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Synergizing Spatial and Temporal Texture
Chin-Hwee Peh and Loong-Fah Cheong

Abstract—Temporal texture accounts for a large proportion of
motion commonly experienced in the visual world. Current tem-
poral texture techniques extract primarily motion-based features
for recognition. We propose in this paper a representation where
both the spatial and the temporal aspects of texture are coupled
together. Such a representation has the advantages of improving
efficiency as well as retaining both spatial and temporal semantics.
Flow measurements form the basis of our representation. The mag-
nitudes and directions of the normal flow are mapped as spatiotem-
poral textures. These textures are then aggregated over time and
are subsequently analyzed by classical texture analysis tools. Such
aggregation traces the history of a motion which can be useful in
the understanding of motion types. By providing a spatiotemporal
analysis, our approach gains several advantages over previous im-
plementations. The strength of our approach was demonstrated in
a series of experiments, including classification and comparisons
with other algorithms.

Index Terms—Normal flow, spatiotemporal texture, temporal
texture.

I. INTRODUCTION

I N THE biological world, the most basic capabilities found
in animals are based on motion [23]—they are critical for

the animals’ navigation and basic survival. However, in the field
of computational vision, robotic systems still face huge chal-
lenge in fully realizing the potential of the rich motion cues.
Complete recovery of the egomotion parameters is a notoriously
ill-posed problem [2], [7], [11], [14], [37], [41], [44]. This, cou-
pled with the view that the egomotion parameters must be com-
puted before any of the motion-based functionalities can be ac-
complished, has seriously obscured the potential for using mo-
tion directly for many applications.

Recent researches in computational vision [16] emphasized
the fact that, often, appropriate spatiotemporal representations,
that are directly relevant to the tasks at hand, can be computed
from the imagery without going through the ill-posed process of
egomotion computation. Thus instead of one strict hierarchy, we
can have a variety of visual processes, computed in parallel and
using motion features of varying amount of complexity. This
view is partially motivated by the results from brain sciences
[45]: different parts of the visual cortex seem to perform func-
tionally specialized operations. One example of such modules
is the computation of the rate of approach of surrounding scene
points [8], [15], [30], [35]. This can be used to identify situa-
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tions where something is rapidly approaching the camera, in-
dicating a threatening or aggressive situation. Another module
is the recognition of objects through motion patterns, including
both highly structured ones such as those produced by walking
and running, and more statistical ones such as those due to flut-
tering leaves and flowing water. Our research efforts subscribe
to this philosophy. Through a variety of such motion compe-
tences, a multifaceted usage of motion information for content
representation can be effected, thus better representing the tem-
poral semantics of an image sequence, without suffering from
the instabilities typically associated with egomotion estimation.
One of the motion competences exhibited by human is that of
motion recognition capability, which is the focus of the current
work. This paper builds on the works of [6], [31]; its contri-
bution lies in the novel synergizing of the spatial and temporal
aspects of motion field, resulting in a representation which we
termed as spatiotemporal texture.

It is not uncommon for us to find object that exhibits charac-
teristic motion with indeterminate spatial extent. The ensemble
motion by a flock of birds taking flight, flowing water, fluttering
leaves and waving flags are just some of the more common ex-
amples that serve to illustrate such motion. These commonly ob-
served phenomena, together with the vast domain in which they
exist, has prompted several researchers to formulate techniques
that are able to discriminate, recognize and synthesize the dis-
tinctive motion patterns exhibited by these objects [3], [6], [31],
[36]. In a pioneering work, Nelson and Polana [31] have shown
the possibility of using these motion patterns to classify on a
small set of image sequences. They coined the term temporal
texture to define collectively motion patterns that exhibit sta-
tistical regularity but have indeterminate spatial and temporal
extent. The key concern of their work is to establish computa-
tionally the viability of using temporal texture as a means for
object recognition. Thus the features extracted are designed in
such a way to isolate the temporal essence, independent of the
spatial characteristics. This replicates computationally the clas-
sical Johansson’s experiment [25] where human subjects were
able to identify different activities from bright spots attached to
an actor dressed in dark and moving in front of a dark back-
ground, without the aid of any structural information.

In the real world, of course, the phenomenon of temporal tex-
ture is always presented together with some spatial features, be
it the more structured kind like a human hand, or the more sta-
tistical kind like fluttering leaves. In fact, the spatial structure
in a way constrains the types of movement possible; there is
no reason why these two intimately linked aspects of the same
phenomenon should not be combined in a synergistic way, es-
pecially in areas of application where efficiency can be one of
the key concerns. That is, from the computational viewpoint,
if the spatial and temporal features can be represented in some
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integral way, instead of being handled separately as is the case
nowadays, redundancy would be removed, resulting in less com-
putational load and more efficient indexing. For example, if the
transient shape of a hand can be simultaneously extracted along-
side with its motion, we can quickly further narrow down our
search of a representation and recognize the motion of the hand
at a faster rate.

