical in magnitude:

urot
2 = urot

1
�= urot, vrot

2 = −vrot
1

�= −vrot (5)

With these two equalities in hand, we subtract the respec-
tive epipolar constraints (4) of camera 1 and camera 2 and
obtain:

u1v
tr
1 − u2v

tr
2 − v1u

tr
1 + v2u

tr
2

= urot(vtr
1 − vtr

2 ) − vrot(utr
1 + utr

2 ) (6)

Substituting the respective motions of camera 1 and cam-
era 2 in (2) into (6), we obtain:

(v1 + v2)U + (u2 − u1)V + (u1 − u2)y − (v1 + v2)x

f
W

= 2r(urotα + vrotβ) − (u1 + u2)αr − (v1 − v2)βr (7)

This equation is linear in the translation unknowns (U,V,W),
with all the coupling terms between v and ω eliminated.
Note that if we set r = 0, the preceding would reduce to
the following equation:

u1 − u2

v1 + v2
= Wx − f U

Wy − f V
(8)

This is equivalent to the constraint obtained by summing the
optical flows at antipodal points of a spherical camera in Lim
and Barnes (2007) and then eliminating the depth-related
factor K in their formulation. It is also related to the ear-
lier work of Thomas and Simoncelli (1994) which takes the
cross product of the optical flow with the position vector to
obtain the angular flow, essentially a dual representation of
the usual optical flow. In terms of the geometrical constraint
utilized, there is no difference between the formulations of
Thomas and Simoncelli (1994) and Lim and Barnes (2007,
2008) and the r = 0 special case in our formulation.1

Coming back to our system, normally it produces multi-
ple pairs of matching points in the form of (7). Collecting all

1The apparent difference in the operations done to the antipodal pair of
optical flows (summation in Lim and Barnes 2007 and subtraction in
Thomas and Simoncelli 1994) is a consequence of the sign difference
introduced by the cross product operation in Thomas and Simoncelli
(1994); the eventual expressions in both formulations are essentially
the same. In this connection, we would also like to observe that it is
incorrect to say that the subtraction operation of Thomas and Simon-
celli (1994) will face problem when the antipodal points are equally far
away, as claimed by both sets of authors. The so-called angular trans-
lation flows of an antipodal pair in Thomas and Simoncelli (1994) are
pointing in opposite directions; thus subtracting them would not make
them vanish!

the N equations from the entire set of matching points, we
arrive at:

A(N×3)x1 = −rB(N×6)x2 (9)

where x1 = [U,V,W ]T , x2 = [α,β,αβ,βγ,αγ,β2 −α2]T ,
and the corresponding ith row of A and B are as follows:

ai =
[
vi

1 + vi
2, ui

2 − ui
1,

(ui
1 − ui

2)y
i

f
− (vi

1 + vi
2)x

i

f

]

bi =
[
ui

2 + ui
1, v

i
1 − vi

2,
xi2 − yi2

f
,xi,−yi,

xiyi

f

] (10)

The right-hand-side (RHS) of (7) or 9 still contain terms in
α,β, γ and r ; they enter the equation via the induced terms
ω×Tc in the individual camera translations vc. That is, they
arise from the translation induced by the global rotation ω.
In this sense, the term r‖Bx2‖ on the RHS of (9) can be
viewed as a residue, resulting from imperfect parallax aris-
ing from the induced translation ω × Tc. Clearly, if the ra-
dius r is zero, no induced translation exists, and we will ob-
tain perfect parallax.

In most scenarios, this residue caused by the induced
translation ω × Tc is much smaller compared to the other
terms, due to the typical sizes of ω and Tc. Firstly, the mag-
nitude of ω is normally much smaller than that of transla-
tion v, unless the rotation is very dominant in the system.
Secondly, the radius r in Tc is usually much shorter than
1 m in both man-made and biological systems. Thus, multi-
plying all the terms on the RHS of (9) by r further reduces
their magnitude. As a consequence, the induced translation
terms on the RHS are negligibly small compared to the true
parallax terms on the left-hand-side. Due to the smallness of
those terms, it would be numerically questionable to solve
all the unknowns in (9) directly, whether via a nonlinear
method or via a linearizing scheme (by ignoring the depen-
dency among the unknowns).

Viewed in another way, the quasi-parallax formulation
are not suited for estimating both the translation and the ro-
tation together, as the effect of the rotation is very weakly
represented in the quasi-parallax via the induced translation.
Trying to fit all the unknowns in one go would result in over-
fitting and produce a biased solution that is noise sensitive.

Instead, we find that numerically it is much more stable
to first ignore the residual terms on the RHS of (9) and solve
the homogeneous system Ax1 = 0 via Total Least Squares
(TLS). With the approximate translation estimate, we pro-
ceed to Stage 2 (Sect. 5.2.2) to solve for the rotation. We
then substitute the rotation estimate (α̂, β̂, γ̂ ) back into x2

of (9) and form a new equation:

[A,Bx2]︸ ︷︷ ︸ · [x1, r]T︸ ︷︷ ︸ = 0
(11)

ÃN×4 · x̃1 = 0
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Algorithm 1 Linear Quasi-parallax Algorithm

1: Recover the translation estimate v̂ from Ax1 = 0, which
is to be solved by TLS approach in Sect. 5.4.

2: Given v̂, compute ω̂ as described in Algorithm 2.
3: Check if current estimate (v̂, ω̂) obeys the rule of posi-

tive depth. If not, flip v̂ by 180◦ and go back to Step 2
to recompute rotation with −v̂.

