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This paper presents an algorithm-independent geometrical analysis of the behavior of differential
Structure from Motion (SFM) algorithms when there are errors in intrinsic parameters of the camera.
We demonstrate both analytically and in simulation how uncertainty in the calibration parameters gets
propagated to motion estimates in a differential setting. In particular, we studied how erroneous focal
length and principal point estimates affect the behavior of the bas-relief ambiguity and introduce
additional biasing to the translation estimate in a non-simple manner not revealed by previous analyses.
Our formulation allows us to characterize the influence of various factors such as different scene-motion
configurations and field of views in an analytically tractable manner. Guidelines are given as to whether
one should err on the low or the high side in the estimation of the focal length depending on various
operating conditions such as the feature density and the noise level. Simulations with synthetic data
and real images were conducted to support our findings.
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1. Introduction

Highly accurate camera calibration with special calibration
object is not always possible when the camera system is changing
its intrinsic parameters dynamically. In response to this, the com-
puter vision community has developed schemes for self-calibration
and investigated what structures can be recovered. Indeed a
full-fledged Euclidean reconstruction is not always necessary, for
instance in the task of visual servoing or in image-based rendering.
Projective approaches aim to perform Structure from Motion (SFM)
without calibration, that is, all the calibration information is ne-
glected and the intrinsic camera parameters are assumed to vary
freely from frame to frame. Oliensis [20] questioned whether the
projective approach might not be too general to a fault. The projec-
tive approach assumes zero knowledge of the calibration. In prac-
tice, there are always something known about the intrinsic camera
parameters, for instance, the skew factor being zero, or we do have
a rough estimate of certain parameter even though it might not be
exact. It is questionable whether such total neglect of available
information leads to an increased or decreased robustness. This
question remains largely unanswered despite the enormous
amount of work done on developing projective algorithms. To an-
swer this better, we need to know how using partial or approxi-
mate calibration might affect the estimation of the camera’s
egomotion and accordingly scene recovery, and whether these
influences are large enough in practice to affect the goal of tasks
to be carried out by the camera system. This paper aims at unrav-
ll rights reserved.
eling the errors introduced to the extrinsic motion parameters
when there are uncertainties in the intrinsic parameters. Our geo-
metrical approach reveals a clearer insight into the nature of this
error propagation than what has been discovered by first order sta-
tistical analysis [24,27].

1.1. Related works

Early observations on the impact of erroneous calibration seem
to run along the following line as typified by Bougnoux [1], who
noted the difficulty of obtaining focal length in self-calibration but
suggested from empirical evidence that part of the structure can
be recovered despite error in self-calibration. The ground for this
view, in so far as can be ascertained, seems to be based on the empir-
ically good results of depth reconstructed as part of the self-calibra-
tion process. Zhang [26] performed self-calibration with a moving
stereo rig, thus achieving redundancy compared to monocular se-
quence. They also empirically found that depths reconstructed are
of good quality despite error in focal length estimate. Both did not
analytically address the accuracy of depth reconstructions under
general motion-scene configurations using those erroneous intrin-
sic parameters. Thus, despite these works that suggest that depth
reconstruction is stable against error in calibration, there is still a
paucity of theoretical evidence that this notion is true for all mo-
tion-scene configurations.

Beside the work of Bougnoux [1], there have been various other
works [8,10] which report on the fact that self-calibration
algorithms are sensitive to noise and attempt to improve the
algorithms robustness and reliability. For instance, Hartley and
Silpa-Anan [8] found that it is difficult to obtain the principal point
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and the focal length from the fundamental matrix, even though the
matched points used are of high quality and the fundamental
matrix is obtained using the bundle adjustment method. Other
authors [9,13,21,22] analyzed the critical motion sequence in
which no unique calibration can be obtained. Some of these gen-
eral results have practical importance for certain motions and
the special case of two-frame situation, which is also analyzed by
[9,18]. The significance of these works lies in that those configura-
tions near to the critical motion sequence would yield unstable
intrinsic estimates. However, how these uncertainties in estimat-
ing intrinsic parameters would in turn affect egomotion estimates
is not made clear in these papers.

Both [24,27] studied how uncertainty in the calibration param-
eters gets propagated to the motion parameters. Our work is clos-
est in spirit to these works in that it examines the effects of errors
in the intrinsic parameters on the estimation of the extrinsic
parameters. However, instead of a statistical approach that exam-
ines the covariances like in [24], we adopt a geometrical approach.
The conclusions from [24] regarding the impact on the rotational
component of the egomotion estimates are not clear, though it
seems that the rotational estimates can be quite badly affected.
The authors noted that the influence of the precision of the calibra-
tion parameters on the motion parameters estimation depends on
the types of camera motion and the scene type. However, their for-
mulation did not allow an intuitive grasp of this scene-motion
dependency and its interaction with the calibration errors. Simula-
tions were conducted for some scene-motion configurations and
error was introduced in the individual calibration parameter one
by one. The piecemeal nature of the analysis means that the gen-
eral applicability of the results is hard to ascertain. We investigate
this dependency in a geometric manner and reveal clear insights
into this dependence. Zucchelli and Košecká [27] also looked at
the relationship between the errors in the intrinsic parameters
and the egomotion estimates; their approach is based on perturba-
tion analysis which relates the bias of the translation solution to
the eigenvectors of matrices. With some first order approxima-
tions, it reveals that the calibration errors introduce an additional
bias in the direction of the optical axis and that the bias produced
by erroneous calibration increases in magnitude for increasing
field of view (FOV). The experiments conducted belonged to the
special type of motions whereby the camera’s viewpoint was fix-
ated at the centroid of the point cloud. We showed later that the
additional bias can in fact move in a variety of ways depending
on the motion-scene configuration, and explained why in the
aforementioned fixating motions, the additional bias is constrained
in its direction. Thus our approach offers a much more comprehen-
sive picture than the first order numerical analysis of [27].

Another work that investigated the coupling between the
intrinsic and the extrinsic parameters from another perspective
is the recent work by González et al [7]. They have shown experi-
mentally that there exists a strong coupling between the intrinsic
and the extrinsic parameters. Most calibration methods, even
those using static camera and calibration objects, suffer instability
in the sense that the set of intrinsic parameters returned by a cal-
ibration method suffered important variations even though the
camera only changes its extrinsic pose relative to the calibration
pattern. Similar results have been obtained for the extrinsic param-
eters when the camera only changed its internal configuration (i.e.
when it zooms in or out) and not its relative position to the calibra-
tion pattern. Although the error functions minimized by these dif-
ferent calibration techniques (usually minimizing the reprojection
errors in the image or the reconstruction errors of the reference
points in the 3-D space) yield similar error levels, it does not guar-
antee that the parameter estimates converge to the ground truth
values, which is a serious problem if we want to use the calibrated
camera in mobile applications. The main practical implication of
this fact is that, when a camera is calibrated with any of these
methods, we are ‘‘calibrating” the camera with just that pose.
When subsequently the camera extrinsic parameters change, as
in mobile applications, can we assume the same ‘‘calibrated”
intrinsic values to carry out calibrated SFM analysis? In other
words, one can get jointly optimal camera parameters (intrinsic
and extrinsic) in a calibration algorithm but it is only optimal with
respect to the cost function without necessarily meaning that these
camera parameters are correct. Thus modeling the errors in the
intrinsic parameters by simple Gaussian distributions—a typical
approach in many error analyses—may not be appropriate, since
the errors may depend on the extrinsic parameters. Clearly, there
is a need to investigate how errors in the intrinsic parameters af-
fect the estimation of extrinsic motion parameters, and how depth
reconstruction would be affected as it critically depends on accu-
rate egomotion estimation, especially in certain scene-motion con-
figuration such as forward translation [3]. It is abundantly
plausible that the task of depth reconstruction in the face of cali-
bration uncertainty is a more complicated task than might be
thought at first [1,26].

