IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 10, OCTOBER 2002 1179

Synergizing Spatial and Temporal Texture

Chin-Hwee Peh and Loong-Fah Cheong

Abstract—Temporal texture accounts for a large proportion of tions where something is rapidly approaching the camera, in-
motion commonly experienced in the visual world. Current tem-  djcating a threatening or aggressive situation. Another module
poral texture techniques extract primarily motion-based features is the recognition of objects through motion patterns, including
for recognition. We propose in this paper a representation where . ’ .
both the spatial and the temporal aspects of texture are coupled both hlghly structured ones_ Sl_JCh as those produced by walking
’[ogether. Such a representation has the advantages of improving and running, and more statistical ones such as those due to flut-
efficiency as well as retaining both spatial and temporal semantics. tering leaves and flowing water. Our research efforts subscribe
Flow measurements form the basis of our representation. The mag- to this philosophy. Through a variety of such motion compe-
nitudes and directions of the normal flow are mapped as spatiotem- tanceg a multifaceted usage of motion information for content

poral textures. These textures are then aggregated over time and tati be effected. thus bett tina the t
are subsequently analyzed by classical texture analysis tools. suchl€Presentation can be efiected, thus betier representing the tem-

aggregation traces the history of a motion which can be useful in Poral semantics of an image sequence, without suffering from
the understanding of motion types. By providing a spatiotemporal the instabilities typically associated with egomotion estimation.
analysis, our approach gains several advantages over previous im-QOne of the motion competences exhibited by human is that of
plementations. The strength of our approach was demonstrated in o recognition capability, which is the focus of the current
a series of experiments, including classification and comparisons - . . .
with other algorithms. work. Thls_paper builds on th.elworks of [6], [31], its contri-
bution lies in the novel synergizing of the spatial and temporal

aspects of motion field, resulting in a representation which we
termed as spatiotemporal texture.

It is not uncommon for us to find object that exhibits charac-
|. INTRODUCTION teristic motion with indeterminate spatial extent. The ensemble
otion by a flock of birds taking flight, flowing water, fluttering

Index Terms—Normal flow, spatiotemporal texture, temporal
texture.

N THE biological world, the most basic capabilities foun . .
in animals are based on motion [23]—they are critical f paves and waving flags are just some of the more common ex-

the animals’ navigation and basic survival. However, in the ﬁe@ﬂples that serve tollustrate such motion. These commonly ob-

of computational vision, robotic systems still face huge ChasI;_erved phenomena, together with the vast domain in which they

lenge in fully realizing the potential of the rich motion cues(.aXiSt’ has promptgd ;eyeral research_ers to formulate. techniqqes
Complete recovery of the egomotion parameters is a notorious| t.are ab[e to dlscrlmmat(.a,.recognlze and ;ynthesae the dis-
tinctive motion patterns exhibited by these objects [3], [6], [31],

ill-posed problem [2], [7], [11], [14], [37], [41], [44]. This, cou- . .
pled with the view that the egomotion parameters must be co%—m' in a_gl_?neefrmg_wortlr(], Nelsont_and P(t)tlana [?1] P|1ave_ shown
puted before any of the motion-based functionalities can be 44 Possibility of using these motion patterns to ¢ assify on a

complished, has seriously obscured the potential for using nf@j?” SF::t %f |p1age T,qu?enlces. 1t'_hey C(:t'ned tthhe tterrr;}_tga?pioral
tion directly for many applications. exture to define collectively motion patterns that exhibit sta-

Recent researches in computational vision [16] emphasiz%%ical regularity but have indeterminate spatial and temporal

the fact that, often, appropriate spatiotemporal representatior t'ent. The k_ey concern .Of their work is to establish computa-
that are directly relevant to the tasks at hand, can be compu ally the wgpmty of using temporal texture as a means for_
from the imagery without going through the ill-posed process gplect recognition. Thus the features extracted are designed in

egomotion computation. Thus instead of one strict hierarchy, \%Ch away to isolate the temporal essence, independent of the

can have a variety of visual processes, computed in parallel as[%altlal characteristics. This replicates computationally the clas-

using motion features of varying amount of complexity. Thi§ICaI Johansson's experiment [25] where human subjects were

view is partially motivated by the results from brain science%ble to identify different activities from bright spots attached to

[45]: different parts of the visual cortex seem to perform fun@n actor d_ressed n Qark and moving n front of_a dark back-
ré)und, without the aid of any structural information.

tionally specialized operations. One example of such moduf®
n the real world, of course, the phenomenon of temporal tex-

is the computation of the rate of approach of surrounding scene . : .
ture is always presented together with some spatial features, be