4: Check if the induced translation is insignificant. If the
following condition is satisfied, the algorithm regards
the induced translation as insignificant: it stops and re-
turns current (v̂, ω̂) as the global motion. Otherwise, the
algorithm proceeds to Step 5.
[Condition:] Substitute ω̂ into x2 to form Ã in (11). If
ρ > 100 and τ4 < 0.3, we consider Ã as having rank 3
and accept current solution (v̂, ω̂) as correct.

5: Ã is full rank. Recompute translation by using TLS to
solve (11) for x̃1. Then v̂ is returned as the first three
components of x̃1. Rotation is also refined using this
updated x̃1. Repeat Steps 4 and 5 until convergence.

Assume the singular values of Ã are τ1 ≥ · · · ≥ τ4 ≥ 0. If the
computed x2 is accurate enough, or alternatively, the whole
residue r‖Bx2‖ is insignificant compared to the other terms,
τ4 will be close to zero, since (11) is homogeneous. It fol-
lows that we can use this condition to check if we need to
refine the current estimate of the translation.

As the absolute value of τ4 is also affected by the level of
noise, we consider instead both the value of τ4 and the ra-
tio ρ = τ3

τ4
. If ρ > 100 and τ4 < 0.3, we deem the rotational

residue r‖Bx2‖ insignificant or well estimated, so that (11)
can be satisfyingly regarded as a homogeneous system of
equations.2 In this case, we accept the current solution (v̂, ω̂)

as correct. Otherwise, we recompute the translation by solv-
ing (11) with TLS. With the new translation estimate, the ro-
tation estimate can also be refined via Stage 2. In principle,
we can iterate the above process until both the translation
and rotation estimates converge, However, we find that un-
der most cases tested in our simulation, Ã is rank-deficient
and there is no need to refine the estimates. Even in cases
when the induced terms are not negligibly small (for in-
stance, caused by dominant rotation), the solution converges
after one iteration.

Based on the above observations, we propose the method
in Algorithm 1. Note that the recovery does not require the
knowledge of r and the recovered translation v̂ is in the form
of (sU, sV, sW)T , up to an unknown scale factor s which
scales the magnitude of v̂ to unity.

2Given a approximation of (α,β, γ ), checking the rank condition of Ã
works better than checking the rank of A directly, especially when the
induced translation terms might not be vanishingly small.

5.2.2 Stage 2: Recover the Global Rotation

It is not advisable to compute (α,β, γ ) from (9), since it
comprises chiefly of global translation (U,V,W). Instead,
we revert to the epipolar constraint of each camera and
use all the available feature points (not necessarily match-
ing points) to recover rotation. Substituting the estimated
(sU, sV, sW)T into the individual epipolar constraints of
the two cameras, we obtain a system of equations in the form
of:

M ·
[
α,β, γ︸ ︷︷ ︸,

r

s
β,

r

s
γ,

r

s
αβ,

r

s
αγ,

r

s
γβ,

r

s
(β2 − γ 2)

︸ ︷︷ ︸

]T

= d

Θ1 Θ2 = r
s
Φ (12)

where M is a data matrix, d is a measurement vector, Θ1

and Θ2 are two unknown vectors.
Denote (u1, v1) as the optical flow at the feature point

(x1, y1) in camera 1 and (u2, v2) as the flow at (x2, y2) in
camera 2. Then mcam1 and mcam2, respectively the rows of
M arising from the measurement at (x1, y1) in camera 1 and
(x2, y2) in camera 2, are given by:

mcam1 =
[
x1W − Uf − x1y1V − Uy2

1

f
,

y1W − Vf + x1y1U − V x2
1

f
,

x1U + y1V − (x2
1 + y2

1)W

f
,

u1, v1,
x2

1 − y2
1

f
,−y1, x1,

x1y1

f

]

mcam2 =
[
x2W − Uf − x2y2V + Uy2

2

f
,

−y2W − Vf − x2y2U + V x2
2

f
,

x2U − y2V − (x2
2 + y2

2)W

f
,

−u2, v2,
y2

2 − x2
2

f
,−y2,−x2,

x2y2

f

]

(13)

Defined in a similar manner, dcam1 and dcam2 are given by:

dcam1 = v1U − u1V + W(u1y1 − v1x1)

f

dcam2 = W(v2x2 − u2y2)

f
− u2V2 − v2U2

(14)

Due to the existence of six higher order terms in Θ2, (12)
cannot be directly solved by linear techniques without com-
promising the recovery performance. Even solving the equa-
tion nonlinearly is fraught with the danger of overfitting,
since these six terms of Θ2 contribute to (12) insignificantly
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compared to the first three terms of Θ1. For our applica-
tion scenario, with its typical values of r and s, and with the
(x, y) values arising from small to moderately small FOVs,
the contribution of the second-order terms (i.e. r

s
α, r

s
β) is

typically one to two orders of magnitude smaller compared
to that of the first three terms, and the contribution of the re-
maining four third-order terms is yet another order of mag-
nitude smaller. Incorporating all these terms will result in
an overly complex model that captures noises in the data.
As before, we adopt the strategy of reducing the dimension
of the problem and drop the four third-order terms. The re-
maining terms give rise to this system of equations:

[ m1, . . . ,m5 ] ·
[

α,β, γ,
r

s
α,

r

s
β

]T

= d (15)

where mi is the ith column in M. Further ignoring the de-
pendency among the unknown variables, we can compute
the initial estimate ω̂0 = (α̂0, β̂0, γ̂0)

T from (15) by the lin-
ear least squares technique.