Last but not least, the bas-relief ambiguity is a well-known
ambiguity for the case of calibrated two-frame SFM [6,16,19].
Oliensis [19] showed that unknown focal length variations
strengthen the effects of the bas-relief ambiguity. This is attributed
to the simple fact that the zoom flow is essentially not recoverable
from the forward translation component. Together with the origi-
nal bas-relief ambiguity, this new coupling renders all directions of
the translation not accurately recoverable. The paper also went on
to note that the motion errors depend simply on the estimated fo-
cal length and image center (e.g. the estimated translation differs
from the true translation by a factor of the unknown focal length),
but this is based on various assumptions such as the non-transla-
tional terms can still be annihilated in the proposed algorithm
and that the second order terms are small. We look at this relation-
ship between the extrinsic motion and the estimated focal length
in detail, assuming that the camera is not undergoing zoom mo-
tion, and we found that errors in the focal length estimates modify
the phenomenon of bas-relief ambiguity in a non-simple way
(depending on the rotation and the scene depths). For instance,
when the focal length is under-estimated, the bas-relief valley that
marks the error surface could become truncated and the feasibility
of the so-called flipped minimum solution [20] might diminish.

1.2. Summary of our contribution

The contribution of this paper lies in a geometrical, algorithm-
independent analysis of the differential SFM cost function with
some errors in the calibration parameters. In contrast to works that
investigate the ambiguities in self-calibration under the so-called
critical motion sequence [9,13,21,22], we are more interested to
know how uncertainties in the calibration parameters get propa-
gated to the egomotion estimates. In the preliminary version of
this work [4], we analysed the case of erroneous estimate in the fo-
cal length and carried out simulation on synthetic data only. Here
we showed how errors in both focal length and principal point esti-
mates affect the behavior of the bas-relief ambiguity and introduce
additional biasing to the translation estimate in a non-simple man-
ner. We also obtained an approximate bound to the maximum
amount of bias in the translation estimate. Other changes in the er-
ror surface, such as the length of the bas-relief valley and the num-
ber of local minima, were also noted. We provide experimental
results on both synthetic and real data, with the latter revealing
the crucial tradeoff between the bias and the variance of the
motion estimates under realistic operating conditions. Our differ-
ential formulation characterizes the influence of various factors
such as different scene-motion configurations and field of views



Fig. 1. The pinhole camera model.
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in an analytically tractable manner—the biggest virtue of our ap-
proach. It is thus able to offer a much more comprehensive analysis
of the various phenomenon than other approaches such as
[19,24,27].

In terms of practical insights, it allows us to predict the type of er-
rors in the egomotion estimates and to put a bound on them, as a
function of the errors in the intrinsic parameters, as well as the scene
and motion types. This allows us to partially answer the question
raised in [20]: is it better to perform self-calibration or to use an
existing calibrated setting despite small error in the parameters? If
self-calibration is desired, our results also provide guideline as to
whether to err on the low or the high side in the estimation of the
focal length. This would result in different tradeoff between the bias
and the variance of the motion estimates and could be crucial
depending on the expected operating conditions such as the feature
density and the noise level. Lastly, while our analysis is for the sim-
pler differential case, the apparent differential/discrete dichotomy
in the SFM problem is not really a fundamental one. Much of the
ambiguities analyzed here are clearly also applicable to the discrete
case.

The organization of this paper is as follows. First, we briefly
review in Section 2 the various requisite background and introduce
the notations used in this paper. In Section 3, we seek to character-
ize the various inherent ambiguities in 3-D motion estimation
under erroneous calibration parameters. We employ a cost func-
tion visualization method to visualize the topology of the cost
functions, so as to both verify the various theoretical predictions
and to reveal further properties of the cost functions. Based on
such understanding, we compare our results against those
obtained in previous works. These theoretical investigations are
followed by experiments on synthetic and real images to verify
the various predictions made. The paper ends with the conclusions
of the work.
2. Background and prerequisite

2.1. Notations

In this subsection, we explain some of the mathematical nota-
tions that a reader will frequently encounter when reading the
paper.

1. Unless otherwise stated, we use bold lower-case character to
denote vector and bold upper-case character to denote matrix.
Vectors are column vectors.

2. [s]m Given a n-vector s, [s]m is defined as the m-vector which
consist of the first m (m < n) components of s.

3. �s is the associated skew-symmetric matrix of s.
4. For any vector s = (s1,s2)T, s\ represents the vector (s2, �s1)T

which is perpendicular to s with the same magnitude.
5. ŝ and se We denote any estimate of the parameter s as ŝ, and

error in this estimate ŝ as se = s � ŝ.

2.2. Models

We now briefly introduce the various notations used in our
error analysis via a review of the calibrated SFM scenario. A pinhole
camera model with perspective projection is assumed as shown in
Fig. 1. In the figure, the camera is moving with a translational
velocity v = (U, V, W)T and a rotation velocity w = (a, b, c)T. A point
P = (X, Y, Z)T in the world produces an image point p = (x, y, f)T in
the image plane, where f is the focal length. For a fixed focal length,
the derivative _p is given by (u, v, 0)T where (u, v) is the optical flow.
The latter is related to the 3D motion parameters by the following
[14]:
u ¼ utr

Z
þ urot ¼ x� x0ð ÞW

Z
þ axy

f
� b

x2

f
þ f

� �
þ cy

v ¼ v tr

Z
þ v rot ¼ y� y0ð ÞW

Z
� bxy

f
þ a

y2

f
þ f

� �
� cx ð1Þ

In the preceding equation, ðx0; y0Þ ¼ f U
W ; f V

W

� �
is the focus of

expansion (FOE), and _ptr
Z ¼

utr
Z ;

v tr
Z

� �T and _prot ¼ ðurot ;v rotÞT are the
flows components due to translation and rotation respectively.
Since only the translational direction can be recovered from the
flow field, we can set W = 1 without loss of generality.

2.3. Optimization criteria for SFM

Most of the existing cost functions for SFM are based on some
forms of the epipolar constraint which was proposed by Longuet-
Higgins [14]. The epipolar constraint relates the 3-D motion esti-
mates with the image displacements in a manner independent of
depth. In the differential case, the epipolar equation can be written
in terms of the 3D motion estimates v̂ and ŵ as [2]:

pT �̂v _pþ pT �̂v �̂wp ¼ 0 ð2Þ

from which one can minimize the following cost function

JE1 ¼
Xn

i¼1

pT
i
�̂v _pi þ pT

i
�̂v �̂wpi

� �2
ð3Þ

where n is the number of image velocity measurement. The con-
straint JE1can also be written in the following equivalent form:

JE1 ¼
Xn

i¼1

½ _pi�s2 � _̂proti

� �
� _̂p?tri

� �2
ð4Þ

It says that in the image plane the derotated flow vector
½ _pi�2 � _̂proti

should be parallel to the epipolar direction _̂ptri
, or equiv-

alently perpendicular to _̂p?tri
. However, a bias of the estimated

translation is well-known to be present when a linear algorithm
based on (4) is applied. In view of this bias, various weighted ver-
sion of JE1 have been proposed as a statistically more adequate
implementation of the differential epipolar constraint, and it has
been shown in [25] that all of them can be expressed in the follow-
ing form:

JR ¼
Xn

i¼1

_̂ptri
� _pi½ �2 � _̂proti

� �?
_̂ptri
� ni

0
B@

1
CA

2

ð5Þ

where ni is a unit vector in the image plane representing a particu-
lar direction associated with the ith image point. Various weighted
differential epipolar constraints differ mainly in the choice of this



1 This statement means that we require the feature points to be sufficiently evenly
distributed such that the vectors t1,1 are evenly spread on either side of t1,0 and the
sum of vectors t2,1 and t2,2 are evenly spread on either side of t2,0 + t2,Z, and the
distribution of depth Z is symmetrical with respect to the t1,0 direction.
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unit vector n. It was also shown that the key properties of the
various cost functions used in different algorithms are determined
by the angle between the two vectors involved in the dot product
in the numerator; the choice of n in the denominator might affect
the detailed numerical properties but has little influence on key
properties such as the formation of the bas-relief valley on the error
surface (see [25] for more details). Thus we can study the properties
of the various algorithms by looking at the generic cost function
given by Eq. (5).