points [8], [15]. 30, [35]. This can be used to identity Sltuait the more structured kind like a human hand, or the more sta-
tistical kind like fluttering leaves. In fact, the spatial structure
. . . . in a way constrains the types of movement possible; there is
Manuscript received August 6, 2000; revised June 6, 2002. The associate ed- . .
itor coordinating the review of this manuscript and approving it for publicatioﬂ0 reason Why these two mt'mately linked aspects of the same
was Dr. Eric L. Miller. phenomenon should not be combined in a synergistic way, es-
The authors are with the Department of Electrical and Computer Eﬁ-scia”y in areas of application where efficiency can be one of
gineering, National University of Singapore, Singapore 119260 (e-majl. . : . .
elepehch@nus.edu.sg; eleclf@nus.edu.sg). e key concerns. That is, from the computational viewpoint,
Digital Object Identifier 10.1109/TIP.2002.804265. if the spatial and temporal features can be represented in some
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integral way, instead of being handled separately as is the casated and recognized action using view-based temporal tem-
nowadays, redundancy would be removed, resulting in less copfates [12]. They constructed a binary motion-energy image
putational load and more efficient indexing. For example, if th @M EI) which represents where motion has occurred in an image
transient shape of a hand can be simultaneously extracted alsgguence, as well as a motion-history image (MHI) which is a
side with its motion, we can quickly further narrow down ouscalar-valued image where intensity is a function of recency of
search of a representation and recognize the motion of the hamation. By matching the aggregate shape induced by an action
at a faster rate. with the stored models of views of known actions, different ac-
We present a scheme whereby the spatial and temporal #@As are identified. In this case, the cumulative transient shape
pects of texture are coupled together. It can be viewed as afrthe body, when coupled with the bodily movement, forms the
extension of [31] to encode more spatial and temporal infalemporal templates that enable recognition. Our study adopts a
mation. This strategy has the advantages of better efficiencysamilar approach in recognizing moving objects. However, in-
well as possessing stronger discriminatory power. By mappistgad of using shape and motion, texture and motion are used.
the magnitudes and directions of the normal flow (component ®his allows us to recognize objects whose shapes are more in-
the optical flow projected along the intensity gradient directionfleterminate in spatial extent. The way in which motion infor-
we obtained spatiotemporal textures. A set of sequential spaation is extracted from the image sequence also differs from
tiotemporal textures is then superimposed to obtain a time-inf&2].
gral version of such textures. We then carried out a classificationThere have been various works concerned with charac-
experiment to demonstrate the viability of using such texturestasizing local estimates of spatiotemporal orientation [1],
content identifiers. A comparative study of our algorithm witljl8], [21]. The objective is either to recover optical flow or
two existing algorithms was also carried out to assess the rdia-characterize the dimensionality of the local orientation.
tive strengths and weaknesses of the algorithms. Reference [43] has attempted to abstract from these spatiotem-
The remaining sections are organized as follows. Sectionplibral data a number of qualitative structural descriptions such
discusses works related to this study. Section Ill outlines “unstructured,” “flicker,” “coherent motion,” “incoherent
the motion information extracted for our analysis and buildwotion,” etc. However, due to the local nature of the input, only
appropriate representation used for subsequent matchiagsmall set of primitive classes could be distinguished. Our
Sections IV and V describe the experiments conducted asghtiotemporal representation utilizes a novel and richer input.
discuss the results of the experiments. The paper closes withllows us to tap on the rich varieties of texture classification
Section VI, which presents a summary of the present reseatebhniques which in turn are capable of yielding semantically
study, some possible applications, as well as some thoughtswore complex categories.
future research directions.

I1l. SPATIOTEMPORAL REPRESENTATION
[l. RELATED WORK A. Normal Flow as Motion Information

The direct use of motion for object recognition has been re-Most motion-based analysis techniques rely heavily on the
alized computationally by Nelson and Polana in their qualitability to estimate motion to a certain degree of accuracy (e.g.,
tive analysis of temporal texture [31]. In their study, statisticah determining the dominant direction and recovering structure
features based on the magnitudes and directions of flow véiem motion). Optical flow technique is usually used to esti-
tors were calculated to recognize different types of temponalate motion field from an image sequence. Unfortunately, op-
textures. Their study highlighted the computational possibilitycal flow cannot be estimated based on image intensities alone
of using low level motion features for recognition. However, asnless additional constraint is imposed (e.g., smoothness [22]).
this is a pioneering work, the intriguing spatiotemporal relatioruch constraints are either difficult to implement in practice or
ships of moving parts of the objects were not fully addresseate not true over the entire image.

The distinctive spatial features of the moving objects were alsoApart from the above said difficulty, the estimation of motion
insufficiently exploited. Following [31], Bouthemy and Fableusing optical flow usually involves iterations that require long
[6] analyzed statistically on the temporal distribution of apprgrocessing time. This may generate a large amount of overheads
priate local motion-based measures to perform global motioendering a recognition task inefficient. One of the solutions to
characterization of video shots. Their method enhanced the tewduce the processing time in video processing is the utiliza-
poral descriptive power by analyzing motion over an extendédn of motion compensation component of the MPEG video
sequence, rather than just over two frames. However, the spatiatoder as a coarse-grained representation of the optical flow
characteristics of the moving object were again ignored. Otsulds8]. Nevertheless, motion vectors obtained in this method are
et al.[32] extracted features of temporal texture based on tamighly inaccurate as spatial resolution is lost. Another solution
gent plane representation of motion trajectory. However, in thégrto utilize partial motion information whose computation does
study, spatial and temporal features were separately determineat.require iteration (e.g., normal flow).

Furthermore, the extracting of the motion trajectory from tem- In this paper, normal flow is used as it can be more accu-
poral textures is by no means an easy task and renders its acately computed and involves much less computation. Hardware
racy questionable. implementation is also simpler (e.g., [29]). These are signifi-

The relevance of combining spatial features with motion ant practical advantages that cannot be said for the use of op-
evidenced in the work of Davis and Bobick in which they repraical flow. Although the full displacement is not recoverable, we
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argue that the partial flow does provide sufficient information 84 112 140
for the purpose of motion-based recognition. 4 168
If we assume that the image intensitfor a given scene point 56
(z, y) remains unchanged over timandt + ét, we may write o8 196
[22]
I, y, t) = I(z + bz, y + by, t + 6t). 1) 0 224  east
By expanding this equation and ignoring the higher order
terms, we get 28 196
oI oI oI
So— + dy—t+ 5t— = 0. 2 56
vop TGOy @) ! 168
. . . . . 84 140
Dividing the equation byt, and denoting the partial deriva- 112
tives of by Iz, va andl;, we obtain Fig. 1. Quantization of normal flow direction into 16 gray levels.
dx dy . . .
Iwa + Iya +1; =0. (3) ysis of temporal texture, synergizing both the spatial and the

; _ _ ) temporal aspect of object motion. Features such as divergence
The above constraint provides only one linear equation wihq curl described in [31], while not explicitly measured, were
two unknowns [i.e., the local velocity vectodz/9t, dy/0t)].  subsumed under our representations since we can always derive

Additional constraints are needed to allow the velocity to be dgese parameters from the spatial collection of normal flow vec-
termine locally. This is formally known as the aperture problengy s