We present a scheme whereby the spatial and temporal as-
pects of texture are coupled together. It can be viewed as an
extension of [31] to encode more spatial and temporal infor-
mation. This strategy has the advantages of better efficiency as
well as possessing stronger discriminatory power. By mapping
the magnitudes and directions of the normal flow (component of
the optical flow projected along the intensity gradient direction),
we obtained spatiotemporal textures. A set of sequential spa-
tiotemporal textures is then superimposed to obtain a time-inte-
gral version of such textures. We then carried out a classification
experiment to demonstrate the viability of using such textures as
content identifiers. A comparative study of our algorithm with
two existing algorithms was also carried out to assess the rela-
tive strengths and weaknesses of the algorithms.

The remaining sections are organized as follows. Section II
discusses works related to this study. Section III outlines
the motion information extracted for our analysis and builds
appropriate representation used for subsequent matching.
Sections IV and V describe the experiments conducted and
discuss the results of the experiments. The paper closes with
Section VI, which presents a summary of the present research
study, some possible applications, as well as some thoughts on
future research directions.

II. RELATED WORK

The direct use of motion for object recognition has been re-
alized computationally by Nelson and Polana in their qualita-
tive analysis of temporal texture [31]. In their study, statistical
features based on the magnitudes and directions of flow vec-
tors were calculated to recognize different types of temporal
textures. Their study highlighted the computational possibility
of using low level motion features for recognition. However, as
this is a pioneering work, the intriguing spatiotemporal relation-
ships of moving parts of the objects were not fully addressed.
The distinctive spatial features of the moving objects were also
insufficiently exploited. Following [31], Bouthemy and Fablet
[6] analyzed statistically on the temporal distribution of appro-
priate local motion-based measures to perform global motion
characterization of video shots. Their method enhanced the tem-
poral descriptive power by analyzing motion over an extended
sequence, rather than just over two frames. However, the spatial
characteristics of the moving object were again ignored. Otsuka
et al. [32] extracted features of temporal texture based on tan-
gent plane representation of motion trajectory. However, in their
study, spatial and temporal features were separately determined.
Furthermore, the extracting of the motion trajectory from tem-
poral textures is by no means an easy task and renders its accu-
racy questionable.

The relevance of combining spatial features with motion is
evidenced in the work of Davis and Bobick in which they repre-

sented and recognized action using view-based temporal tem-
plates [12]. They constructed a binary motion-energy image
(MEI) which represents where motion has occurred in an image
sequence, as well as a motion-history image (MHI) which is a
scalar-valued image where intensity is a function of recency of
motion. By matching the aggregate shape induced by an action
with the stored models of views of known actions, different ac-
tions are identified. In this case, the cumulative transient shape
of the body, when coupled with the bodily movement, forms the
temporal templates that enable recognition. Our study adopts a
similar approach in recognizing moving objects. However, in-
stead of using shape and motion, texture and motion are used.
This allows us to recognize objects whose shapes are more in-
determinate in spatial extent. The way in which motion infor-
mation is extracted from the image sequence also differs from
[12].

There have been various works concerned with charac-
terizing local estimates of spatiotemporal orientation [1],
[18], [21]. The objective is either to recover optical flow or
to characterize the dimensionality of the local orientation.
Reference [43] has attempted to abstract from these spatiotem-
poral data a number of qualitative structural descriptions such
as “unstructured,” “flicker,” “coherent motion,” “incoherent
motion,” etc. However, due to the local nature of the input, only
a small set of primitive classes could be distinguished. Our
spatiotemporal representation utilizes a novel and richer input.
It allows us to tap on the rich varieties of texture classification
techniques which in turn are capable of yielding semantically
more complex categories.

III. SPATIOTEMPORAL REPRESENTATION

A. Normal Flow as Motion Information

Most motion-based analysis techniques rely heavily on the
ability to estimate motion to a certain degree of accuracy (e.g.,
in determining the dominant direction and recovering structure
from motion). Optical flow technique is usually used to esti-
mate motion field from an image sequence. Unfortunately, op-
tical flow cannot be estimated based on image intensities alone
unless additional constraint is imposed (e.g., smoothness [22]).
Such constraints are either difficult to implement in practice or
are not true over the entire image.

Apart from the above said difficulty, the estimation of motion
using optical flow usually involves iterations that require long
processing time. This may generate a large amount of overheads
rendering a recognition task inefficient. One of the solutions to
reduce the processing time in video processing is the utiliza-
tion of motion compensation component of the MPEG video
encoder as a coarse-grained representation of the optical flow
[13]. Nevertheless, motion vectors obtained in this method are
highly inaccurate as spatial resolution is lost. Another solution
is to utilize partial motion information whose computation does
not require iteration (e.g., normal flow).

In this paper, normal flow is used as it can be more accu-
rately computed and involves much less computation. Hardware
implementation is also simpler (e.g., [29]). These are signifi-
cant practical advantages that cannot be said for the use of op-
tical flow. Although the full displacement is not recoverable, we



PEH AND CHEONG: SYNERGIZING SPATIAL AND TEMPORAL TEXTURE 1181

argue that the partial flow does provide sufficient information
for the purpose of motion-based recognition.