3. Behavior of motion estimation algorithms with erroneous
estimated focal length

The preceding section reviewed the key factors affecting the
behavior of motion estimation algorithms for the calibrated case.
This section will investigate the behavior of extrinsic motion esti-
mation under erroneous camera calibration. In particular, we con-
sider how extrinsic motion estimation would be affected by fixed
errors in the estimates of the focal length and the principal point
offset.

First, we need to express the cost function JR in terms of the var-
ious component errors in the 3-D motion estimates together with
terms arising from errors in the estimates for the intrinsic parame-
ters. We reiterate that it is a geometrical and algorithm-independent
approach. Thus we ignore those errors that arise from stochastic
noise in the image measurements but directly consider the errors
in the camera parameters made by any motion estimation algo-
rithms. For clarity of presentation, we first consider the case where
the only intrinsic parameter with error is the focal length, leaving
the full case to Section 3.3 and Appendix A.2. Substituting ^_ptri

¼
xi � x̂0; yi � ŷ0ð ÞT , _pi½ �2 ¼ ðui; v iÞT ¼ xi�x0

Zi
þ uroti

; yi�ŷ0
Zi
þ vroti

� �T
and

^_proti
¼ ûroti

; v̂ roti

� �T into Eq. (5) we have:

JR ¼
Xn

i¼1

xi � x̂0; yi � ŷ0ð Þ � v rote � y0e
Zi
; x0e

Zi
� urote

� �
xi � x̂0; yi � ŷ0ð Þ � ni

0
@

1
A

2

ð6Þ

where the various error terms are expanded as follows:

urote ¼ � bf � b̂f̂
� �

þ a
f
� â

f̂

 !
xiyi �

b
f
� b̂

f̂

 !
x2

i þ ceyi

v rote ¼ af � âf̂
� �

þ a
f
� â

f̂

 !
y2

i �
b
f
� b̂

f̂

 !
xi; yi � cexi

x0e ; y0e

� �
¼ x0 � x̂0; y0 � ŷ0ð Þ ð7Þ

Note that urote and v rote now contain terms due to the inaccurate
focal length estimate f̂ for our uncalibrated scenario. For notational
convenience, we shall henceforth omit the subscript i in the
expression of JR, although it is understood that the summation runs
over all feature points. Like the calibrated case analyzed in [25], it
is the angular relationship between the two terms in the numera-
tor of Eq. (6) ðx� x̂0; y� ŷ0ÞT and ðv rote �

y0e
Z ;

x0e
Z � urote Þ

T that gov-
erns the behaviour of the error surface of JR, and in particular,
the formation of the bas-relief valley. We denote these two terms
as t1and t2 respectively, and will analyze how the angular relation-
ship between them changes in the light of calibration errors. Fur-
thermore, we also want to investigate the individual contribution
of the terms in t1and t2. For that purpose, we adopt the terminol-
ogy that t1,n and t2,n denote the nth order component (with respect
to x and y) in t1 and t2 respectively. Accordingly, we have:

JR ¼
X t1 � t2

t1 � n

� �2

t1 ¼ t1;0 þ t1;1

t2 ¼ t2;0 þ t2;1 þ t2;2 þ t2;Z

ð8Þ
where

t1;0 ¼ �x̂0;�ŷ0ð ÞT

t1;1 ¼ x; yð ÞT

t2;0 ¼ af � âf̂
� �

; bf � b̂f̂
� �� �T

t2;1 ¼ �cex� ceyð ÞT

t2;2 ¼
a
f
� â

f̂

 !
y2 � b

f
� b̂

f̂

 !
xy;� a

f
� â

f̂

 !
xyþ b

f
� b̂

f̂

 !
x2

 !T

t2;Z ¼ � y0e

Z
;
x0e

Z

� �T

ð9Þ

Since the depth Z may be dependent on x and y in a complex
manner, we use the notation t2,Z without explicitly specifying the
order of this term.

Eqs. (6) and (7) show that for any given data set (x,y,Z), the
residual error is a function of the true FOE (x0,y0), the estimated
FOE ðx̂0; ŷ0Þ, the error in the rotation estimates ðae; be; ceÞ and the
estimated focal length f̂ . In comparison with the calibrated case
(by setting f̂ ¼ f ), we immediately note the following:

1. The estimation of c is quite independent of camera calibration
since the ce term is not coupled with the intrinsic parameters
in any meaningful way. Thus, geometrically speaking, c can be
estimated well, like in the case of calibrated SFM.

2. The true rotational parameters play a part in the formation of
the error surface. This is unlike the calibrated case where the
cost function only depends on errors in the rotational parame-
ters and not the true rotational parameters themselves (note
that for the calibrated case, t2,0 = (aef,bef)T and t2;2 ¼
ae

y2

f �
bexy

f ;� aexy
f þ be

x2

f

� �T
).

3.1. Changes to the bas-relief valley

The properties of the motion estimation algorithms depend on
the angular relationship between the terms in the numerator of
JR in Eq. (8) in the following sense. If there exists a class of motion
solutions that make the dot product in the numerator of JR vanish,
then ambiguities exist. We recapitulate the two conditions dis-
cussed in [25] that should be satisfied to make the numerator of
the cost function JR vanish:

ð1Þ making t1 and t2 perpendicular to each other; and
ð2Þ making kt2k small: ð10Þ

The requirement for condition (1) is clear from Eq. (8). Condi-
tion (2) helps because condition (1) can never be completely
satisfied at every image point under general motion-scene config-
uration with depth Z not a constant value. Making kt1k small does
not help since it appears in both the numerator and the
denominator.

We now examine the implications of the two conditions in (10)
for the uncalibrated case. From the expressions of t1 and t2 in Eq.
(8), we can see that t1,0, t2,0 and t2,Z are pointing towards constant
directions for all the feature points. If we consider t1,1 as a pertur-
bation to the constant-direction vector t1,0 and (t2,1 + t2,2) as a per-
turbation to (t2,0 + t2,Z),1 then making the constant-direction vectors
(t2,0 + t2,Z) and t1,0 perpendicular to each other is a reasonable choice
for the minimization of JR (see Fig. 2). Thus we have



Fig. 2. Geometry of t1 and t2. To create conditions conducive for the formation of
the bas-relief ambiguity, the vectors (t2,0 + t2,Z) and t1,0 should be perpendicular to
each other.
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y0e � afZ þ âf̂Z

x0e þ bfZ � b̂f̂Z
¼ ŷ0

x̂0
ð11Þ

or equivalently

y0e � aefZ � âfeZ

x0e þ befZ þ b̂feZ
¼ ŷ0

x̂0
ð12Þ

The last equation shows that, in the case f̂ ¼ f , the last terms in
both the numerator and the denominator on the left hand side
vanish. The equation reduces to the calibrated case, and as dis-
cussed in [25] it can be satisfied by obeying two independent con-
straints, the first one relating to the translational parameters
x0e
y0e
¼ x̂0