Equation (3), however, enables us to determine the normal ve-
locity directly which is given by B. Spatiotemporal Texture Mappings

—1 Aimed at providing a spatiotemporal analysis on the motion
Up = ————. (4) : ) L
(12 + I2) of the objects, the magnitudes and directions of normal flow

are mapped into intensity levels for subsequent analysis. The

Normal flow, being the amount of pixel movement along thEesulting intensity images encode both the spatial and temporal
image intensity gradient, naturally describes the temporal &spects of the moving objects. Textures generated in this way are
pect of an object in dynamic motion. Apart from obtaining mohenceforth referred to as magnitude plots and directional plots
tion information, the spatial distribution of these flow vector{or magnitudes and directions of the normal flow respectively.
also captures the spatial aspect of the object undergoing mol magnitude plot, the magnitudes of normal flow vectors are
tion. A spatial collection of the normal flow magnitudes reflectnearly mapped into the 256 gray scale levels. Only flow vec-
the physical constraints of the moving parts and their inertia ¥8rS With magnitudes ranging from zero to four are mapped.
move. While a normal flow measurement at a particular pix&ny values larger than four are regarded as noise. This map-
does not fully constrain its two-dimensional (2-D) motion flowPing is then further quantized into nine gray levels (at an in-
a spatial collection of the normal flow directions does anticipat€rval of 32, with gray level 0 and 255 inclusive). Hence, the
the intended directions of move by the edges at a particular Rixel valuesf(é, j) in the magnitude plot has the following for-
stant. Thus, it unveils the potential to move that is guided Bpulation: (i, j) € {0, 31, 63, ..., 255}. Visually, regions of
the physical orientation of the edge. Our hypothesis is that tA@rker gray would correspond to regions with larger normal flow
spatial patterns generated by the magnitudes and the directiBl@gnitude. The magnitude plot, in effect, encodes the magni-
of the normal flow are distinctive and unique to the object initUde strength of the normal flow in terms of intensity at the re-
ating that move. spective pixel locations.

A spatial collection of normal flows is in many ways simHar The direction of each normal flow vector is quantized into one
to a spatial distribution of edge gradient vectors. Thus spatfdithe eight directions as shown in Fig. 1 with an angle of 22.5
features of an object are inherently encoded in the normal figk/Ptended between each pair of adjacent directions. The refer-
plots. By exploiting the spatial distribution of the normal flows€nce direction is arbitrary taken to be the one that points to the
the spatial texture of the moving body is integrated with the flowgast.” Any flow vector with quantized direction similar to the
information. This synergy reveals powerful characteristics thigference will take up the gray level of the reference direction
are unique and innate to the moving body initiating the mové:€-, level 224). The others will take up the gray level depending

Our work can be regarded as a generalized approach in the aRBIthe deviations of their quantized directions from the reference
direction. The pixel values in the directional plot is represented
1There are, however, important differences. First, the edge gradient ve : g(t, j) € {0, 28, 56, ..., 255}. The largest deviation would

measures the direction of the change in gray-level at a point. However, the d h . . | f h f
rection of normal flow gives the direction of move of an edge. The two vectofOrrespon to the greatestjump In gray level irom the reference

either point in the same direction or point in opposite directions. Second, tdérection (i.e., level 0). Stationary points appear as white (i.e.,
magnitude of the gradient vector measures the strength of an edge whereasgd{jg| 255)_ The resultant texture exhibits tones of gray. with the

magnitude of the normal flow measures the strength of a move by an edaae?.1rkest region corresponding to region with flow vectors havin
Hence, an object has to move before normal flow is present. On the contrary, g p g g g

edge’s presence is independent of motion. the largest deviation from the reference direction.
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Fig. 2. Images of waves (different scales) and ascending escalator with their respective directional plots at bottom.

C. Selected Characteristics of Spatiotemporal Texture uniformity of normal flow, the contrast in magnitude plot re-

We used three aspects of visual texture (i.e., coarseness,f I&Ets the dynamic range of magnitude strength spatially. We

rectionality, and contrast) to elucidate the spatiotemporal textl.gret a texture of high contrast if a given scene has wide-ranging

e ? . )
formation process and to justify the inclusion of the spatial agormal flow magnitudes, and if these magnitudes were evenly
pectin our representation. In the actual experiment, a more com

istributed throughout the scene.

. . From the above discussion, we see that temporal informa-
prehensive set of texture features was extracted. Fig. 2 shc%% can be highly constrained by the structural primitives of
some examples of directional plots. : ghly y . primit

. . the object. However, these temporal primitives are neither ex-
* In general, coarseness is dependent on the size, the spajjal; o o, unique to any single object. Thus, the mere use of
stl;_ucture and the Ievgl of coherence in the mot|0n ofthe mov!?gmporal information without any spatial information retention
Objects or parts. Forinstance, the escalator motion is more ”%'gln be insufficient to fully describe the moving object. In the
?nnedn?snimaeedi rt::n;g?é g?snoell;;tegr ?r?ltthr:s (\:’\;i\;e%;r:gﬁ%vé?gjnﬁ_ sical world, there exist objects with very similar, though not
tessellation of thge directional glots neighbor.ing directions & ctly alike,_ temporal characteristics (_e.g., banner and grass;
mapped to th level d’ d her. 4 ves and wind-blown grassland). In this case, the presence of
ppedloIhe same gray level and groupe together. eNnce . dhtial information can serve as an important cue to discrimi-
texture generated is very much coarser. The same argument gp- .
; . e these objects.
plies for the magnitude plots.
e Directionality in directional plotis dependent on both spatial .
and temporal factors. One key factor is the number of “Iayere@‘ Extended Spatiotemporal Texture
or occluding types of motion found. Flows thatare highly laminar Notwithstanding the fact that a certain degree of the spa-
or stream-like also tend to form texture with strong directionalityiotemporal properties innate to a moving object has already
Besides, directionality also relies strongly on the characteristissen encapsulated by the spatiotemporal texture, the rich tem-
of the movement itself. The magnitude plot gives an overvieporal attributes displayed by a moving object over an extended
on the global distribution of the magnitude strength. Due in paéquence may still be under-represented. In view of this, we fur-
to the physical nature of the moving objects, some motion htkeer the concept of spatiotemporal texture by separately super-
strength that is uniformly distributed along a particular directioimposing the magnitude and directional plots in time. Such su-
It differentiates oriented motion from nonoriented one. perimposition traces motion history and forms images similar
¢ In the directional plot, contrast indicates the amount of die a series of transitory projection of an object onto our retina
rectional uniformity of normal flow, as the gray levels representhen flashed before our eyes. Spatiotemporal textures extended
the amount of deviation from the reference direction. With this way are referred to as extended magnitude plots (EMPs) and
more directionally diversified type of motion, the dynamic rangextended directional plots (EDPs) for magnitudes and directions
of gray levels in the texture will be broader, thereby resultingf the normal flow respectively. Fig. 3 illustrates some examples
in a texture of higher contrast (e.g., fluttering leaves). Objeaté EMPs and EDPs.
with many moving parts also tend to have more edges and thusThe mathematical expression of the extended spatiotemporal
will result in higher contrast. Instead of measuring directionglots is defined as follows.
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Fig. 3. Some examples of images with their extended magnitude and directional plots (col 1: images; col 2: extended magnitude plots; and ledédol: exte
directional plots).