If we assume that the image intensityfor a given scene point
remains unchanged over timeand , we may write

[22]

(1)

By expanding this equation and ignoring the higher order
terms, we get

(2)

Dividing the equation by , and denoting the partial deriva-
tives of by and , we obtain

(3)

The above constraint provides only one linear equation with
two unknowns [i.e., the local velocity vector , ].
Additional constraints are needed to allow the velocity to be de-
termine locally. This is formally known as the aperture problem.
Equation (3), however, enables us to determine the normal ve-
locity directly which is given by

(4)

Normal flow, being the amount of pixel movement along the
image intensity gradient, naturally describes the temporal as-
pect of an object in dynamic motion. Apart from obtaining mo-
tion information, the spatial distribution of these flow vectors
also captures the spatial aspect of the object undergoing mo-
tion. A spatial collection of the normal flow magnitudes reflects
the physical constraints of the moving parts and their inertia to
move. While a normal flow measurement at a particular pixel
does not fully constrain its two-dimensional (2-D) motion flow,
a spatial collection of the normal flow directions does anticipate
the intended directions of move by the edges at a particular in-
stant. Thus, it unveils the potential to move that is guided by
the physical orientation of the edge. Our hypothesis is that the
spatial patterns generated by the magnitudes and the directions
of the normal flow are distinctive and unique to the object initi-
ating that move.

A spatial collection of normal flows is in many ways similar1

to a spatial distribution of edge gradient vectors. Thus spatial
features of an object are inherently encoded in the normal flow
plots. By exploiting the spatial distribution of the normal flows,
the spatial texture of the moving body is integrated with the flow
information. This synergy reveals powerful characteristics that
are unique and innate to the moving body initiating the move.
Our work can be regarded as a generalized approach in the anal-

1There are, however, important differences. First, the edge gradient vector
measures the direction of the change in gray-level at a point. However, the di-
rection of normal flow gives the direction of move of an edge. The two vectors
either point in the same direction or point in opposite directions. Second, the
magnitude of the gradient vector measures the strength of an edge whereas the
magnitude of the normal flow measures the strength of a move by an edge.
Hence, an object has to move before normal flow is present. On the contrary, an
edge’s presence is independent of motion.

Fig. 1. Quantization of normal flow direction into 16 gray levels.

ysis of temporal texture, synergizing both the spatial and the
temporal aspect of object motion. Features such as divergence
and curl described in [31], while not explicitly measured, were
subsumed under our representations since we can always derive
these parameters from the spatial collection of normal flow vec-
tors.

B. Spatiotemporal Texture Mappings

Aimed at providing a spatiotemporal analysis on the motion
of the objects, the magnitudes and directions of normal flow
are mapped into intensity levels for subsequent analysis. The
resulting intensity images encode both the spatial and temporal
aspects of the moving objects. Textures generated in this way are
henceforth referred to as magnitude plots and directional plots
for magnitudes and directions of the normal flow respectively.

In magnitude plot, the magnitudes of normal flow vectors are
linearly mapped into the 256 gray scale levels. Only flow vec-
tors with magnitudes ranging from zero to four are mapped.
Any values larger than four are regarded as noise. This map-
ping is then further quantized into nine gray levels (at an in-
terval of 32, with gray level 0 and 255 inclusive). Hence, the
pixel values in the magnitude plot has the following for-
mulation: . Visually, regions of
darker gray would correspond to regions with larger normal flow
magnitude. The magnitude plot, in effect, encodes the magni-
tude strength of the normal flow in terms of intensity at the re-
spective pixel locations.

The direction of each normal flow vector is quantized into one
of the eight directions as shown in Fig. 1 with an angle of 22.5
subtended between each pair of adjacent directions. The refer-
ence direction is arbitrary taken to be the one that points to the
“east.” Any flow vector with quantized direction similar to the
reference will take up the gray level of the reference direction
(i.e., level 224). The others will take up the gray level depending
on the deviations of their quantized directions from the reference
direction. The pixel values in the directional plot is represented
by . The largest deviation would
correspond to the greatest jump in gray level from the reference
direction (i.e., level 0). Stationary points appear as white (i.e.,
level 255). The resultant texture exhibits tones of gray, with the
darkest region corresponding to region with flow vectors having
the largest deviation from the reference direction.
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Fig. 2. Images of waves (different scales) and ascending escalator with their respective directional plots at bottom.

C. Selected Characteristics of Spatiotemporal Texture

We used three aspects of visual texture (i.e., coarseness, di-
rectionality, and contrast) to elucidate the spatiotemporal texture
formation process and to justify the inclusion of the spatial as-
pect in our representation. In the actual experiment, a more com-
prehensive set of texture features was extracted. Fig. 2 shows
some examples of directional plots.

In general, coarseness is dependent on the size, the spatial
structure and the level of coherence in the motion of the moving
objects or parts. For instance, the escalator motion is more rigid
and oriented than that generated by the waves. The moving ele-
ments in the image are also larger in this case. Due to the discrete
tessellation of the directional plots, neighboring directions are
mapped to the same gray level and grouped together. Hence, the
texture generated is very much coarser. The same argument ap-
plies for the magnitude plots.