The recovered ω̂0 is used for the refinement step. Substi-
tuting ω̂0 into Φ in Θ2, we have Φ̂0 = Φ|

α̂0,β̂0,γ̂0
. Rearrang-

ing (12) leads to a standard linear system:

[
m1, m2, m3 , [m4 . . .m9]Φ̂0

] ·
[
α,β, γ,

r

s

]T

= d (16)

Solve the above equation for an updated rotation estimate.
If necessary, we substitute the newly obtained estimate back
into (16) and solve it again for a more refined solution. This
process can be repeated until the solution converges. Nu-
merical tests show that the estimate always converges onto
a global solution after one or two iterations. This fast con-
vergence can be attributed to the small magnitude of those
higher order terms, in comparison to the first three terms of
Θ1 in (12). Algorithm 2 presents our linear rotation estima-
tion algorithm, carried out in three steps.

5.3 Extended Quasi-Parallax for Multiple Camera Pairs

Figure 4 shows a system of multiple camera pairs config-
ured in the manner of the insect compound eye. It consists
of many small-FOV cameras, situated on the surface of a

Algorithm 2 Linear Rotation Recovery Algorithm
1: Linearize: Directly solve (15) as a linear system, with

the solution given by M1
+d where M1

+ is the pseudo-
inverse of the matrix [ m1, . . . ,m5 ].

2: Refine: Given the estimate ω̂0 = (α̂0, β̂0, γ̂0)
T , com-

pute Φ̂0 = Φ|
α̂0,β̂0,γ̂0

and form (16). Solve (16) by linear
least squares for a new estimate of ω.

3: Iterate: Iterate Step 2, if necessary, until convergence.

Fig. 4 Multiple camera pairs configured as a compound eye. The
global coordinate is {O − XYZ} and the kth camera’s coordinate is
{Ok − XkYkZk}. The system is made up of camera pairs placed at dia-
metrically opposite positions, such as the camera pair 3 and 4

sphere. Each individual camera represents an ommatidium
and has a visual axis which points outward in the direction
of the surface normal of the sphere. Any two diametrically
opposing cameras (e.g. Camera 3 and Camera 4) can be con-
sidered as a lateral eye pair discussed in the preceding sec-
tions, with a matrix equation similar to (9). Suppose Nc is
the total number of matching points. Collecting the respec-
tive equations from all the pairs in the system, we have:

A∗
(Nc×3)x1 = rB∗

(Nc×9)x3 (17)

where x3 = [α,β, γ,αβ,βγ,αγ,α2, β2, γ 2]T . Similar to A
and B in (9), the data matrices A∗ and B∗ depend on the
optical flows and the matching point positions. In addition,
A∗ and B∗ also contain terms decided by the orientation and
displacement of each camera pair with respect to the global
coordinate.

Translation recovery is rather straightforward: we just
need to substitute (17) into Algorithm 1 and follow the pro-
cedure accordingly. Once the translation is recovered, we
then proceed to the rotation estimation stage, described in
Algorithm 2. The original system of equations in (12) is
slightly modified to:

M∗ ·
[
α,β, γ︸ ︷︷ ︸,

r

s
[α,β, γ,αβ,αγ, γβ,α2, β2, γ 2]

︸ ︷︷ ︸

]T

= d∗

Θ1 Θ3 = r

s
Φ∗

(18)

where M∗ is the data matrix, d∗ is the measurement vec-
tor, and Θ1 and Θ3 are two unknown vectors. Compared
to the original (12), we now have 3 more higher order un-
known terms. Such terms arise because in many lateral eye
pairs, their optical axes are no longer aligned with the global
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Z-axis, introducing more coupling terms between the in-
duced translation and the rotation.

The Linearize step in (15) needs to be modified too to
incorporate the r

s
γ term:

[
m∗

1, . . . ,m∗
6

] ·
[
α,β, γ,

r

s
α,

r

s
β,

r

s
γ

]T

= d∗ (19)

where m∗
i is the ith column in M∗. The rest of the procedure

is the same.

5.4 TLS and Data Normalization

In real images, the data matrix A of a system of linear equa-
tions Ax1 = 0 is inevitably perturbed by noise. From a sta-
tistical perspective, the Total Least Squares (TLS) approach
is better suited to deal with such errors-in-variables (EIV)
models, as compared to the classical Linear Least Squares
techniques (Leedan and Meer 2000). The TLS approach has
a restrictive requirement that the error covariance matrix C
associated with A should be an identity matrix scaled by an
unknown scale factor. As this condition is violated in many
applications as well as in our case, we need to perform data
normalization on the matrix A. We will demonstrate how
this can be done in the case of (10). The normalization ma-
trix for Ã in (11) could be obtained in a similar spirit.
The following assumptions are required:

1. The noises in the optical flows of both cameras are addi-
tive, i.i.d and Gaussian, with σ 2

v as the noise variance.
2. The matching points’ positions are not corrupted by

noise.

With the preceding assumptions, the error in the ith ob-
served vector can be written as:

�ai =
[
�vi

1 + �vi
2,�ui

2 − �ui
1,

(�ui
1 − �ui

2)
yi

f
− (�vi

1 + �vi
2)

xi

f

]
(20)

where (�ui
c,�vi

c) represents the Gaussian noise added to
the flow at the ith matching pair in the cth camera. De-
noting the covariance matrix associated with �ai as Ci

(i = 1 . . .N ), we have:

Ci = 2σ 2
v

⎡
⎢⎢⎣

1 0 − xi

f

0 1 − yi

f

− xi

f
− yi

f
xi2+yi2

f 2

⎤
⎥⎥⎦ (21)

Clearly Ci is not the identity matrix as required. We should
normalize the dataset to make the average covariance matrix
closer to identity. The normalization scheme is carried out
in the following order to obtain the normalization matrix H.