ŷ0
(which implies x0e

y0e
¼ x0

y0
), and the second one relating to the

rotational parameters ae
be
¼ � ŷ0

x̂0
. The first constraint characterizes

the valley that gives rise to the bas-relief ambiguity found in cali-
brated SFM algorithms. Any motion estimate whose FOE lies along
the straight line passing through the true FOE and the origin will
have small JR as long as the second constraint is also satisfied. How-
ever, in the uncalibrated case, when the error in the focal length fe

is significant, ae and be cannot be freely varied to satisfy the second
constraint ae

be
¼ � ŷ0

x̂0
. Rather, if there is significant error in the esti-

mate f̂ , the term t2,2 can no longer be treated as second order effect
and be ignored relative to t2,0. Comparing terms in t2,0 and t2,2, we
observe that even if the FOV is small (i.e. f is large) such that a

f � af
and b

f � bf , the corresponding relationships for the estimated
terms â

f̂
� âf̂ and b̂

f̂
� b̂f̂ may not be valid, and thus we cannot as-

sert kt2,2k � kt2,0k. This is the case when f̂ is under-estimated such
that the estimated FOV is large. Under such circumstance, making
kt2,2k small is just as important towards minimizing the cost func-
tion JR. Clearly this gives rise to the following constraint on the
rotational estimates:

a
f
¼ â

f̂
;

b
f
¼ b̂

f̂
ð13Þ

Note that in the above, the quantity f̂ is fixed (since we are con-
sidering fixed focal length estimate); thus the two equations in
(13) fully specify â and b̂. With this constraint, ae and be cannot
be freely varied such that the original calibrated constraint
ae
be
¼ � ŷ0

x̂0
is satisfied. Thus to satisfy constraint (11), we cannot
decompose it into two independent constraints like in the cali-
brated case. Rather, to satisfy both (11) and (13) at the same time,
we substitute (13) into (11) and obtain a single constraint:

y0e � afZ 1� f̂
f

� �2
� �

x0e þ bfZ 1� f̂
f

� �2
� � ¼ ŷ0

x̂0
ð14Þ

which can also be written as

y0 � afZ 1� f̂
f

� �2
� �

x0 þ bfZ 1� f̂
f

� �2
� � ¼ ŷ0

x̂0
ð15Þ

The above expresses a constraint on the direction of the esti-
mated FOE ðx̂0; ŷ0Þ that dictates the formation of the bas-relief val-
ley. Compared to the original bas-relief constraint in the calibrated
case ŷ0

x̂0
¼ y0

x0
, which is a straight line passing through the true FOE

and the origin, this modified constraint indicates a ‘‘bas-relief” val-

ley that has a different slope in general given by
y0�afZ 1� f̂

f

� �2
� �

x0þbfZ 1� f̂
f

� �2
� �. In

particular, consider the shift in the FOE estimate ðx̂0; ŷ0Þ caused

by the term bfZ 1� f̂
f

� �2
� �

and �afZ 1� f̂
f

� �2
� �

. One can also

interpret this shift as an additional bias to the FOE estimate caused
by the error in the focal length estimate, over and above the well-
known bias towards the optical center. This bias was also investi-
gated in [27], but their approach has difficulty in analytically deriv-
ing the bias as a function of the various factors. Using simulation,
they seemed to obtain the result (though without offering any
explanation) that under-estimation of focal length results in a
larger bias than over-estimation of focal length. We confirm and
explain later that the bias is indeed larger for under-estimation
of focal length, but our approach also allows us to show how the
direction of the FOE bias is a function of the actual translation
and rotation.

Furthermore, recall from the conditions stated in (10) that
ambiguity is more likely to arise if kt2k is also small. Of the terms
in kt2k, the rotational errors ae and be in kt2k can no longer be freely
varied due to Eq. (13); thus x̂0 and ŷ0 are clearly constrained in
magnitude in order to make kt2,Zk and thus kt2k small. In other
words, ðx̂0; ŷ0Þ is not only just constrained in direction but also in
magnitude; this is unlike the small field calibrated case, where
any residual error caused by the translational errors can be com-
pensated for by a suitable choice of ae and be. Accordingly, we ex-
pect that in general, the bas-relief valley might not straddle across
the entire visual field. In particular, the feasibility of the flipped
minimum solution (i.e. ðx̂0; ŷ0Þ ¼ �ðx0; y0Þ) that exists under cali-
brated scenario [20] would be diminished. On the other hand,
due to the presence of the Z term in the constraint (14), we expect
the shape of this bas-relief valley to be markedly affected by the
way the scene points are distributed. For a cluttered scene with
non-smooth depth distribution, the valley will be less well-de-
fined. That is, instead of a narrow and elongated valley that
stretches across the entire visual field, it would be broader and
rather reduced in length to a local quadrant. We also expect more
local minima in the solution space due to the non-smooth Z term in
the constraint (14), which could pose convergence problem for a
Euclidean SFM algorithm assuming erroneous calibration parame-
ters. As a result, using a projective SFM algorithm under such situ-
ation might have the advantage of facing less of a local-minimum
problem.



Fig. 4. With a relatively wide FOV of 53�, the constraint exerted on the rotational
estimates â and b̂ is strong. The curves f̂

f ,
â
a and b̂

b increase approximately in tandem
with increasing f̂ , which means that the ratio of a to b can be recovered well.
Conditions simulated are the same as in Fig. 3 but without any image noise.
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In sum, the Euclidean SFM algorithms assuming erroneous cal-
ibration parameters exhibit different behavior from the error-free
case, and these deviations are more distinct when either the actual
FOV or the estimated FOV is large, because then the constraint on â
and b̂ (Eq. (13)) is stronger. Fig. 3 corroborates the prediction that
over- and under-estimating focal length f by the same amount (i.e.
same jfej) has different degree of influence on the estimation of
FOE. There are 50 trials for over-estimating f and 50 trials for un-
der-estimating f. An isotropic random noise of 30% is added to
the optical flow on each trial. The motion parameters are estimated
using the procedure described in Section 3.2. The results show that
under-estimating f gives rise to more pronounced shift of the esti-
mated FOE compared to over-estimating f (given the same magni-
tude in fe). This is consistent with the somewhat paradoxical
finding of [27] that larger FOV gives rise to larger bias in the trans-
lation estimate. Note, however, that over-estimating f results in a
larger variance in the FOE estimate under the influence of random
image noise. Eq. (13) also means that we can recover the ratio of a
to b with better accuracy when the FOV or the estimated FOV is
large. This can be seen in Fig. 4, where the motion parameters
are again estimated using the procedure described in Section 3.2
under noiseless condition. With a FOV of 53�, the curves f̂

f ,
â
a and b̂

b

increase approximately in tandem, thus bearing out the predic-
tions set out in Eq. (13), which also means that the ratio of a to b
can be recovered relatively well.
3.2. Visualizing the error surface JR

Further properties of the motion estimation process under
calibration errors will be visualized through plotting the residual
of the cost function JR. Before doing so, let us discuss briefly the
plotting of this surface. For easier visualization, we consider a
3-dimensional surface, where each point on the surface represents
a FOE hypothesis, with the height representing the residue JR.
Given a particular FOE hypothesis and a fixed (possibly erroneous)
focal length estimate, the rotation variables can be solved via a lin-
ear algorithm while minimizing JR (for more details of this rotation
estimation procedure, please refer to Appendix A.1). Thus for each
FOE candidate, we have an associated residual value JR. These
residual values JR were then plotted over the 2D solution space
for the FOE, in such a way that the image intensity encoded the
Fig. 3. Over- and under-estimating focal length f by the same amount (i.e. same jfej)
has different degree of influence on the estimation of FOE. The true FOE is marked
with ‘‘�”. Estimated FOEs with under- and over-estimated focal length are marked
with ‘‘+” and ‘‘�” respectively. There are 50 trials for over-estimating f and 50 trials
for under-estimating f. The scene depths are randomly distributed between 512 and
1536 pixel units and the translational motion is given by (1,1,1) pixel units per
second. An isotropic random noise of 30% is added to the optical flow on each trial.
Under-estimating f (‘‘+”) gives rise to more pronounced shift of the estimated FOE
compared to over-estimating f (‘‘�”); however, the latter displays a larger variance
in the estimate under the influence of random image noise.
relative value of the residual (bright pixels corresponded to high
residual values and vice versa).