Directionality in directional plot is dependent on both spatial
and temporal factors. One key factor is the number of “layered”
oroccluding typesofmotion found.Flows thatarehighly laminar
or stream-likealso tend to form texturewithstrongdirectionality.
Besides, directionality also relies strongly on the characteristics
of the movement itself. The magnitude plot gives an overview
on the global distribution of the magnitude strength. Due in part
to the physical nature of the moving objects, some motion has
strength that is uniformly distributed along a particular direction.
It differentiates oriented motion from nonoriented one.

In the directional plot, contrast indicates the amount of di-
rectional uniformity of normal flow, as the gray levels represent
the amount of deviation from the reference direction. With a
more directionally diversified type of motion, the dynamic range
of gray levels in the texture will be broader, thereby resulting
in a texture of higher contrast (e.g., fluttering leaves). Objects
with many moving parts also tend to have more edges and thus,
will result in higher contrast. Instead of measuring directional

uniformity of normal flow, the contrast in magnitude plot re-
flects the dynamic range of magnitude strength spatially. We
get a texture of high contrast if a given scene has wide-ranging
normal flow magnitudes, and if these magnitudes were evenly
distributed throughout the scene.

From the above discussion, we see that temporal informa-
tion can be highly constrained by the structural primitives of
the object. However, these temporal primitives are neither ex-
clusive nor unique to any single object. Thus, the mere use of
temporal information without any spatial information retention
can be insufficient to fully describe the moving object. In the
physical world, there exist objects with very similar, though not
exactly alike, temporal characteristics (e.g., banner and grass;
waves and wind-blown grassland). In this case, the presence of
spatial information can serve as an important cue to discrimi-
nate these objects.

D. Extended Spatiotemporal Texture

Notwithstanding the fact that a certain degree of the spa-
tiotemporal properties innate to a moving object has already
been encapsulated by the spatiotemporal texture, the rich tem-
poral attributes displayed by a moving object over an extended
sequence may still be under-represented. In view of this, we fur-
ther the concept of spatiotemporal texture by separately super-
imposing the magnitude and directional plots in time. Such su-
perimposition traces motion history and forms images similar
to a series of transitory projection of an object onto our retina
when flashed before our eyes. Spatiotemporal textures extended
this way are referred to as extended magnitude plots (EMPs) and
extended directional plots (EDPs) for magnitudes and directions
of the normal flow respectively. Fig. 3 illustrates some examples
of EMPs and EDPs.

The mathematical expression of the extended spatiotemporal
plots is defined as follows.
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Fig. 3. Some examples of images with their extended magnitude and directional plots (col 1: images; col 2: extended magnitude plots; and last col: extended
directional plots).

Let be the number of previous spatiotemporal textures to be
superimposed to form the extended plot. We use the subscript
to index time-dependent quantity. Let be a nonempty, finite
set of pixel locations in a spatiotemporal texture formed
by image frame and . Of this entire set of pixel location,
we let be a subset of that contains moving points, and

, which is the complement of , to be another subset which
have members with points that are stationary or featureless (i.e.,
points with zero flow values). That is

with the above representation, the value of EMP at timeand at
pixel location may be written as

if
if
if
and

where is the mapped magnitude of a moving point in; and
corresponds to the mapped magnitude of a moving point

in and this spatial point does not move or is featureless
subsequently from frame to . A point is regarded as moving
if its quantized normal flow magnitude is nonzero and is less
than four (beyond which the flow is considered as noise).

The expression for the EDP is similar to that for EMP, except
that is replaced by , where

Textural features in the extended plots unveil several character-
istics (e.g., rigidity, coherence and size) of the moving object
apart from those inherited from the spatiotemporal textures.

By selecting a suitable value for, we can invariably adjust
the level of spatial and temporal information to be encoded
in the plots. Ideally, a different value should be given to
different motion type to achieve an optimal spatio–temporal
representation. Unfortunately, this can only be done empirically.
A small value of would naturally encode more structural than
temporal information. A large value of, though provide more
temporal information, renders the extraction of spatiotemporal
information difficult.

A coarse texture in the EMP is caused by a moving ob-
ject with moving parts that advance at a relatively constant rate.
In the EDP, a coarse texture is due to an object that has edges
moving in some prevalent directions. Besides, coarseness also
reveals the size and coherence of the moving parts of an ob-
ject. A highly constrained motion gives fine texture due to its
inability to move over a large distance. In general, an object ex-
hibiting periodic motion will have fine texture due to the oscil-
lation of magnitudes and directions inherent in the move.

Directionality of the texture is dependent on both spatial
and temporal factors. Moving objects with highly laminar or
stream-like motion will typically generate texture with strong
directionality. Objects with most of the edges oriented to a par-
ticular direction will also yield textures of high directionality.

A low contrast in the EDP is likely to be caused by moving
objects with normal flow directions that do not deviate much
from one another over time. On the other hand, a high-con-
trast EMP is obtained if the scene has wide-ranging normal flow
magnitudes.

IV. EXPERIMENT I: CLASSIFICATION

The main objective of this experiment is to illustrate the
ability of the extended spatiotemporal texture approach to
discriminate various motion classes.
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Fig. 4. Image sequences used in the experiments. (Cols. 1 to 10: Class A to class J; Row 1: Training/Test Sequence 0; Row 2: Test Sequence 1; Row 3: Test
Sequence 2).