1. Translate: Shift the centroid of the data to the image ori-
gin so that the off-diagonal terms in Ci are closer to 0.

2. Scale: Normalize the shifted matching points ( xi

f
,

yi

f
) so

that they have a scatter closer to a unit circle. As a result,

the last diagonal entry xi2+yi2

f 2 in Ci will be nearer to 1.

Normalized by H, the homogeneous equation Ax1 = 0 be-
comes:

(AH)(H−1x1) = 0 �⇒ Āx̄1 = 0 (22)

The solution for x̄1 is given by the eigenvector associated
with the smallest singular value of Ā. The original transla-
tion x1 is then recovered as Hx̄1.

After normalization, not only the error covariance matrix
C becomes much closer to identity, the condition number of
ĀT Ā is also much smaller, which means that the system is
more robust to noise perturbations.

6 Numerical Characterization

6.1 Extended Bundle Adjustment

In this section, we intend to compare our method against the
gold standard solution obtained by the BA algorithm using
Fisher Information Matrix. The purpose of the comparison is
not intended to establish the superiority of our method over
BA or otherwise; in any case, the BA method is usually ap-
plied to scenarios with longer baselines than the differential
displacements being considered here. In our system, where
the scene points cannot be tracked over a large number of
views, the bundle of visual rays being adjusted in the BA are
“local” to each camera (over its successive views), although
in our formulation, the adjustment does obey the constraint
that the individual camera motions must arise from the same
global motion. When the field of view of each individual
camera is small, difficulties might arise and it is not at all
clear if BA would have a better performance than our quasi-
parallax formulation. The purpose of the following compar-
ison is to shed some light on this issue.

The original BA deals with a single camera and thus
needs to be extended to a system of two laterally placed
cameras. The outline of the extended BA is given out in Al-
gorithm 3. The extension of the preceding algorithm to the
case of multiple camera pairs is straightforward and will be
carried out in the next section for experimental comparison.

6.2 Quasi-Parallax versus Bundle-Adjustment

We investigate the effectiveness of the quasi-parallax for-
mulation in removing the inherent ambiguity between the
translation and the rotation, and compare it against that of
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Algorithm 3 Extended Bundle Adjustment
1: Initialize: Using linear subspace method, solve cam-

era motion (vc,ωc) (c = 1,2) separately and compute
initial world depths Z0 for all feature points. The ini-
tial estimates of the global motion (v0,ω0) is given by
v0 = (v1 +Rv2)/2, and ω0 = (ω1 +Rω2)/2 in this sim-
ple configuration, where R is a diagonal matrix with
[−1,1,−1] on the diagonal.

2: Estimate: For every feature point pi (i = 1, . . . ,Nc) in
each camera, compute the back-projected flow (ûi

c, v̂
i
c)

using the global motion estimate.
3: Iterate: Minimize the following nonlinear cost function

using Levenberg-Marquardt algorithm over N1 +N2 +6
variables. There are N1 + N2 depth unknowns forming
the vector Z and 6 global motion parameters. For the
sake of simplicity, we assume N1 = N2 and r is known.

J (v,ω,Z) =
2∑

c=1

Nc∑
i=1

[(ûi
c − ui

c)
2 + (v̂i

c − vi
c)

2] (23)

the gold standard BA formulation. Fisher information ma-
trix is used to compute the covariance between motion pa-
rameters. Large off-diagonal entries in this matrix indicate
an inherent ambiguity between the corresponding parame-
ters. It is well-known that a single camera suffers from the
ambiguity between the U and β pair, and the V and α pair.

According to Pless (2004), if we assume a Gaussian dis-
tribution for the errors in the measured optical flows, the
Fisher matrix of a multiple camera system is defined as:

F =
∑
k∈D

(
N∑

i=1

∂qi

∂k

T ∂qi

∂k

)∣∣∣∣∣
k=(v,ω,Z1,...,ZN )

(24)

where N is the total number of feature points and qi is the
optical flow measured at the ith feature point. k is a vector of
unknown parameters which contains the global motion and
the depths of all the feature points. Each k in the parame-
ter set D defines a motion-scene configuration and has an
associated Fisher matrix. The numerical integration of this
matrix over many samples from D, characterizes the behav-
ior of a camera system in the environment described by D.

The camera and the motion-scene configuration for com-
puting the Fisher matrices is as follows. Each camera has a
40◦ FOV and views a different scene with depths ranging
from 3 m to 7 m in one camera, and from 5 m to 10 m in the
other. As we will see later, this asymmetrical depth distrib-
utions for the two cameras is crucial to bring out the hidden
ambiguity in the extended BA method. Both the translation
and the rotation are sampled uniformly, with their respective
norms equal to 1 and 0.01 respectively.

For a laterally-placed camera pair, the extended BA sim-
ply collects all the available flows from the two cameras.

Thus the measurement vector Q = {qi}Ni=1 is [u1;v1;u2;v2],
as no interaction exists between the two cameras at the level
of optical flows. The overall Fisher matrix is equal to the
addition of the individual Fisher matrices for each camera.