Some assumptions are made regarding the distribution of the
feature points and the depths. We assume that the feature points
are evenly distributed in the image plane, as is the distribution of
the ‘‘depth-scaled feature points” x

Z ;
y
Z

� �
. The latter assumption

generally requires that the distribution of depths are independent
of the corresponding image co-ordinates x and y. As for the intrin-
sic and extrinsic parameters of the camera, different combinations
of translation and rotation with over- and under-estimation of f are
simulated and plotted separately.

To represent the entire hemisphere in front of the camera, we
used visual angle in degree rather than pixel when stepping
through the FOE search space; thus the co-ordinates in the plots
from Figs. 5–10 were not linear in the pixel unit. The imaging
surface was a plane with a dimension of 512 � 512 pixels; its
boundary was represented by the small rectangles in the center
of the plots. The synthetic experiments have the following param-
eters: unless otherwise stated, the focal length was 512 pixels
which meant a FOV of approximately 53�; the estimated focal
length is either halved (256 pixels) for under-estimation or
doubled (1024 pixels) for over-estimation. There were 200 feature
points distributed randomly over the image plane, with depths
(a) (b)
Fig. 5. The bas-relief valley is rotated if there is an error in the focal length estimate
(50% under-estimated here). v = (1,1,1), w = (0.001,0.001,0.001). (a) FOV = 53�. (b)
FOV = 28�. For all figures, true FOEs and global minima are highlighted by ‘‘�” and
‘‘+” respectively. Comparison between (a) and (b) reveals the influence of FOV on
the amount of bas-relief valley rotation. Larger FOV results in larger rotation and
the bas-relief valley becomes less well-defined and less elongated.



(a) (b)
Fig. 6. The influence of estimate f̂ (with f = 512) on the amount of bas-relief
rotation. (a) f̂ ¼ 256, focal length under-estimated by 50%, with distinct rotation of
the bas-relief valley, (b) f̂ ¼ 1024, focal length over-estimated by 100%, but rotation
of the bas-relief valley not conspicuous. Bas-relief valley also becomes less well-
defined under large estimated FOV in (a).

(a) (b)
Fig. 8. Rotation of bas-relief valley when the ‘‘directions” of (x0,y0) and (a,b) are in
adjacent quadrants. (U,V,W) = (3,1,1), f = 512, and f̂ ¼ 256. Residual error maps are
plotted with (a) (a,b,c) = (0.003, �0.001,0), and (b) (a,b,c) = (0.001, �0.007,0). The
direction of rotation is clockwise for (a) and anti-clockwise for (b).
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ranging from one to three times the focal length (i.e. 512–
1536 pixel units). The camera was undergoing a general translation
with v = (1,1,1) pixel units per second. The rotation is such that the
translational flow and the rotational flow are approximately equal
in magnitude. For details, please see the individual figures.

3.3. Further properties of motion estimation with calibration errors

We use the next few figures (Figs. 5–10) to corroborate predic-
tions made in the preceding subsection as well as making further
observations. For all figures, true FOEs and the estimated FOEs
are indicated by ‘‘�” and ‘‘+” respectively.

1. Influence of FOV. Fig. 5 illustrates the influence of visual field.
Under large FOV (53�), the second order flow field t2,2 exerts a
(a) (b)

(e) (f)
Fig. 7. Rotation of the bas-relief valley for (x0,y0) and (a,b) in different quadrants, with u
quadrant, the bas-relief valley experiences a clockwise rotation; whereas in the second
valley rotates in an anti-clockwise direction. W = 1, c = 0.001 f = 512 and f̂ ¼ 256 for a
(0.001, �0.001) (c) (�1,1), (�0.001,0.001) (d) (�1, �1), (�0.001, �0.001) (e) (�1, �1
(�0.001, �0.001).
stronger influence through Eq. (13), which constrains the value
of â and b̂. As discussed above, this constraint on â and b̂ in turn
reduces the length of the valley formed by the bas-relief ambi-
guity, while at the same time the rotation of the bas-relief val-
ley is made more pronounced, although the valley itself
becomes more ‘‘diffused” and shallow (Fig. 5a). In small FOV
(28�), the constraint (13) is less effective; the constraint in
(11) can be broken down into two independent constraints like
in the calibrated case, resulting in a bas-relief valley that
stretches across almost the entire visual field, with little rota-
tion in the direction of this valley compared to the calibrated
case (Fig. 5b).

2. Error in the estimate f̂ . The relative importance of t2,2 is also
affected by the estimated focal length f̂ . This can be seen by
pitting the magnitude of the various terms of t2,2 against those
of t2,0 (see the definitions in (9)), which include among others,
(c) (d)

(g) (h)
nder-estimated focal length. In the first row, where (x0,y0) and (a,b) are in the same
row, where (x0,y0) and (a,b) are in diametrically opposite quadrants, the bas-relief
ll figures. The (U,V) and (a,b) are respectively (a) (1,1), (0.001,0.001) (b) (1, �1),
), (0.001,0.001) (f) (�1,1), (0.001, �0.001) (g) (1, �1), (�0.001,0.001) (h) (1, 1),



Fig. 9. The amount of shift in the estimated FOE with different errors in the
estimated focal length. The true focal length is 512, whereas the estimated focal
length vary from 256 (50% under-estimation) to 768 (50% over-estimation), with a
step size of 10% error. The translational and rotational parameters are (U, V, W) =
(1, 1, 1) and (a, b, c) = (0.001, 0.001, 0.001) respectively. True FOE lies at the point
(512, 512) on the bas-relief valley. The estimated FOEs deviate very little away from
the true solution for the case of over-estimation in f̂ . For the case of under-
estimation in f̂ , the amount of shift in the FOE is more significant. However, even
with a rather large under-estimation error of 50% in f̂ , the relative shift in the
estimate x̂0 is only about 37%.

(a) (b)
Fig. 10. The bas-relief valley with erroneous principal point estimate
(Ôx, Ôy) = (0, 0). The entire bas-relief valley is shifted by a constant amount and
passes through the true principal point at (100, �100) (indicated by ‘‘�”). The
bas-relief valleys appear bent because we have used visual angle in degree rather
than pixel as the FOE search step and thus the co-ordinates in the plots were not
linear in the pixel unit. (U, V, W) = (3, 1, 1), (a, b, c) = (0.003, �0.001, 0), and f = 512.
(a) f̂ ¼ 512 (b) f̂ ¼ 256 (50% under-estimation).
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a
f versus af, b

f versus bf, â
f̂

versus âf̂ , and b̂

f̂
versus b̂f̂ . Given a

particular f, under-estimating f (i.e. f̂ becomes small) has the
effect of enhancing the second order effect through raising â

f̂
compared to âf̂ and b̂

f̂
compared to b̂f̂ . Thus under-estimating

f would in general produce a stronger modification to the bas-
relief valley compared to over-estimating f. This is clearly illus-
trated in Fig. 6, where even the amount of f over-estimation
(100%) is larger than the amount of under-estimation (50%),
the tilting of the bas-relief valley for the former (Fig. 6b) is
much less than that of the latter (Fig. 6a). What this means is
that if we want to recover the true FOE, it is better to over-esti-
mate f than to under-estimate f. Note also that due to the larger
estimated FOV in Fig. 6a, there is a shortening of the bas-relief
valley like Fig. 5a; its more diffused character is also clear. To a
certain extent, the effects of f̂ and f (related to the FOV effect
discussed in the preceding section) can be swapped. This
‘‘symmetry” can be seen from the various terms found in t2,2 and
t2,0: a

f , af, b
f ,bf, â

f̂
, âf̂ , b̂

f̂
and b̂f̂ : The effect of under-estimating f̂ can
be replicated by an increase in the FOV (i.e. lowering f). How-
ever, in general, when the rotational estimates are not equal
to their true values (â – a, b̂ – b), this swapping between f̂
and f may not yield identical effects.