TABLE I
DIFFERENTCLASSES OFMOVING ENTITY

A. Experimental Input

A set of image sequences containing a representative set of
both oriented motion, such as flowing water, and nonoriented
one, such as fluttering leaves was used as the input to the exper-
iment. Motions of varying degrees of rigidity can also be found
within the set of input. Besides, natural versus man-made, as
well as deterministic versus nondeterministic type of motion are
also represented in the image set. Altogether, we used ten classes
of motion entities with varying motion characteristics (Table I).

For each class of motion entity, three image sequences con-
sisting of 100 240 320 pixel frames each captured at 25 Hz
were used. The first image of each sequence is as shown in
Fig. 4. These image sequences were taken at different loca-
tions with different moving objects of the same class. For ex-
ample, the motion class for leaves contains leaves of various
shapes and sizes, and the motion class for escalator contains
both ascending and descending escalators. The image sequences
were either recorded using a tripod-mounted handheld digital
camcorder or directly captured from some documentary videos.
Sequences in Class J were downloaded from Image Sequence
Server at KOGS/IAKS Universität Karlsruhe.

B. Procedure

For each image sequence in Fig. 4, the normal flow field was
computed between each consecutive pair of image frames using
the gradient-based approach described in [17]. In order to pre-
vent possible contamination by any spurious or erroneous flow
value computed, only flow vectors with magnitude ranging from
zero to four were used. The selected normal flow vectors were
then transformed into spatiotemporal texture plots as described

in Section III-B. Five consecutive plots were then superimposed
to form the EMP and EDP (i.e., ). Hence, a total of 19 sam-
ples were obtainable from each image sequence. A set of texture
features was then extracted from the EMPs and EDPs to form
the feature set for that sequence.

The treatment of the feature samples is as follows. The first
ten samples of the first sequence (Training Sequence) from each
motion class were used as the training samples. These form clus-
ters of feature vectors in the feature space which will be defined
in Section IV-C. The remaining nine texture plots of the first
sequence (Test Sequence 0) and the entire set of the other two
sequences (Test Sequences 1 and 2) were used as verification
set and test set respectively. These three sets were then classi-
fied using the nearest-neighbor classification scheme based
on standard Euclidean distance. We used the value of
throughout our experiment with the majority wins. All features
were given equivalent weighting in arriving at the Euclidean dis-
tance. Any sample whose nearest Euclidean distance qualified
as an statistical outlier was classified as unknown. This outlier’s
distance was computed based on Grubbs test [5] with 95% con-
fidence level. The mean and variance for conducting the test was
obtained from all the minimum Euclidean distance computed in
our classification experiments.

C. Features Used

A subset of the features computed by the gray-level co-oc-
currence matrix (GLCM) [19], difference statistics [42],
and Fourier spectrum [26] techniques were first shortlisted
(Table II). Readers are referred to the original papers for full
details on these classical texture features. A feature space
consisting of a mix of features from the above three techniques
was selected so that the features complement each other. In this
way, we inherited a wide varying set of descriptors that could
describe important textural properties of the plot. The different
feature values extracted were normalized into common units
by mapping the average to a unit vector. The dimension of
the feature space sums up to 12 for both the magnitude and
the directional plots. For simplicity, the distancefor the
pixel-pair in the co-occurrence matrix and difference statistic
computations was chosen to be 1 for all textural analysis in this
experiment. In GLCM computation, the feature computed from
each GLCM over four directions (i.e., 0, 45 , 90 , and 135)
was averaged.

We then selected a subset of these features using the
method described in [27] to reduce the feature space dimension
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TABLE II
PRELIMINARY TEXTURAL FEATURESCHOSEN FOR THEEXPERIMENT

Fig. 5. Two examples of partitioned features. Left: a good feature and right: a bad feature.

and remove any redundant feature. In this method, a statistic
significance test is conducted on the relationship between
the values of a feature and the classes. Pairs of adjacent
intervals with the lowest values are merged until all pairs
of intervals have values exceeding a critical value. Fig. 5
shows both an example of a good and a bad feature partitioned
at . In this example, Feat4(EDP) could single out
Class A, C, F, and J distinctively from the other classes. On
the contrary, Feat1(EDP) was unlikely to separate any of the
classes. We chose a subset of six features Table III that can best
discriminate the nine motion classes based on the training set.
Fig. 6 demonstrates the partitioning of the six selected features.
Since CFeat1 measures the contrast of EDP and both Class D
and E are likely to give low contrast EDP, it is difficult for one
to separate the two classes based on CFeat1 alone. However,
due to the difference in coarseness in the two EDP’s, CFeat2
discriminates the two classes relatively well. Similarly, it is
difficult for one to discriminate between Class G, H, and I using
CFeat3 since the line structures found in these classes are quite
similar. These line structures, however, differ significantly from
that of Class E. Hence, Class E is well separated from these
classes using CFeat3. Similar argument can be extended to all
other feature measures.