As shown in Table 1(b), the bas-relief ambiguity still
looms large in the extended BA. This contradicts Pless’
claim in Pless (2004) that no ambiguity exists in this lateral
eye set-up. This discrepancy can be attributed to the fact that
in his simulations, both cameras were viewing scenes with
identical depth distributions. Under such setting, the corre-
sponding ambiguities of the individual cameras, say the con-
fusion between U and β , manifest in covariance terms with
the same magnitude but different signs. Thus if added up,
these ambiguities canceled each other and the entry of Uβ in
the overall Fisher matrix became zero. Hence the “zero am-
biguity” phenomenon in Pless (2004) can be regarded as a
case of special scene type; here, a more general, asymmetric
depth scene reveals that BA still suffers from the bas-relief
ambiguity in the case of small and moderate field of view.

In our quasi-parallax formulation, the input measurement
is chosen to facilitate translation pickup. The Fisher matrix
is thus based on the matching points, that is, Q is given by
[u1 −u2;v1 +v2]. It can be seen from the large values of the
first three diagonal entries of Table 1(a) that the translation
parameters are picked up well using our formulation. The
last three diagonal entries also revealed that this formulation
is not suitable for rotation recovery and indeed we used a
separate step in Sect. 5.2.2 to recover the rotation. Note that
since ωz is not present in our Q, all the associated entries are
zero.

Tables 1(c) and (d) show the Fisher matrices of the same
two methods with identical setup, except that the field of
view of each camera is now 100◦. We can see that the bas-
relief ambiguities are very much reduced, especially in the
case of the extended BA. The results suggest that with visual
field that covers the entire visual sphere, the bas-relief ambi-
guities do vanish. Thus, the fact that it is only doing “local”
bundle adjustment might not matter in this case.

7 Experimental Results

Several experiments were conducted to test our method
under different scenarios. The performance of our linear
method was further compared against that of the extended
BA. The evaluation criteria consist of the errors in direc-
tion (the angle between the estimated and the true motion in
degree) for both the translation and rotation estimates, and
the error in magnitude for the rotation estimate (the norm of
the difference between the estimated and the true rotation).
Note that the translation magnitude is not recoverable in our
method since r is not known. Both methods were tested with
varying translation-to-rotation ratio ε, computed as the ratio
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Table 1 Fisher matrices of two methods with ambiguities highlighted, QP refers to Quasi Parallax and BA refers to Bundle adjustment

(a) QP-based with FOV = 50◦ each (b) BA-based with FOV = 50◦ each

U V W α β γ

1 0 0 0 0.002 0

0 1 0 −0.002 0 0

0 0 0.088 0 0 0

0 −0.002 0 0.001 0 0

0.002 0 0 0 0.001 0

0 0 0 0 0 0

U V W α β γ

0.03 0 0 0 0.035 0

0 0.03 0 −0.036 0 0

0 0 0.002 0 0 0

0 −0.036 0 0.994 −0.004 0

0.035 0 0 −0.004 1 0

0 0 0 0 0 0.079

(c) QP-based with FOV = 100◦ each (d) BA-based with FOV = 100◦ each

U V W α β γ

1 0 0 0 0.001 0

0 1 0 −0.001 0 0

0 0 0.947 0 0 0

0 −0.001 0 0.001 0 0

0.001 0 0 0 0.001 0

0 0 0 0 0 0

U V W α β γ

0.017 0 0 0 0.003 0

0 0.017 0 −0.003 0 0

0 0 0.016 0 0 0

0 −0.003 0 0.981 0.005 0

0.003 0 0 0.005 1 0

0 0 0 0 0 0.352

of the total magnitude of the translational flow and that of
the rotational flow from all feature points. The image reso-
lution used in this paper is 512×512 pixels.

7.1 Experiment on Range Image

This set of experiment uses the Brown range image data-
base (Lee and Huang 2000) which contains many static nat-
ural scenes. Figure 5 shows the forest scene we used with
depths ranging from 3 m to 10 m. We endowed the scene
with 3D motions, and projected the 3D scene points and
their flows onto each camera’s image plane. The resulting
image points were matched across cameras. This scheme al-
lows us to experiment with realistic scenes with its sparse
and clustered feature distribution, and yet able to control the
exact amount of noise added to the image. The noise added
was a zero-mean Gaussian noise, isotropic in direction and
with standard deviation equal to the Noise-to-Signal Ratio
(NSR) times the average flow speed. We evaluated both the
BA and our method under three motion types of ε = 0.2, 1,
5 and subject to different levels of noise. The scale units for
each type of motion were listed as follows.
Each simulation consisted of 300 trials for the linear method
and 50 trials for the nonlinear one. The error of each simu-
lation was computed as the average of the errors from all the
trials.

7.1.1 A Lateral Pair of Cameras with Narrow FOV

Our first experiment consists of a lateral pair of cameras with
narrow FOV of 15◦ and r = 0.1 m. With such small FOV,
bas-relief ambiguity is expected to be very severe and result

Table 2 In the forest scene, three types of motions corresponding to
ε = 0.2, ε = 1, ε = 5 are executed

Ratio ε Motion type Translation: Rotation:

cm/s rad/s

ε = 1 Balanced motion [1,3,2] [0.004, 0.003, 0.002]

ε = 5 Dominant translation [6,12,1] [0.004,0.003,0.002]
ε = 0.2 Dominant rotation [1,3,2] [0.01,0.02,0.016]

Fig. 5 Range image of a forest scene used. Intensity represents depth
with distant object looking brighter. Regions with no range data ap-
pears black

in large errors in the solution. A total of 86 matching points
were found for the linear method and 452 feature points for
BA. In general, there are much fewer feature points for our
method due to the need to satisfy the matching requirement.3

Under all conditions, our linear method significantly out-
performed the nonlinear BA in all aspects. Even at the high-
est noise level of 15%, the linear method was still robust.