3. Direction of valley rotation. Referring to Eq. (15), the direction
in which the bas-relief valley rotates depends on a variety of
factors such as the sign of fe and the angle between (a,b)
and (x0,y0). We illustrate the relationship by first looking at
the case when a > 0,b > 0, x0 > 0 and y0 > 0. The direction of
rotation depends on the sign of fe in the following way. If
fe > 0 (under-estimation), the signs of the terms

afZ 1� f̂
f

� �2
� �

and bfZ 1� f̂
f

� �2
� �

in Eq. (15) are both positive.

It is then clear that the new slope of the bas-relief valley

ŷ0
x̂0
¼

y0�afZ 1� f̂
f

� �2
� �

x0þbfZ 1� f̂
f

� �2
� � deviates from the original direction y0

x0
(when

fe = 0) in a clockwise manner (Fig. 6a). Conversely, when fe < 0
(over-estimation), the rotation in the bas-relief valley is in an
anti-clockwise direction. However the amount of rotation is
not so conspicuous compared to the case of fe > 0 (Fig. 6b).
The reason for this anisotropy with respect to the sign of fe

has been explained earlier by their respective effects on the
importance of the t2,2 term. To aid further discussion for all
the other cases, we define the direction of various vectors as
follows. For instance, when a > 0 and b > 0, we say that the
vector (a,b) is in the first quadrant. Carrying out the analysis
for all the other cases, we find that the bas-relief valley rotates
as follows. For the case of under-estimation of f, if (a,b) is in
the same quadrant as (x0,y0), the bas-relief valley rotates in
a clockwise direction (Fig. 7, first row). Conversely, if the
two vectors (a,b) and (x0,y0) reside in diametrically opposite
quadrants, the bas-relief valley rotates in an anti-clockwise
direction (Fig. 7, second row). The amount of angular deviation
from the true FOE is about 17� on the average. For the case of
over-estimation of f, this relationship is exactly reversed but
the amount of deviation is much less. If the two vectors
(a,b) and (x0,y0) are in adjacent quadrants (e.g. quadrants 1
and 2), the direction of valley rotation can be clockwise or
anti-clockwise or there can be no rotation, depending on the
relative magnitudes of the various terms. For instance, in
Fig. 8, the ‘‘directions” of (x0,y0) and (a,b) are in the first
and fourth quadrant respectively and f is under-estimated.
The bas-relief valley rotates in different directions depending
on the relative magnitude of a and b. If we regard the move-
ment of the bas-relief valley as an indication of the amount of
bias in the FOE estimate, caused by an error in the focal length
estimate, we can see that the bias is not necessarily towards
the image center (as have been claimed by [27] from their
experimental results using fixating motions), but depends on
a variety of factors discussed above. If the egomotion is a fix-
ating motion, i.e. an off-centered rotation about a point on the
Z-axis, the translation is then purely induced by the off-cen-
tered rotation. Under such a scenario, one can say more about
the relationship between (x0,y0) and (a,b); indeed it can be
shown that (x0,y0) and (a,b) are in adjacent quadrants and

that the offset term ðaf 1� f̂
f

� �2
� �

;�bf 1� f̂
f

� �2
� �

Þ in Eq.

(14) is along the same direction as the original bas-relief direc-
tion. Thus, irrespective of the error in the focal length esti-
mate, the bas-relief direction remains unchanged. The
fixation constraint also allows us to show that the bias of
the FOE estimate is always towards the optical center, along
the direction of the original bas-relief valley. Thus our model
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confirms the result of [27] under this specific motion configu-
ration but also predicts other bias directions under more gen-
eral motion configurations.

4. Amount of FOE shift. Having looked at the direction of the bias
in the FOE estimate, we next examine the quantitative aspect of
this bias, given different amount of error in the focal length esti-

mate f̂ . Fig. 9 illustrates the error surface for varying amount of

error in the estimate f̂ , and for a relatively large FOV of 53�
under which we expect the effect of bias caused by the error

in the estimate f̂ would be more keenly felt. It can be seen that

even with a rather large under-estimation error of 50% in f̂ (the
rightmost point of Fig. 9), the relative shift in the estimate x̂0 is

only about 37%. For the case of over-estimation in f̂ , the FOE
estimate deviates very little away from the calibrated case. This

anisotropy has been explained before and is due to effect of f̂ on
the relative importance of the t2,2 term, which in turn gives
rise to Eq. (15). Thus, to the extent that Eq. (15) is operative,
we can then characterize the maximum amount of shifts in x0

and y0 respectively by the two terms bfZ 1� f̂
f

� �2
� �

and

afZ 1� f̂
f

� �2
� �

in that equation. To pin down the value for such

a bound, we assume that the effect of Z in the above two terms
can be represented by some average depth Zave (for a scene suf-
ficiently smooth). Then in relative terms, the changes to x0 can
be expressed as follows:
x0 � x0 þ bfZave 1� f̂
f

� �2
� �� �

x0

¼ bf
fU=Zave

W 1� f̂
f

 !2
0
@

1
A � upan

utrans�x
W 1� f̂

f

 !2
0
@

1
A ð16Þ
where upan and utrans�x are respectively the horizontal flow com-
ponents due to panning rotation b and lateral translation U with
some average depth Zave. Similar expression can be obtained for
the relative change in the estimate for y0. It can be seen that the
relative change is affected by the ratio of the rotational flow upan

and the translational flow utrans�x; which is in turn moderated by

a multiplicative factor W 1� f̂
f

� �2
� �

. Thus, for the simulation

conducted in Fig. 9, where the translational flow and rotational
flow are approximately equal in magnitude and W = 1, a large

under-estimation error of 50% in f̂ would result in a shift of
75% in the FOE shift. That this figure is much larger than the ac-
tual shift (37%) obtained could be due to violation of the two
assumptions made in deriving this figure: (1) the t2,2 term is
maximally effective and (2) scene points at different depths play
an equal role such that their effect can be represented by some
average depth Zave. Despite the looseness and approximate nat-
ure of the bound, we can use Eq. (16) as a guide in assessing
whether the resulting bias in FOE is acceptable when using an
approximate value of the focal length in a calibrated SFM algo-
rithm, or it is better to face the tricky problem of estimating
the focal length (as discussed in [1,8,10]) using a general uncal-
ibrated SFM algorithm. As an illustrative example, consider a

more typical error of 10% in the estimate f̂ and under the same
motion-scene configuration as above: the bound obtained via
Eq. (16) for the relative FOE shift would be 19% (for under-esti-
mation of f). Furthermore, this is likely to be a very loose bound;
the actual shift obtained in Fig. 9 is only 4%. Thus we might want
to proceed with a calibrated SFM algorithm even though the fo-
cal length estimate has small error.
5. Effect of erroneous principal point. Besides being affected by
error in the focal length estimate, the bas-relief valley is also
changed by error in the principal point estimate. With some
approximation which is detailed in Appendix A.2, we obtained
the following constraint:
y0e � afZ 1� f̂
f

� �2
� �

x0e þ bfZ 1� f̂
f

� �2
� � ¼ ŷ0 � Oye

x̂0 � Oxe
where ðOxe ;Oye
Þ is the error in the principal point estimate. The

constraint differs from Eq. (14) in that the bas-relief valley has
been translated by an uniform amount ðOxe ;Oye

Þ and passes
through the true principal point. Fig. 10 illustrates the changes
caused by ðOxe ;Oye

Þ ¼ ð100;�100Þ, for (a) when there is no error
in f̂ and (b) when there is an under-estimation error of 50%. The
bas-relief valleys appear bent because we have used visual angle
in degree rather than pixel as the FOE search step; as the co-ordi-
nates in the plots were not linear in the pixel unit, the uniform
shift in ðOxe ;Oye

Þ pixels would result in a non-linear bending of
the bas-relief valley.