D. Results and Discussion

Table IV tabulates the classification results while Table V
traces the assignments of any misclassified samples. It can be
concluded that the experiment carried out had successfully clas-
sified the majority of the classes. A close examination of the
results reveals that image sequences which yield the lower suc-
cess rates can be attributed to significant object size difference

between the training and the test sets. One underlying reason for
this poor performance is in the fixing of the parameterat 1 for
both the co-occurrence matrix and the difference statistics com-
putations throughout the experiment. The classification results
associated with these sequences could be readily improved with
a proper range of chosen to account for the individual scale dif-
ference. For instance, we could compute a number of GLCMs
with several values for each feature and use the maximum re-
sultant statistical measure for classification. Alternatively, a
method could be used to select thevalue that contains the most
structure [46]. As expected, the classification rate for Test Se-
quence 1 of Class B increased appreciably from 8/19 to 18/19
when and jumped to 19/19 when . Similarly,
the rate for Test Sequence 2 of Class B increased from 11/19 to
14/19 for both and . The classification rate for
Test Sequence 2 of Class I climbed from 7/19 to 9/19 and 13/19
when we set and , respectively.

The above argument on scale difference, however, may not
be true for Test Sequence 2 of Class G (Tree) where the size of
the object is of comparable scale with that of the training se-
quence. There was no apparent improvement in performance as
we varied . We attribute this poor performance to the extraction
of excessive spatial information from the plots. A close observa-
tion in the image sequences of Class G shows that Test Sequence
2 differs from the other two sequences mainly in its structural
makeup. The tree in the Test Sequence 2 is more leafy (denser)
with minimal amount of exposed branches. As the Fourier Spec-
trum (Angular) analysis is highly sensitive to orientation of line
structure in a texture, the algorithm fails to assign most of the
samples in Test Sequence 2 to Class G. Instead, most of the sam-
ples were classified as Class A (Grass). This misclassification
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Fig. 6. Subset of six chosen features partitioned at� = 0:95.

TABLE III
FINAL TEXTURAL FEATURESUSED FOR THEEXPERIMENT

TABLE IV
CORRECTCLASSIFICATION WITH OUR ALGORITHM

is due to the sharing of some spatiotemporal resemblances be-
tween Test Sequence 2 of Class G and Training Sequence of
Class A.

Fig. 7 shows the projection of the training samples onto its
first two principal components using the Principal Component
Analysis method. Distinct clusters, each corresponding to a mo-
tion class, were formed. This clear separation of the clusters nat-

TABLE V
CLASSIFICATION AND MISCLASSIFICATION WITH OUR ALGORITHM (%)—E.G.,

FOR CLASS A, PERCENTAGE OFSAMPLES ASSIGNED TOCLASS A, B
AND G WERE 95.74%, 2.13%AND 2.13% RESPECTIVELY. CLASS U

REPRESENTSUNCLASSIFICATION DUE TO LARGE EUCLIDEAN DISTANCE

COMPUTED ORTIES WITH OTHER CLASSES

urally speaks for and is highly correlated to the high success
rates obtained in our classification.

We have explicitly shown the success of our approach in a su-
pervised classification experiment. It is also interesting to access
the performance under unsupervised classification. A-means
unsupervised clustering was conducted on the Training/Test Se-
quence 0 using the standard Euclidean distance criteria. The
numbers of clusters were prespecified to be 10. The six features
used were similar to those used in the original supervised exper-
iment. The iteration stopped when no sample can be moved to
a centroid closer than the one that it currently belonged. After
three iterations, the clusters formed were as given in Table VI.
We concluded that the algorithm had clustered the majority of
the classes successfully with some confusion between Class F
and H and I. This was due to the spread in the distribution of
Class H as shown in Fig. 7.
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Fig. 7. Training samples projected onto the first two principal components.

TABLE VI
CLUSTERMEMBERSHIPSFORMED BY k-MEANS CLUSTERING

V. EXPERIMENT II: COMPARISONWITH TWO ALGORITHMS

We compare our algorithm with another two temporal tex-
ture analysis algorithms. We specifically chose the algorithms
of Nelson and Polana [31], and Bouthemy and Fablet [6]
for comparison due to the affinity of their works with ours
although their works are mainly concerned with the recognition
of motion class rather than particular moving entities. The
objective of this experiment is to empirically benchmark the
relative strengths and weaknesses in the three algorithms in
identifying the moving entities.

In our algorithm, we have chosen the stacking factor to be
five. This means that each single extended spatiotemporal tex-
ture had been derived from the superimposition of five con-
secutive spatiotemporal textures in a sequence. In Nelson and
Polana’s algorithm, the features obtained from five consecutive
normal flow plots were averaged. Five consecutive normal flow
plots were used to derive the temporal co-occurrence matrix in
Bouthemy and Fablet’s algorithm. Classification was performed
with the nearest-neighbor classifier based on Eu-
clidean distance with equal weighting for all features in the three
algorithms. Similar to Experiment I, the first ten sets of feature
samples from Sequence 0 were used as the training data. The
remaining nine samples and the full set of the other two test se-
quences with 19 samples each were used for testing.

A. Nelson and Polana’s Algorithm

Table VII summarizes the features extracted from the normal
flow field in Nelson and Polana’s algorithm. The classification
results obtained were tabulated in Tables VIII and IX.