Let7 be the number of previous spatiotemporal textures to By selecting a suitable value for, we can invariably adjust
superimposed to form the extended plot. We use the subgcripite level of spatial and temporal information to be encoded
to index time-dependent quantity. L&t be a nonempty, finite in the plots. Ideally, a different value should be given to
set of pixel locations in &/ x IV spatiotemporal texture formeddifferent motion type to achieve an optimal spatio—temporal
by image frame andt 4 1. Of this entire set of pixel location, representation. Unfortunately, this can only be done empirically.
we let R, be a subset of’; that contains moving points, andA small value ofr would naturally encode more structural than
S, which is the complement d&,, to be another subset whichtemporal information. A large value ef though provide more
have members with points that are stationary or featureless (itemporal information, renders the extraction of spatiotemporal

points with zero flow values). That is information difficult.
e A coarse texture in the EMP is caused by a moving ob-
P =5 URt ={(0,0), (0, 1), ..., (M, N)} ject with moving parts that advance at a relatively constant rate.

In the EDP, a coarse texture is due to an object that has edges
with the above representation, the value of EMP at tirmed at mOVing in some prevalent directions. BeSideS, coarseness also

pixel location(i, j) may be written as reveals the size and coherence of the moving parts of an ob-
ject. A highly constrained motion gives fine texture due to its
fili,5), i (i,5) € Ry inability to move over a large distance. In general, an object ex-
. 255 if (i,5) €N Sy hibiting periodic motion will have fine texture due to the oscil-
B ('L j) — o . e t—7r<k<t . . . . . .
B fr (i d)s 1 (i,5) € Ny cnee Sk N R, lation of magnitudes and directions inherent in the move.
andt >7>%—7 ¢ Directionality of the texture is dependent on both spatial

and temporal factors. Moving objects with highly laminar or

wheref; is the mapped magnitude of a moving poinfify and  stream-like motion will typically generate texture with strong
fr, corresponds to the mapped magnitude of a moving poiitectionality. Objects with most of the edges oriented to a par-
in R, and this spatial point does not move or is featurelegigular direction will also yield textures of high directionality.
subsequently from frame, to ¢. A point is regarded as moving e A low contrast in the EDP is likely to be caused by moving
if its quantized normal flow magnitude is nonzero and is leghjects with normal flow directions that do not deviate much
than four (beyond which the flow is considered as noise).  from one another over time. On the other hand, a high-con-

The expression for the EDP is similar to that for EMP, excepiast EMP is obtained if the scene has wide-ranging normal flow
that fi(z, j) is replaced by (¢, j), where magnitudes.

q g > =4
916, J) € 10, 28, 56, ..., 255} IV. EXPERIMENT |: CLASSIFICATION
Textural features in the extended plots unveil several characterThe main objective of this experiment is to illustrate the
istics (e.g., rigidity, coherence and size) of the moving objeability of the extended spatiotemporal texture approach to
apart from those inherited from the spatiotemporal texturediscriminate various motion classes.
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Fig. 4. Image sequences used in the experiments. (Cols. 1 to 10: Class A to class J; Row 1: Training/Test Sequence 0; Row 2: Test Sequence 1; Row 3: Test
Sequence 2).

TABLE | in Section I1I-B. Five consecutive plots were then superimposed
DIFFERENT CLASSES OFMOVING ENTITY to form the EMP and EDP (i.er, = 5). Hence, a total of 19 sam-
Giae || — ples were obtainable from each image sequence. A set of texture
ass Name ” Description
: features was then extracted from the EMPs and EDPs to form
A Grass Wind blown grass
, the feature set for that sequence.
B Bush Fluttering leaves . .
S Waves Gentle son mwaves The treatment of_the feature sampl_e_s is as follows. The first
D Banner Wind blown banmer ten samples of the first sequence (Training Sequence) from each
E Escalator Moving escalator motion class were used as the training samples. These form clus-
F Turbulence || Rough water turbulence ters of feature vectors in the feature space which will be defined
G Tree Wind blown tree in Section IV-C. The remaining nine texture plots of the first
H Birds 1 Flock of birds in quartering flight sequence (Test Sequence 0) and the entire set of the other two
! Birds 11 Flock of birds in directional fight sequences (Test Sequences 1 and 2) were used as verification
! Cars Moving cars taken at road junction set and test set respectively. These three sets were then classi-