3If the distance between two feature points is no more than 5 pixels,
they are considered as a matching pair.
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Fig. 6 Motion recovery of the two methods with a pair of cam-
eras with narrow FOV of 15◦ each. QP stands for our Quasi-parallax
method, while BA denotes bundle adjustment. The three columns,
starting from the left, depict the estimation errors in translation direc-
tion, rotation direction, and rotation magnitude respectively. Note that
the y-axis for different diagrams may have different scales

Take the recovery of the translation direction as an exam-
ple (the left column in Fig. 6). When ε = 0.2, the estimation
error of our method is only 30% of that of the nonlinear
one. It is worth emphasizing that the linear method ran at a
much less computational cost and required only about 1

15 the
computation time of the nonlinear method using Matlab on
a 1.86 GHz Pentium PC. Our superior performance can be
attributed to the better resolving of the bas-relief ambiguity
and the stable numerical behavior of TLS with proper data
normalization. In contrast, the BA suffered from the ambi-
guity to a significant extent at such a narrow FOV and thus
yielded strongly biased estimates. This confirms the earlier
results obtained with the Fisher information matrix—even
with a pair of laterally placed cameras, ambiguities may
still exist if each camera only has narrow FOV. We should
also mention that the nonlinear BA method sometimes got
trapped in local minima. If the error in direction of the es-
timate is greater than 30◦, we deem that this has happened
and ignore the trial result, in order not to unduly influence
the results of the BA method.

With dominant translation in Fig. 6(a), both methods re-
covered the translation accurately whereas the rotation es-
timates became worse off. Nevertheless, rotation recovery
was much better in the linear method than the nonlinear BA.
This can be attributed to the post-translation step used to
estimate the rotation. Firstly, rotation estimation benefited
substantially from a good translation estimate. Secondly, we
are using different aspects of the plenoptic function suited
for rotation recovery. Thus the potentially unfavorable con-
dition for rotation recovery caused by the dominant transla-

Fig. 7 Motion recovery of the two methods with a pair of later-
ally-positioned cameras with 50◦ FOV each

tion was ameliorated by our method. Decreasing ε expect-
edly improved rotation recovery while impairing translation
recovery, as observed in both methods. However the nonlin-
ear method was affected more adversely.

In terms of the translation direction recovery, when ε was
reduced from 5 to 0.2, our linear method still managed to
produce an acceptable estimate. In the case of 15% noise,
our translation estimate was worsened by 9◦. This is in con-
trast to the BA where the recovery deteriorated rapidly: un-
der the same setting, the estimate error increased by 25◦.
This comparison indicated that under narrow FOV, the re-
moval of rotational flow in the quasi-parallax formulation
was very helpful for translation recovery.

The different degree of bas-relief ambiguity that still ex-
ists in both methods under narrow FOV can be illustrated
from another perspective. Looking at the rotation recov-
ery under increasingly dominant rotational flow, our method
generated a significantly improved estimate. For example,
when ε dropped from 5 to 1, the improvement of our rota-
tion direction estimate was by 10◦ at 15% noise, whereas
BA only improved slightly by 3◦. The reason that no sub-
stantial improvement is seen in BA is precisely due to the
bas-relief ambiguity that still exists under such narrow FOV,
exacerbated by the high level of noise.

In sum, the better performance of the linear method under
narrow FOV is due to the separate recovery of the translation
and rotation, each using different aspects of the flow field
most suited for their respective recoveries.

7.1.2 A Lateral Pair of Avian/Vertebrate Eyes

To mimic the two laterally-positioned eyes of some birds
and vertebrates, we configure a visual system consisting
of two diametrically opposite cameras with 50◦ FOV each
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and r = 0.1 m. The results in Fig. 7 show that the wide
FOV of 50◦ has largely resolved the bas-relief ambiguity.
Both methods performed better compared to that of the pre-
ceding experiment under narrow FOV. In particular, as the
BA method no longer suffers from the bas-relief ambiguity,
its performance became comparable and even outperformed
ours in some instances, though overall, there is no clear win-
ner among the two methods.

We picked 341 matching points for the linear method and
a comparable number of 1058 feature points for BA. Under
ε = 1 in Fig. 7, the linear and the BA methods produced
similar results, with the former’s performance being slightly
inferior. The maximal angular difference between the two
was 0.2◦, occurring in the translation recovery.

With a dominant translation of ε = 5, the quasi-parallax
method actually performed better than the BA method in two
aspects: both in the translation and rotation direction recov-
ery. In comparison, the estimation of the rotation magnitude
was not as good as the BA’s.

As for the case of dominant rotation with ε = 0.2, the lin-
ear method outperformed BA significantly, especially in the
translation estimation. With 15% noise, our estimate error is
4.1◦ less than BA’s. This is not surprising if we recall that
the undesirable influence of the strong rotational flow was
removed from the estimation and thus its deleterious effect
on the translation recovery was kept to a minimum.

7.1.3 A Compound Eye with Small Number of Facets

This section investigates the performance of both methods
in a compound eye set-up. A multiple camera system with
configuration similar to that of Fig. 4 is employed, with the
visual field of individual camera being 5◦ (which is the FOV
of an individual ommatidium in the honeybee). In our simu-
lation, each eye is made up of nine cameras, with all cameras
arranged on the surface of a sphere with radius r = 0.05 m.
The linear method had 352 matching points, while the BA
had 1279 feature points.