TABLE VII
FEATURE SET OF NELSON AND POLANA’S ALGORITHM

TABLE VIII
CORRECTCLASSIFICATION WITH NELSON AND POLANA’S ALGORITHM

TABLE IX
CLASSIFICATION AND MISCLASSIFICATION WITH NELSON AND POLANA’S

ALGORITHM (%)—E.G., FORCLASS A, PERCENTAGE OFSAMPLES ASSIGNED TO

CLASS A, B AND G WERE 19.15%, 40.43%AND 40.43% RESPECTIVELY.
CLASS U REPRESENTSUNCLASSIFICATION DUE TO LARGE EUCLIDEAN

DISTANCE COMPUTED ORTIES WITH OTHER CLASSES

In this algorithm, Classes D, E, F, G, H, and J scored the
highest success rate with D and G achieving perfect score.
Moderate performance is observed in Class C. Class C’s
moderate success rate can be attributed to the low success
rate in its Test Sequence 2. While all of the three image
sequences depict gentle waves, the waves in Test Sequence 2
differ significantly in scale from the training sequence. Despite
Nelson and Polana’s claim to scale invariance of their feature



1188 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 10, OCTOBER 2002

TABLE X
FEATURE SET OF BOUTHEMY AND FABLET’S ALGORITHM

set, the overall success rate of Class C seems to suggest that
either the feature set is not scale-invariant or that insufficient
temporal information has been encoded into the features to
recognize this similarity in motion. Despite the close similarity
in the motion type exhibited by the three sequences, the low
percentage of correctly matched samples from Test Sequence 2
appears to bear out the aforementioned hypotheses.

Indeed, the normal flow distribution is strongly linked to the
spatial feature in the sense that it is located at the edges. There-
fore it opens to question whether the feature set used by Nelson
and Polana encodes more of the spatial or the temporal informa-
tion. By the preceding reasoning, it is not surprising that Classes
D, E, and G scored high success rates since the image sequences
under those classes are similar in scale and spatial appearance
within its own classes. It also accounts for why Classes F, H,
and J, and especially Classes A, B, and I did not perform well.
In particular, sequences used in Class I bear very little spatial re-
semblance to each other. Even the similarity in motion pattern is
a more elaborate one (local cluster of fluttering wings) that re-
quires a more sophisticated feature descriptor to make explicit.
Using the Nelson and Polana’s feature set these samples are apt
to be grouped under Classes E and G.

B. Bouthemy and Fablet’s Algorithm

To better handle the temporal evolution in temporal tex-
tures, Bouthemy and Fablet [6] proposed the use of temporal
co-occurrence matrices to characterize motion types. Instead
of normal flow, they used a locally weighted average of normal
flow as described in [6]. The computed values are then quan-
tized into 16 levels ranging from 0 to 4 pixel units. The setting
of the co-occurrence matrix is similar to the spatial case, except
that the pairwise pixels are chosen in the temporal sense (refer
to the original paper for a detailed description). We prepared
our experiment as per described in [6] with the temporal
pixel pair distance chosen to be 1. Table X summarizes the
feature set used by Bouthemy and Fablet, while Tables XI and
Table XII tabulate the classification results.

From Table XI, we see that the algorithm turned in rather
good performance for Classes D, G, and H, and moderate per-
formance for Classes E and J. Bouthemy and Fablet’s algorithm
differs significantly from the Nelson and Polana’s algorithm in
that it is more concerned with the evolution of the normal flow
field over time rather than its characteristics at a particular in-
stance. Thus, there is very little of the spatial information in its
computed feature. This appears to account for the result of Class
A. A patch of wind-blown grass generates motion pattern that
is over any short time interval similar to that experienced by a

TABLE XI
CORRECTCLASSIFICATION WITH BOUTHEMY AND FABLET’S ALGORITHM

TABLE XII
CLASSIFICATION AND MISCLASSIFICATION WITH BOUTHEMY AND FABLET’S
ALGORITHM (%)—E.G. FOR CLASS A, PERCENTAGE OFSAMPLES ASSIGNED

TO CLASS A, D, I, AND U WERE 38.30%, 57.47%, 2.13%AND 2.13%
RESPECTIVELY. CLASS U REPRESENTSUNCLASSIFICATION DUE TOLARGE

EUCLIDEAN DISTANCE COMPUTED TOTIES WITH OTHER CLASSES

moving banner though they are subject to somewhat different
types of physical constraint. This partial similarity in temporal
evolution resulted in a large number of samples from Class A
being misclassified into Class D. In particular, Test Sequence
1 consists essentially of shorter grasses with less swaying in its
motion. By ignoring the spatial and possibly more complex form
of temporal information, the algorithm judged Test Sequence 1
of Class A to be more similar to Class D, whereas the human
visual system seems capable of combining both the spatial and
temporal information in its discrimination, which is what our
algorithm attempts to emulate.