fied using thek nearest-neighbor classification scheme based
on standard Euclidean distance. We used the value ef 3
throughout our experiment with the majority wins. All features
A set of image sequences containing a representative sejefe given equivalent weighting in arriving at the Euclidean dis-
both oriented motion, such as flowing water, and nonorientéghce. Any sample whose nearest Euclidean distance qualified
one, such as fluttering leaves was used as the input to the experan statistical outlier was classified as unknown. This outlier’s
iment. Motions of varying degrees of rigidity can also be foungistance was computed based on Grubbs test [5] with 95% con-
within the set of input. Besides, natural versus man-made, fafence level. The mean and variance for conducting the test was
well as deterministic versus nondeterministic type of motion agbtained from all the minimum Euclidean distance computed in
alsorepresented in the image set. Altogether, we used ten claggg<classification experiments.
of motion entities with varying motion characteristics (Table I).
For each class of motion entity, three image sequences céh-Features Used

sisting of 100 240¢ 320 pixel frames each captu_red at 25 Hz A gypset of the features computed by the gray-level co-oc-
were used. Th_e first image of each sequence is as shown.ifrence matrix (GLCM) [19], difference statistics [42],
Fig. 4. These image sequences were taken at different 1068y Fourier spectrum [26] techniques were first shortlisted
tions with different moving objects of the same class. For exraple |1). Readers are referred to the original papers for full
ample, the motion class for leaves contains leaves of variQysils on these classical texture features. A feature space
shapes and sizes, and the motion class for escalator cont@iiiSsisting of a mix of features from the above three techniques
both ascending and descending escalators. The image sequefigeSselected so that the features complement each other. In this
were either recorded using a tripod-mounted handheld digifghy, we inherited a wide varying set of descriptors that could
camcorder or directly captured from some documentary videgscribe important textural properties of the plot. The different
Sequences in Class J were downloaded from Image SequeRggre values extracted were normalized into common units

A. Experimental Input

Server at KOGS/IAKS Universitat Karlsruhe. by mapping the average to a unit vector. The dimension of
the feature space sums up to 12 for both the magnitude and
B. Procedure the directional plots. For simplicity, the distandefor the

For each image sequence in Fig. 4, the normal flow field wasxel-pair in the co-occurrence matrix and difference statistic
computed between each consecutive pair of image frames usingiputations was chosen to be 1 for all textural analysis in this
the gradient-based approach described in [17]. In order to pexperiment. In GLCM computation, the feature computed from
vent possible contamination by any spurious or erroneous fl@ach GLCM over four directions (i.e.7 045, 90°, and 135)
value computed, only flow vectors with magnitude ranging fromvas averaged.
zero to four were used. The selected normal flow vectors wereWe then selected a subset of these features usingthe
then transformed into spatiotemporal texture plots as descrilmadthod described in [27] to reduce the feature space dimension
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TABLE I
PRELIMINARY TEXTURAL FEATURES CHOSEN FOR THEEXPERIMENT

Features | Analytical Technique | Measure Mathematical Formula

Featl Gray-Level Inertia S — §)2Py(i, )

Feat2 Co-occurrence Shade S+ — pa = pty) Pald, §)

Feat3 Matrix Correlation E:Ty[z 1§ P4(i,§) — pepty]

Feat4 Fourier Spectrum Centered at 45% || Y o) 50<tan=2 (/) <6750 [ F (1 v)[?

Feat5 (Angular) Centered at 135° | 37119 s0<tan—1(o/u)<157.50 [F (1, 0)[?

Feat6 Difference Statistics Mean > kPa(k) where Py(k) = 32);_j1=¢ Fali, )

A

" |
) ‘ Ig?
L 8 . .
i ?{ I‘.l‘s.::. .,y
s . 1
& I
1 .‘;_'!-':
0 i

Fig. 5. Two examples of partitioned features. Left: a good feature and right: a bad feature.

and remove any redundant feature. In this method, a statidigtween the training and the test sets. One underlying reason for
significance test is conducted on the relationship betwe#nis poor performance is in the fixing of the parameteait 1 for

the values of a feature and the classes. Pairs of adjackoth the co-occurrence matrix and the difference statistics com-
intervals with the lowesj? values are merged until all pairsputations throughout the experiment. The classification results
of intervals havey? values exceeding a critical value. Fig. Sassociated with these sequences could be readily improved with
shows both an example of a good and a bad feature partitiorsggroper range af chosen to account for the individual scale dif-

at y* = 0.95. In this example, Feat4(EDP) could single ouference. For instance, we could compute a number of GLCMs
Class A, C, F, and J distinctively from the other classes. Qvith severald values for each feature and use the maximum re-
the contrary, Feat1(EDP) was unlikely to separate any of thaltant statistical measure for classification. Alternatively?a
classes. We chose a subset of six features Table Il that can lmesthod could be used to select thealue that contains the most
discriminate the nine motion classes based on the training sttucture [46]. As expected, the classification rate for Test Se-
Fig. 6 demonstrates the partitioning of the six selected featurgsence 1 of Class B increased appreciably from 8/19 to 18/19
Since CFeatl measures the contrast of EDP and both Claswiiend = 6 and jumped to 19/19 whed = 10. Similarly,

and E are likely to give low contrast EDP, it is difficult for onethe rate for Test Sequence 2 of Class B increased from 11/19 to
to separate the two classes based on CFeatl alone. Howel#]9 for bothd = 5 andd = 10. The classification rate for
due to the difference in coarseness in the two EDP’s, CFedist Sequence 2 of Class | climbed from 7/19 to 9/19 and 13/19
discriminates the two classes relatively well. Similarly, it isvhen we set! = 8 andd = 4, respectively.

difficult for one to discriminate between Class G, H, and | using The above argument on scale difference, however, may not
CFeat3 since the line structures found in these classes are qoéerue for Test Sequence 2 of Class G (Tree) where the size of
similar. These line structures, however, differ significantly frorthe object is of comparable scale with that of the training se-
that of Class E. Hence, Class E is well separated from thegagence. There was no apparent improvement in performance as
classes using CFeat3. Similar argument can be extended tanalvariedd. We attribute this poor performance to the extraction

other feature measures. of excessive spatial information from the plots. A close observa-
. ) tionin the image sequences of Class G shows that Test Sequence
D. Results and Discussion 2 differs from the other two sequences mainly in its structural