Under all conditions tested in Fig. 8, the linear method
and the BA produced almost identical results, given the
wide coverage of the visual field. While our linear method
achieved comparable accuracy to that of the nonlinear op-
timization techniques, it required much less computational
cost, which is crucial for an agent (such as insect) with lit-
tle computational resources and yet with a need to perform
rapid visuomotor tasks.

7.1.4 Effect of Calibration Errors

In real vision systems, there often exist imperfections in the
construction of the compound eye. One kind of error is the
imperfection in the spherical substrate of the compound.
This is especially pertinent in a biological compound eye

Fig. 8 Motion recovery of the two methods in a compound eye with
small number of facets

system, where the head is not a perfect sphere. The other
kind of error stems from imperfections in the camera pos-
tures, where it could be difficult to perfectly align the opti-
cal axes of two opposite cameras. In this section, we conduct
two experiments to test how both recovery methods (QP and
BA) perform under such errors. We used the same com-
pound eye set-up in the previous Sect. 7.1.3 and the same
global motions as in Table 2.

In the first experiment, we study the performance of the
two estimation methods when the radius r is not constant,
with variation of up to 50% being simulated across differ-
ent pairs of ommatidia. In particular, r is set to be r0 + �ri

where r0 is the average value of the varying r and �ri is the
random error added to the ith (i = 1, . . . ,9) pair’s separa-
tion with up to 0.5r0 variation. As before, the value of r0 is
assumed known for the BA.

On the whole, both methods are affected by the error in r

(i.e. �ri ) but to different extents. Compared to the identical
performances seen in Fig. 8, our method now gains a dis-
tinct advantage over the BA as shown in Fig. 9. This could
be attributed to the fact that our method is largely indepen-
dent of the calibration parameter r ; r only results in second
and higher order residual terms which are negligible. Thus
error in r has less an impact on our method’s performance.
In contrast, the BA’s estimation algorithm depends more sig-
nificantly on the fact that r is a known constant. Of course
one can explicitly estimate these variations in r , but doing
so would result in an algorithm that is much more complex
and whose numerical performance is open to question.

In the second experiment, we study how imperfections in
the camera postures will affect the performance of these two
methods. More specifically, consider the case where the two
opposing cameras Cam1 and Cam2 in Fig. 4 do not have
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Fig. 9 Motion recovery of the two methods in a compound eye placed
on a non-perfect spherical substrate

their optical axes properly aligned. Without loss of general-
ity, we can assume that the Cam2’s viewing direction Z2 is
aligned with the global Z-axis. Then the misalignment error
of Cam1 can be modeled by the three consecutive rotations
around the coordinate axes required to align the viewing di-
rection of Cam1 with that of Cam2. Here, for simplicity, we
only study the effect of misalignment error around the X-
axis, which we model by the rotation angle θ . The flow input
of the system was subject to a 10% isotropic noise.

As the results in Fig. 10 showed, under all conditions
tested, our method outperformed the bundle adjustment con-
siderably. It seemed that our method can tolerate misalign-
ment error to a much greater extent than the bundle ad-
justment method. For example, when misalignment error
becomes substantial (θ = 10◦), the estimation error of our
translation estimate was approximately 3◦ smaller under
all ε. This superior performance of our algorithm can be
attributed to the data normalization based on Total Least
Squares, which is known to be suited for dealing with errors-
in-variables model (misalignment error in this case).

7.1.5 Effect of Radius r

Here, we carried out an additional experiment to demon-
strate the importance of accounting for the induced terms
caused by the separation between each camera pair. We used
the same compound eye setup as in the preceding experi-
ment. The compound eye was viewing an indoor scene with
depths ranging from 0.5 m to 3 m. A total of 185 matching
points were selected for the linear method while 536 fea-
ture points were for bundle adjustment. The flow input of
the system was subject to a 10% isotropic noise.

Recall that our formulation modeled these induced terms
as rBx2 on the right hand side of (9) and iteratively refined

Fig. 10 Motion recovery of the two methods in a compound eye with
misalignment error θ around the X-axis

Table 3 In the indoor scene, three types of motions corresponding to
ε = 0.1, ε = 0.3, ε = 1 are executed

Ratio ε Motion type Translation: cm/s Rotation: rad/s

ε = 0.1 Dominant rotation [0.5, 1.5, 1] [0.06, 0.12, 0.096]

ε = 0.3 Significant rotation [0.5, 1.5, 1] [0.02, 0.04, 0.032]

ε = 1 Balanced motion [0.5, 1.5, 1] [0.01, 0.0075, 0.005]

their estimates until (11) is sufficiently close to a homoge-
neous system of equations. The performance of our method
is here compared to one which sets r to zero, thereby ignor-
ing the induced terms totally, and is effectively reduced to
the antipodal constraint used in the spherical systems of Lim
and Barnes (2007, 2008), Thomas and Simoncelli (1994).
We compare the two schemes under three types of global
motions: a rotation-dominant motion with ratio ε = 0.1, a
motion with significant rotation at ε = 0.3, and finally, a bal-
anced motion with ε = 1. The details of each type of motion
are tabulated in Table 3.