The classes with the worst performance were B, C, F, and
I. In particular, Class B samples are equally likely to fall under
Classes B, G, and H. Moreover, Class C samples tend to be clas-
sified under Class F. While Class C and Class F both belong to
fluid type of motion, the motion inherent in Class F is typically
more haphazard than Class C’s. In addition, Class F samples
are apt to be classified under Class H. This apparently points
to the insensitivity of the Bouthemy and Fablet’s feature set to
the different types of stochastic motion. The feature set was also
unable to characterize samples from Class I due to its elaborate
motion. Finally, the poor performance for Test Sequence 1 of
Class J was probably due to the presence of heavy snowfall in
the foreground which overlapped with the actual vehicular mo-
tion.
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Fig. 8. Image and directional plot of a waving flag and fluttering leaves in the background.

VI. SUCCESSFACTORS IN OUR ALGORITHM

In contrast to the other two algorithms, our algorithm has dis-
tinctly better success rates for all the classes with Classes D, E,
F, and H yielding perfect results. Slightly lower success rates
were observed for Classes B, G, and I. The high success rate
in Class D provides good empirical evidence of the ability to
typify line-like temporal textures. It also demonstrated its ability
to distinguish temporal textures with varying degrees of regu-
larity, in view of its successful discrimination of samples from
Class C and F. In comparison with the other two algorithms, our
approach was evidently more effective in the characterization of
the more complex temporal textures from Classes H and I.

With exception to Class G, the overall success rates of the
other classes were greater than those achieved in the other two
algorithms. The better performance of our algorithm could be
due to several factors: 1) The superiority of the feature set. For
instance, features resulting from Fourier spectrum analysis are
not used at all in the other two algorithms. 2) The richness of the
input utilized by our algorithm—the extended spatiotemporal
texture encodes both the spatial and the temporal information in
an integral manner. Possibly both factors play a part too.

VII. CONCLUSIONS

The evidence gathered in the experiments demonstrated the
superiority of our approach in distinguishing between different
spatiotemporal textural qualities. There exists two underlying
reasons for the success of our algorithm: the richness of the ex-
tended representations as well as the choice of feature extrac-
tors. From a theoretical perspective, the unsatisfactory perfor-
mance of the Nelson and Polana’s algorithm in the classifica-
tion results could be attributed to the temporal deficiency of the
inputs prior to feature extraction. Apart from the use of normal
flow, no other explicit techniques are employed to enhance the
encoding of temporal information into the inputs. There is also
insufficient spatial information being extracted. On the contrary,
the Bouthemy and Fablet’s algorithm, while addressing the tem-
poral deficiency found in the Nelson and Polana’s algorithm

did not aim to encode spatial information. The temporal co-oc-
currence matrices while characterizing the normal flow mag-
nitude distribution across a fixed time frame did not consider
the intra-relationship between normal flow magnitudes within
a frame. Moreover, the distribution of normal flow directions,
which represents a potential source of information, while readily
available, was not exploited.

The main contribution of this paper lies in the introduction
of the notion of spatiotemporal texture and the realization of
its synergistic usage. Through the employment of the extended
spatiotemporal texture plots, spatial textural qualities together
with temporal information are inherently encoded as input to
the feature extraction stage. In addition, we have used a wide
range of analytical techniques for feature extraction which re-
sults in the robustness of our algorithm. While many have ar-
gued that basing features on normal flow alone suffers the dis-
advantage of discarding too much information, related works on
psychophysics [9], [25], [28], [34] as well as the successful ap-
plication of normal flow computation in the present study sug-
gest that partial information alone would suffice for the purpose
of recognition. As a result, simple recognition algorithms re-
quiring minimal computational power can be implemented.

There are several areas in which the concept of spatiotem-
poral textures can be applied. Often in video indexing, we are
particularly interested in indexing moving objects. Optic flow
histogram [4], [10], [24] or variance of the flow [38], [39] is usu-
ally employed to characterize global motion or activity. How-
ever, it can be difficult for us to quantify or describe some mo-
tion types, especially those which are indeterminate in tem-
poral extent. In such cases, there is neither dominant direction
nor motion features that we can reliably depend on. With the
present system’s ability to characterize motion of such nature,
we could have created categories like “flag-like motion,” “flut-
tering leaves,” and “water turbulence” to better relate the dif-
ferent motion experienced. Often, these categories are directly
linked to high-level semantics, for instance, the waving flag mo-
tion of Fig. 8 is a better indication of the object identity than
other features like “redness.”
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To facilitate object-based video coding, there is often a need
to segment an image into different moving regions. Tradition-
ally, this has been achieved using flow segmentation [40]. Such
techniques would encounter difficulties when the motion flow
field is of a statistical kind (e.g., Fig. 8 which contains both
waving flag motion and the fluttering motion of leaves). By
transforming the flow field into a texture map, we can tap on
the rich varieties of texture segmentation techniques [20], [33]
available to accomplish the segmentation task.

Future research efforts should gear toward devising a more
wide-ranging methods to obtain other descriptive features
from the extended spatiotemporal textures. Another important
research direction lies in using learning techniques to adap-
tively and judiciously combine the various spatial and temporal
features to form better discriminators. Lastly, in this paper, it
has been assumed that the camera is stationary with minimal
jitters. If the camera is moving, then the camera’s motion needs
to be compensated. This remains a challenging problem.
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