Table IV tabulates the classification results while Table Yhakeup. The tree in the Test Sequence 2 is more leafy (denser)
traces the assignments of any misclassified samples. It cambih minimal amount of exposed branches. As the Fourier Spec-
concluded that the experiment carried out had successfully clasim (Angular) analysis is highly sensitive to orientation of line
sified the majority of the classes. A close examination of thetructure in a texture, the algorithm fails to assign most of the
results reveals that image sequences which yield the lower ssamples in Test Sequence 2 to Class G. Instead, most of the sam-
cess rates can be attributed to significant object size differemies were classified as Class A (Grass). This misclassification
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Fig. 6. Subset of six chosen features partitioneg’at= 0.95.
TABLE IlI TABLE V
FINAL TEXTURAL FEATURESUSED FOR THEEXPERIMENT CLASSIFICATION AND MISCLASSIFICATION WITH OUR ALGORITHM (%)—E.G.,
FOR CLASS A, PERCENTAGE OFSAMPLES ASSIGNED TOCLASS A, B
Features || Source || Analytical Technique || Measure AND G WERE 95.74%, 2.13%ND 2.13% RESPECTIVELY. CLASS U
- REPRESENTSUNCLASSIFICATION DUE TO LARGE EUCLIDEAN DISTANCE
_CFeatl | GLCM Inertia COMPUTED ORTIES WITH OTHER CLASSES
CFeat2 EDP Difference Statistics Mean
CFeat3 Fourier (Angular) At 45° I A ] B ‘ C D | E I F | G I H ' I l 3 I U
CFeatd GLCM Correlation Alos.7al 213 213
CFeatd EMP GLCM Shade
E—— Bl 4.26 [59.57 23.40 { 6.38 6.38
CFeat6 Fourier (Angular) At 135°
C 85.11 2.13 | 2,13 ] 6.38 H4.26
D 100.00
E 100.0
TABLE IV F 100.0
CORRECTCLASSIFICATION WITH OUR ALGORITHM G ll23.40 l76.60
H 100.0
Class Test Test Test Success 1 21.27 | 8.51 Fo.21
Sea- 0 || Sea: 1 j| Sea- 2 Rate 3213 6.38 4.26 87.23
A 9/9 19/19 17/19 95.74%
B 9/9 8/19 11/19 59.57%
19/1 5. S . . .
° 5/ /19 || 12/19 | 85.11% urally speaks for and is highly correlated to the high success
D 9/9 19/19 19/19 100.00% . . . .
rates obtained in our classification.
E 9/9 19/19 19/19 100.00% .. .
= o5 /15 1o710 || 100.00% We have explicitly shown the success of our approach in a su-
G o/9 9/10 8/19 76.00%% pervised classification expenmen';. Itisalso |_n_tergst|ng toaccess
p oy /1 19719 || 100.00% the performance und.er unsupervised classﬁlcatm(a.—_means
1 /9 7/19 17/19 70.21% unsupervised clustering was conducted on the Training/Test Se-
J 9/9 17/19 15/19 87.23% guence 0 using the standard Euclidean distance criteria. The

numbers of clusters were prespecified to be 10. The six features
used were similar to those used in the original supervised exper-

is due to the sharing of some spatiotemporal resemblances ipgent. The iteration stopped when no sample can be moved to
tween Test Sequence 2 of Class G and Training Sequencea@entroid closer than the one that it currently belonged. After

Class A.

three iterations, the clusters formed were as given in Table VI.

Fig. 7 shows the projection of the training samples onto it&e concluded that the algorithm had clustered the majority of
first two principal components using the Principal Componettte classes successfully with some confusion between Class F
Analysis method. Distinct clusters, each corresponding to a meotd H and I. This was due to the spread in the distribution of
tion class, were formed. This clear separation of the clusters n@tass H as shown in Fig. 7.
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TABLE ViII

FEATURE SET OF NELSON AND POLANA’S ALGORITHM

Feature ” Measure

Featl Inverse coefficient of variation

Feat2 Positive divergence

Feat3 Negative divergence

Feat4 Positive curl

Feat5 Negative curl

Featf Non-uniformity of flow direction

Feat? Directional difference statistics
in the horizontal direction

Feat8 Directional difference statistics
in the vertical direction

Feat9 Directional difference statistics
in the +ve diagonal direction

Featl0 Directional difference statistics
in the -ve diagonal direction

First Principal Axis

Fig. 7. Training samples projected onto the first two principal components.
9 9 ples proj P P P TABLE VI

CORRECTCLASSIFICATION WITH NELSON AND POLANA’S ALGORITHM

TABLE VI

CLUSTER MEMBERSHIPSFORMED BY k-MEANS CLUSTERING Class Test Test Test Success

Seq. 0 Seq. 1 Seq. 2 Rate

Cluster 1 2 3 4 5 A 9/9 0/19 0/19 19.15%

Number(Class) 19(E) 19(B) | 19¢A) | 18(J) 19(C) B 8/9 1/19 1/19 21.28%

Cluster 6 7 8 9 10 C 9/9 18/19 0/19 57.47%

Number(Class) || 19(F)+8(H) | 19(D) | 19(G) | 1(3) | 19(1)+11(H) b 9/9 19/19 19/19 100.00%

E 8/9 17/19 17/19 91.49%

F 9/9 18/19 14/19 87.23%

G 9/9 19/19 19/19 100.00%

V. EXPERIMENT ll: COMPARISONWITH TWO ALGORITHMS - 570 15/19 T5/1e P

We compare our algorithm with another two temporal tex- ! 9/9 0/19 0/19 19.15%

ture analysis algorithms. We specifically chose the algorithms J 9/9 10/19 || 19/19 80.85%

of Nelson and Polana [31], and Bouthemy and Fablet [6]

for comparison due to the affinity of their works with ours TABLE IX

although their works are mainly concerned with the recognitioncLassiFiIcATION AND MISCLASSIFICATION WITH NELSON AND POLANA’S
of motion class rather than particular moving entities. Th‘éL(G:OR'THM(%)—ng FORCLSSS? PECF;CE3';'TAGE OOFS‘;’thLESASS'GNED TO

. . . . . . LASS A, B AND G WERE 19.15%, 40.43%WND 40.43% RESPECTIVELY.
objeguve of this experiment is to emplrlcally benChmark the_ CLASS U REPRESENTSUNCLASSIFICATION DUE TO LARGE EUCLIDEAN
relative strengths and weaknesses in the three algorithms in DISTANCE COMPUTED ORTIES WITH OTHER CLASSES

identifying the moving entities.