Referring to Fig. 11, the results of the comparison show
that given a moderately large r , the translation recovery in
all types of motions were significantly improved if we ex-
plicitly modeled the induced terms in the estimation process.
This improvement is especially obvious when the rotational
flow was significant. For instance, with ratio ε = 0.3 and
r = 0.1 m, the gap between the error in QP and that of ig-
noring the induced terms was 3.1◦. When the rotation was
dominant with ratio ε = 0.1, modeling the induced terms at
r = 0.1 m improved the estimate by a large 6.4◦. We also
observe that even in the case of balanced motion (ε = 1),
with r no less than 0.09 m, the estimate became worse off
by a significant margin if the induced terms were ignored.
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The vertical dashed lines in Fig. 11 indicate the radii r

below which the induced terms are regarded as negligibly
small by our QP algorithm: they are r = 0.01 m for ε = 0.1,

Fig. 11 Errors in translation recovery when the induced terms are not
modeled, with (a) ε = 0.1, (b) ε = 0.3 and (c) ε = 1 respectively. “QP”
and “BA” are as defined before, whereas the curve “No Res” refers
to the case of ignoring the induced terms rBx2 and solving the lin-
ear equation Ax1 = 0 from (9). The vertical dashed lines indicate the
radius r above which our algorithm deems the induced terms as signif-
icant

Fig. 12 An indoor scene for the real-image experiment

r = 0.02 m for ε = 0.3 and r = 0.09 m for ε = 1 respec-
tively. Trying to fit these small induced terms below these
threshold levels would cause overfitting and thus might be
detrimental to performance. In view of the values which are
chosen to reflect a fairly typical range of conditions encoun-
tered in both biological vision systems and artificial systems,
our results suggest that the spherical camera system with
a single viewpoint might not be adequate for modeling the
large class of non-frontal eyes. This holds true especially if
the separation between eyes are of medium length (e.g. for
the vision systems of many large vertebrates and most non-
miniaturized artificial systems), or the rotation is significant.

7.2 Experiment on Real Image

In this experiment on real image, we mounted a lateral pair
of cameras with r = 0.12 m on a mobile robot. We used
two Dragonfly cameras from Point Grey Research with 50◦
FOV each. The frame rate is 15 frames per second and the
image size is 640×480 pixels. The lateral pair views an in-
door scene with depths ranging from 2 m to 5 m. The robot
moves on the floor with two degrees of freedom in the trans-
lation and one degree of freedom in the rotation. A picture
of the scene taken by one of the cameras is shown in Fig. 12.
We tested three sets of global motions (see Fig. 13 for de-
tails), with ε roughly equal to 0.2, 1 and 5 respectively. An
average of 140 matching points were selected for the linear
method while 850 feature points were selected for the BA.
Figure 13 plots the bias in degrees for the two direction es-
timates and in % for the magnitude estimate. It shows that
under all conditions, the estimation accuracy of the linear
method was comparable to that of the BA.

8 Discussion and Conclusion

Having eyes that look at diametrically opposite parts of
the world is a common form of visual field layout found
throughout the biological world. Such form of lateral eye
arrangement is realized in many animals including verte-
brates such as birds and fishes, and invertebrates such as in-
sects with their compound eyes. Though theories have been

Fig. 13 Motion recovery of the two methods using real image. The unit of translation v is m/s and the unit of rotation ω is rad/s. Bias plotted in
degrees for the two direction estimates and in % for the magnitude estimate
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advanced about how these animals exploit this special eye
topography to accomplish complex visuomotor tasks with
limited brain power, these theories lack computational un-
derpinning.

Our paper addresses this gap by investigating compu-
tationally how the ego-motion recovery problem can gain
maximal benefit from the opportunities afforded by this par-
ticular form of eye arrangement. We showed that the ego-
motion can be solved by making full use of the special eye
structure without resorting to complex and computationally
expensive algorithms. We proposed a linear method based
on the notion of quasi-parallax. It makes use of a match-
ing pair of diametrically opposite visual rays to directly re-
cover the heading direction, without any need of finding cor-
respondences nor requiring nonlinear optimization.

Our method recovers the translation and rotation sepa-
rately by looking at different ensembles of projection rays.
The quasi-parallax motion field contains terms primarily
arising from global translation, save for the residual terms
caused by induced translation. Therefore, information pick-
up for the translation is enhanced. The accuracy of the trans-
lation estimate is further improved by a small iterative step
that computes the induced terms. Given this translation es-
timate, the rotation is recovered from a pencil of visual rays
using the individual epipolar constraints of each camera. As
a consequence of this two-stage process that selects different
and appropriate aspects of the visual rays, both the transla-
tion and rotation can be recovered well even under adverse
conditions, such as dominant translational or rotational flow
coupled with a high level of noise.

Statistically, the Fisher information matrix corroborates
our conjecture that the quasi-parallax method is more effec-
tive in resolving the bas-relief ambiguity than the BA algo-
rithm, especially under small and moderate field of views.
This is also verified by the experimental results obtained un-
der a pair of lateral eyes with narrow FOV. For other sce-
narios such as wide FOV, cameras arranged in resemblance
of a compound eye, real images with non-ideal feature dis-
tribution, our method achieved a comparable performance
compared to that of the BA algorithm. We also showed that
our method is robust against imperfection in the construc-
tion of the spherical substrate of the compound eye. Varia-
tion up to 50% in the radius r and misalignment error up to
10◦ resulted in graceful deterioration of the performance for
our method, whereas the BA method showed a greater drop
in accuracy. This is possibly because the BA method relied
more significantly upon the fact that r is a constant; besides
our data normalization scheme based on Total Least Squares
is well-suited to dealing with such errors-in-variables model.
Finally, it is worth emphasizing that our method requires
much less computational cost and calibration efforts, a sig-
nificant advantage in any visual system with a need for rapid
visuomotor coordination.
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