3.4. Summary of results and implication for various tasks

Eq. (6) has been critical in our analysis; its simple form renders
possible the geometric treatment of the error surface via a consid-
eration of the two vectors t1 and t2. The local minima on the
surface which are the cause of inherent ambiguity of SFM algo-
rithms are identified in the form of a constraint given by (15).
The various contributing factors towards the formation of such
local minima are also investigated in a geometric way which is
helpful towards obtaining an intuitive grasp of the problem. The
major findings obtained so far are summarized as follows:

1. As a result of error in the estimate f̂ , the bas-relief valley is
rotated in a direction that depends on the relationship between
the translation and the rotation. Under-estimating the focal
length would have the effect of shortening the bas-relief valley
and making it less well-defined in character. The feasibility of
the flipped minimum solution that exists under calibrated sce-
nario would be diminished. It also gives rise to a larger bias in
the FOE estimate though with a smaller variance. On the other
hand, over-estimating the focal length results in less change to
the bas-relief valley and the FOE estimate would have smaller
bias but larger variance.

2. We showed that the FOE is biased in a direction that depends on
a variety of factors such as the sign of fe and the angle between
(a,b) and (x0,y0). We also obtain an analytical bound that quan-
tifies the magnitude of this bias. For a typical figure of 10% error
in the estimate f̂ and given certain generic motion-scene condi-
tions (such as rotation not too dominant), the bound obtained
for the relative FOE shift might turn out to be acceptable. Fur-
thermore, this bound is likely to be conservative as the actual
shift obtained in simulation is consistently much smaller.

3. On the other hand, if the scene is very cluttered with very non-
smooth depth distribution, then we expect the shape of this
bas-relief valley to be markedly affected by the way the scene
points are distributed, due to the presence of the Z term in
the constraint (14). We also expect more local minima in the
solution space which could pose convergence problem for a
Euclidean SFM algorithm assuming erroneous calibration
parameters. As a result, using a projective SFM algorithm under
such situation might have the advantage of facing less of a
local-minimum problem. This partially answers Oliensis’s ques-
tion [20] about whether projective approach is the right tool for



Fig. 11. (a) Yosemite sequence. (b) Shift of the FOE estimate as a result of erroneous
focal length estimate f̂ . The true focal length of the image sequence is 337.5, the
true FOE is at (0,59.5), and (a, b, c) = (0.0002319, 0.001625, �0.0002341). Estimated
FOEs are plotted for f̂ having errors of 0%, ±16%, ±33%, and ±50% respectively.
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dealing with calibration uncertainty. If calibration is to be
performed, our results suggest that one should err on the low
side in the estimation of the focal length, since this would
reduce the variance in the FOE estimate.

4. Error in the principal point estimate is shown to result in a sim-
ple change to the error surface. The entire bas-relief valley is
shifted by a constant amount such that it passes through the
true principal point.

The above results explain the various phenomenon often ob-
served empirically in uncalibrated SFM but taken as true without
theoretical explanation, such as the non-significant effect of small
calibration error in f on FOE estimation. Our analysis also predicts
what will happen when the errors are more severe, and if the scene
depths are non-smooth, in which cases there might be significant
impact on the extrinsic motion estimation. Such cases of severe
calibration errors, while not common in SFM applications, is in-
deed pertinent for the perceptual experience of a viewer in a cine-
matic theatre or in a virtual reality system. For instance, for a
cinema viewer seated at a general position, it can be shown that
the visual system of the viewer experiences an altered optical flow
resulting from changed intrinsic parameters [5]. The resulting bias
in the FOE estimate might be an important factor for a navigating
user wearing a head-mounted virtual reality system. As for the
implications for depth perception from motion under such situa-
tion, we would like to refer the readers to [5] for a more complete
analysis.

Here, we would like to examine briefly how these errors in the
intrinsic parameters affect metric depth recovery. In [3], we have
shown that the type of motion executed is crucial for depth recov-
ery. Under lateral movement, while it might be very difficult to re-
solve the ambiguity between translation and rotation, depth orders
of scene points can be recovered with robustness. Conversely, un-
der forward translation, it is difficult to recover structure unless
favorable conditions such as large field of view exist, because un-
der this motion configuration, small error in the FOE estimate
can introduce large distortion in the depth recovered. In the case
of uncalibrated motion, in spite of uncertainty in the focal length,
the qualitative aspect of the depth recovery process is not affected,
regardless of whether it is a lateral or a forward motion. That is,
under lateral motion, despite possible rotation of the bas-relief val-
ley, the depth orders of scene points are shown in [3] to be pre-
served. Conversely, under forward motion, the inherent difficulty
in depth recovery would have been compounded by the errors in
the intrinsic parameters, as we have shown earlier that errors in
the intrinsic parameters introduce additional bias to the FOE
estimate.

Let us explore the ecological implications even we do suffer
from depth distortion when we are executing forward motions.
Such motions are mainly used in moving towards an object or
for navigating through an environment. In the context of such
tasks, we might only need partial aspects of structural information
to successfully complete the tasks, rather than acquiring a compre-
hensive metric scene reconstruction. For instance, the ability to
estimate the time-to-collision (TTC) is important for avoiding
collision. It has been argued [12,17,23] that TTC can be recovered
directly from the first order derivatives of the optical flow, without
going through the step of 3D motion recovery. As a consequence,
the TTC estimate would not be affected by the aforementioned
depth distortion, which stems from errors in the 3D motion recov-
ery. Nevertheless, calibration errors do affect the TTC estimate
even it is recovered directly from the optical flow. In the calibrated
case, the TTC estimate is not exact but bounded by some deforma-
tion terms [23] depending on the amount of lateral translation and
the surface slant. If there now exists some error in the principal
point estimate, the TTC bound would be affected by this error
too. The detailed examination of how such task-specific structural
information is affected by calibration errors, while interesting, is
beyond the scope of this paper.

4. Experiments and discussion

To verify the theoretical findings just set out, we perform a
series of experiments on both the Yosemite sequence and the Coke
sequence. We also exploit the Brown range image database [11] to
generate complex forest scenes.

For the two image sequences, the optical flow was obtained
using the Lucas-Kanade algorithm [15] with a temporal window
of 11 frames. Relatively dense optical flow fields were obtained.
Despite the stochastic noise that is now present in the optical flow
measurement, we demonstrate that given fairly dense and uniform
distribution of scene points, our predictions about the changes to
the bas-relief valley and the bias in the FOE estimate due to erro-
neous focal length hold true.

In the first experiment, the computer generated Yosemite se-
quence (Fig. 11a) was used. The average FOV is 46�, the true focal
length is 337.5 pixels, the true FOE is located at (0,59.5), and
(a,b,c) = (0.0002319,0.001625,�0.0002341). Fig. 11b shows the



Fig. 13. The original range image of a forest scene. Intensity represents depth
values, with distant object looking brighter.
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estimated FOE locations for f̂ having errors of 0%,±16%,±33%, and
±50%. According to our prediction, the bas-relief valley should shift
in the clockwise direction for the case of under-estimating f, and
vice versa. This is borne out by the result.