. . A B (o] D E F G H 1 J U
In our algorithm, we have chosen the stacking factor to t I I | | ! l | | I I |
five. This means that each single extended spatiotemporal t2]t9:15 }40-43 1043
. . s . Bl{4.26 [21.28 29.79 27.66 {17.02
ture had been derived from the superimposition of five col
. . . C 57.47 6.38 17.02 | 2.13 |16.38 [10.64
secutive spatiotemporal textures in a sequence. In Nelson i S
Polana’s algorithm, the features obtained from five consecutiZ o120 Py
normal flow plots were averaged. Five consecutive normal floz B7.23] 213 1064
plots were used to derive the temporal co-occurrence matrixg 100.00
Bouthemy and Fablet’s algorithm. Classification was performeéz 17.02 ls0.85 2.13
with the & nearest-neighbor classifié¢k = 3) based on Eu- 1[[s3s [2.13 25.53 31.91 19.15 14.89
clidean distance with equal weighting for all features in the thres 19.15 80.85

algorithms. Similar to Experiment I, the first ten sets of feature
samples from Sequence 0 were used as the training data. The . . .
remaining nine samples and the full set of the other two test %e-ln this algorithm, Clas_ses D, E F G, H _and J scored the

. : ighest success rate with D and G achieving perfect score.
quences with 19 samples each were used for testing.

Moderate performance is observed in Class C. Class C’s

, . moderate success rate can be attributed to the low success

A. Nelson and Polana’s Algorithm rate in its Test Sequence 2. While all of the three image
Table VII summarizes the features extracted from the norms#quences depict gentle waves, the waves in Test Sequence 2

flow field in Nelson and Polana’s algorithm. The classificatioiffer significantly in scale from the training sequence. Despite

results obtained were tabulated in Tables VIII and IX. Nelson and Polana’s claim to scale invariance of their feature
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TABLE X TABLE XI
FEATURE SET OF BOUTHEMY AND FABLET’S ALGORITHM CORRECTCLASSIFICATION WITH BOUTHEMY AND FABLET’S ALGORITHM
Features ” Measure Class Test Test Test Success
Featl Average Seq. 0 Seq. 1 Seq. 2 Rate
Feat?2 Variance A 7/9 1/19 10/19 38.30%
Feat3 Dirac B 1/9 7/19 1/19 19.15%
Featd Angular Second Moment C 8/9 2/19 3/19 27.66%
Feat5 Contrast D 8/9 19/19 15/19 89.36%
E 5/9 13/19 8/19 55.32%
F 9/9 0/19 0/19 19.15%
set, the overall success rate of Class C seems to suggest that G 9/9 14/19 || 18/19 87.23%
either the feature set is not scale-invariant or that insufficient H 5/9 18/19 || 19/19 || 89.36%
temporal information has been encoded into the features to . or8 218 || o/19 4.26%
. . .. . . . . .. . J 9/9 0/19 19/19 59.57%
recognize this similarity in motion. Despite the close similarity
in the motion type exhibited by the three sequences, the low
percentage of correctly matched samples from Test Sequence 2 TABLE XiI
appears to bear out the aforementioned hypotheses. CLASSIFICATION AND MISCLASSIFICATION WITH BOUTHEMY AND FABLET’S

Indeed, the normal flow distribution is strongly linked to theALGORCITHM (%)—EG. FORCLASS A3,8 P;()ROCENTAGEOOFSZAM;OLES AZSSI;NED
; ; o 10 CLASS A, D, |, AND U WERE 38.30%, 57.47%, 2.13%ND 2.13%
Spatlal feature In the sense that itis Iocated at the edges' TherEESPECTIVELY. CLASS U REPRESENTSUNCLASSIFICATION DUE TOLARGE

fore it opens to question whether the feature set used by Nelson Euciipean DistancE CoMPUTED TOTIES WITH OTHER CLASSES
and Polana encodes more of the spatial or the temporal informa-

tion. By the preceding reasoning, it is not surprising that Class: [alsJc o e |rlclulr[sTu
D, E, and G scored high success rates since the image sequer = |38.30 57.47 2.13 2.13
under those classes are similar in scale and spatial appeara 2 19.15 8.51 |6.38 23.40 121.28 |4.26 17.02
within its own classes. It also accounts for why Classes F, + £ 2766213 |6.38 ]40.43 17.02 |2.13 | 4.26

and J, and especially Classes A, B, and | did not perform we| 2 89.36 638 ]426
In particular, sequences used in Class | bear very little spatial r = 218 {273 55321429 23.40 [2.13 1064
semblance to each other. Even the similarity in motion pattern 420 9.1 — e s
a more elaborate one (local cluster of fluttering wings) that re TR ERT 13 - ey 1;;;
quires a more sophisticated feature descriptor to make explic T 56 Triss [126 110.02 1635 110.65 1515 1351 2.0 T oa
Using the Nelson and Polana’s feature set these samples are J{7.46 12.77 Sy

to be grouped under Classes E and G.

moving banner though they are subject to somewhat different
types of physical constraint. This partial similarity in temporal
To better handle the temporal evolution in temporal texevolution resulted in a large number of samples from Class A
tures, Bouthemy and Fablet [6] proposed the use of tempobaling misclassified into Class D. In particular, Test Sequence
co-occurrence matrices to characterize motion types. Insteladonsists essentially of shorter grasses with less swaying in its
of normal flow, they used a locally weighted average of normaidotion. By ignoring the spatial and possibly more complex form
flow as described in [6]. The computed values are then quasf-temporal information, the algorithm judged Test Sequence 1
tized into 16 levels ranging from O to 4 pixel units. The settingf Class A to be more similar to Class D, whereas the human
of the co-occurrence matrix is similar to the spatial case, excefgual system seems capable of combining both the spatial and
that the pairwise pixels are chosen in the temporal sense (rat@nporal information in its discrimination, which is what our
to the original paper for a detailed description). We preparegdgorithm attempts to emulate.
our experiment as per described in [6] with the temporal The classes with the worst performance were B, C, F, and
pixel pair distancel; chosen to be 1. Table X summarizes the In particular, Class B samples are equally likely to fall under
feature set used by Bouthemy and Fablet, while Tables XI adthsses B, G, and H. Moreover, Class C samples tend to be clas-
Table XII tabulate the classification results. sified under Class F. While Class C and Class F both belong to
From Table Xl, we see that the algorithm turned in rathdluid type of motion, the motion inherent in Class F is typically
good performance for Classes D, G, and H, and moderate pmoere haphazard than Class C’s. In addition, Class F samples
formance for Classes E and J. Bouthemy and Fablet’s algoritlame apt to be classified under Class H. This apparently points
differs significantly from the Nelson and Polana’s algorithm ito the insensitivity of the Bouthemy and Fablet’s feature set to
that it is more concerned with the evolution of the normal flowhe different types of stochastic motion. The feature set was also
field over time rather than its characteristics at a particular innable to characterize samples from Class | due to its elaborate
stance. Thus, there is very little of the spatial information in itsiotion. Finally, the poor performance for Test Sequence 1 of
computed feature. This appears to account for the result of Cl&lass J was probably due to the presence of heavy snowfall in
A. A patch of wind-blown grass generates motion pattern thtite foreground which overlapped with the actual vehicular mo-
is over any short time interval similar to that experienced bytan.

B. Bouthemy and Fablet’s Algorithm
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Fig. 8. Image and directional plot of a waving flag and fluttering leaves in the background.
VI. SUCCESSFACTORS INOUR ALGORITHM did not aim to encode spatial information. The temporal co-oc-

. : .currence matrices while characterizing the normal flow mag-

In contrast to the other two algorithms, our algorithm has dis- L : . . .

. . nitude distribution across a fixed time frame did not consider
tinctly better success rates for all the classes with Classes D_ E, . . : . .

o . the intra-relationship between normal flow magnitudes within

F, and H yielding perfect results. Slightly lower success rates,

. a frame. Moreover, the distribution of normal flow directions,
were observed for Classes B, G, and I. The high success rate : : : : .
in Class D provides good empirical evidence of the ability 0 I(.:h representsapoteqtlal source ofinformation, while readily
N . > ..available, was not exploited.
typify line-like temporal textures. It also demonstrated its ability ) T ) o ] .
to distinguish temporal textures with varying degrees of regu- The main contribution of this paper lies in the introduction
larity, in view of its successful discrimination of samples fron®f the notion of spatiotemporal texture and the realization of
Class C and F. In comparison with the other two algorithms, oli Synergistic usage. Through the employment of the extended
approach was evidently more effective in the characterizationgtatiotemporal texture plots, spatial textural qualities together
the more complex temporal textures from Classes H and |. With temporal information are inherently encoded as input to
With exception to Class G, the overall success rates of tH¥ feature extraction stage. In addition, we have used a wide
other classes were greater than those achieved in the other @€ Of analytical techniques for feature extraction which re-
algorithms. The better performance of our algorithm could 5!lts in the robustness of our algorithm. While many have ar-
due to several factors: 1) The superiority of the feature set. F@ted that basing features on normal flow alone suffers the dis-
instance, features resulting from Fourier spectrum analysis &&/antage of discarding too much information, related works on
not used at all in the other two algorithms. 2) The richness of tRgychophysics [9], [25], [28], [34] as well as the successtul ap-
input utilized by our algorithm—the extended spatiotempor&lication of normal flow computation in the present study sug-
texture encodes both the spatial and the temporal informatiorfifSt that partial information alone would suffice for the purpose
an integral manner. Possibly both factors play a part too. ~ Of recognition. As a result, simple recognition algorithms re-
quiring minimal computational power can be implemented.
There are several areas in which the concept of spatiotem-
poral textures can be applied. Often in video indexing, we are
The evidence gathered in the experiments demonstrated plaeticularly interested in indexing moving objects. Optic flow
superiority of our approach in distinguishing between differetiistogram [4], [10], [24] or variance of the flow [38], [39] is usu-
spatiotemporal textural qualities. There exists two underlyiradly employed to characterize global motion or activity. How-
reasons for the success of our algorithm: the richness of the exer, it can be difficult for us to quantify or describe some mo-
tended representations as well as the choice of feature extitian types, especially those which are indeterminate in tem-
tors. From a theoretical perspective, the unsatisfactory perfpoeral extent. In such cases, there is neither dominant direction
mance of the Nelson and Polana’s algorithm in the classificaer motion features that we can reliably depend on. With the
tion results could be attributed to the temporal deficiency of thpresent system’s ability to characterize motion of such nature,
inputs prior to feature extraction. Apart from the use of normafe could have created categories like “flag-like motion,” “flut-
flow, no other explicit techniques are employed to enhance ttexing leaves,” and “water turbulence” to better relate the dif-
encoding of temporal information into the inputs. There is alderent motion experienced. Often, these categories are directly
insufficient spatial information being extracted. On the contrarlnked to high-level semantics, for instance, the waving flag mo-
the Bouthemy and Fablet’s algorithm, while addressing the tetivn of Fig. 8 is a better indication of the object identity than
poral deficiency found in the Nelson and Polana’s algorithwther features like “redness.”

VII. CONCLUSIONS
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