In the second experiment, similar analysis was conducted on
the Coke image sequence (Fig. 12a). The parameters of this
sequence are FOV = 28�, f = 620 pixels, the true FOE at (65,73),
and (a,b,c) = (�0.00025,�0.00013,0). The experimental results
are shown in Fig. 12b for the same range of error in f̂ . According
to our prediction, the bas relief valley should now shift in the
anti-clockwise direction for the case of under-estimating f, and vice
versa. This is again borne out by the result.

For the range images, we choose the forest scene from the
Brown range image database (Fig. 13). This scheme allows us to
experiment with realistic scenes with its clustered depth distribu-
tion and varying degree of feature density, and yet able to control
the exact amount of noise added to the image. In this experiment,
we add to the flow field zero-mean Gaussian noise, isotropic in
direction and with standard deviation equal to the Noise-to-Signal
Ratio (NSR) times the average flow speed. In particular, a 10% noise
was added to the optical flow. To make the setting compatible with
Fig. 12. (a) Coke sequence. (b) Shift of the FOE estimate as a result of erroneous
focal length estimate f̂ . The true focal length of the image sequence is 620, the true
FOE is at (65, 73), and (a, b, c) = (�0.00025, �0.00013, 0). Estimated FOEs are
plotted for f̂ having errors of 0%, ±16%, ±33%, and ±50% respectively.
those of the synthetic experiments, we only selected subsets of
scene features that lie in the visual field of a camera (FOV = 53�),
and we scaled these selected points such that the depths are within
a range of 512–1536 pixels. The true focal length of the camera is
512 pixels. We endowed the scene with a translation of (1,1,1)
and a rotation of (0.001,0.001,0.001) as usual, and projected the
3D scene points and their flows onto the camera’s image plane.
The true FOE is thus at the image location (512,512). Two sets of
scene features are tested, one with 200 features (very sparse)
and the other with 5000 features (reasonably dense). We then car-
ried out the whole procedure of motion estimation under the same
range of calibration errors in f̂ . The resultant error cost functions
are depicted in Figs. 14 and 15 for the sparse and dense set of fea-
tures respectively.

For the former case with sparse feature set, Fig. 14 clearly shows
the bas-relief rotation and the corresponding shift of the estimated
FOE when the focal length is under-estimated. The shift is rela-
tively pronounced, with an angular deviation of 18� (which is still
consistent with the direction and magnitude obtained in our theo-
retical prediction). Fig. 14a and c depict the cases of correct and
over-estimated f respectively. Here, the accuracy of the FOE esti-
mation is heavily influenced by the local minima caused by the
sparse and clustered feature distribution. As we have predicted
for the case of over-estimation of f, the FOE estimate might have
smaller bias but the variance is also larger. This larger variance
proved fatal when the features are sparse and the noise is large,
resulting in the FOE estimate being trapped in a local minimum.
In Fig. 14, we plot the estimated FOE locations for various errone-
ous f̂ values. Again, it can be seen clearly that most of the FOE esti-
mates are trapped in a local minimum region, except when the
focal length is significantly under-estimated.

Compare this with Fig. 15 with dense feature set. It can be seen
that the FOE estimate is much less affected by local minima. Thus,
our theoretical predictions about the changes to the bas-relief val-
ley and the bias in the FOE estimate due to erroneous focal length
remain largely true.

The results obtained seem to corroborate the various predic-
tions made in this paper. In all the sequences, the direction of bias
in the FOE estimate is consistent with the predictions made in the
preceding section. We also predicted that the bias will be less pro-
nounced for over-estimating rather than under-estimating f,
though this prediction is apparently not borne out by the results,
with the case of over-estimation sometimes exhibiting comparable
or even larger amount of FOE shift as that of under-estimation.
However, this is not surprising as we can see from Fig. 3 that in
the case of over-estimation, the FOE estimate, while displaying a
smaller bias, suffers from a larger variance under the influence of
noise. With the presence of noise in real images and the significant
effect of local minima introduced by non-uniform feature distribu-
tion (in particular, the depths are not smooth), this high variance
term becomes important, thus contributing to the larger-than-
expected FOE errors seen in the results. In fact, as can be seen from
Fig. 11b, Fig. 12b, and Fig. 14a, these non-ideal effects also hamper
the FOE recovery under perfect calibration, with the direction of
FOE errors lying along the bas-relief valley.
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(a) (b) (c)

Fig. 14. (a)–(c) The bas-relief valley in the residual error surface for the forest image with 200 feature points, with various errors in the focal length estimate. (a) f̂ ¼ f ¼ 512,
(b) f̂ ¼ 256, (c) f̂ ¼ 1024. The true motion is given by v = (1, 1, 1) and w = (0.001, 0.001, 0.001). The true FOEs and the respective global minima are indicated by ‘‘�” and ‘‘+”
respectively. The plot in (d) shows the shift of the FOE estimate as a result of erroneous focal length estimate f̂ . Note that in plot (b), the estimated FOE appears quite close to
the true FOE because the residual error map is plotted in angular units.

L.-F. Cheong, X. Xiang / Computer Vision and Image Understanding 115 (2011) 16–30 27
Overall, we found that the actual shift in the FOE estimate (in
terms of angular deviation) for real images is not significant even
for relatively large error in the focal length estimate, unless this
shift is caused by the presence of the local minima. The experi-
ments conducted demonstrate that, even with a relatively dense
set of feature points, non-ideal effects such as non-uniform feature
distribution and image noise, rather than calibration errors, could
play a potentially more significant role in affecting the accuracy
of FOE recovery.
5. Conclusions

Error analysis for SFM has always been plagued by the complex-
ity of the problem. This complexity becomes even more daunting
in the face of possible calibration errors. In this paper we have
developed clear analytical expressions describing the error behav-
ior of the egomotion estimates when the fixed intrinsic parameters
are calibrated with error. The key results in this paper are indepen-
dent of the algorithm used to perform egomotion estimation and
calibration. They explain the various phenomenon often observed
empirically in uncalibrated SFM but taken as true without theoret-
ical explanation. We show that as a result of error in the estimate f̂ ,
the bas-relief valley is rotated in a direction that depends on the
relationship between the translation and the rotation. Under-
estimating the focal length would have the effect of shortening
the bas-relief valley and making it less well-defined in character.
It also gives rise to a larger bias in the FOE estimate though with
a smaller variance. On the other hand, over-estimating the focal
length result in less change to the bas-relief valley and the FOE
estimate would have smaller bias but larger variance. This large
variance could indeed cause more error in the FOE estimate when
the feature points are sparse and clustered. We also obtain an ana-
lytical bound that quantifies the effect of an erroneous focal length
on the FOE estimate. For a typical figure of 10% error in the esti-
mate f̂ and given certain generic motion-scene conditions (such
as rotation not too dominant), the bound obtained for the relative
FOE shift might turn out to be acceptable. Furthermore, this bound
is likely to be conservative as the actual shift obtained in simula-
tion is consistently much smaller. Error in the principal point



(a) (b) (c)

(d)
Fig. 15. The experimental conditions are the same as in Fig. 14, except that the number of feature points is 5000. The much denser feature set here results in much smaller
errors in the FOE estimate compared to that of Fig. 14.
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estimate is shown to result in a simple change to the error surface.
The entire bas-relief valley is shifted by a constant amount such
that it passes through the true principal point. Real-world effects
such as image noise and non-uniform feature distribution are
briefly investigated in the experimental section, with results show-
ing that these non-ideal effects are likely to play a much more sig-
nificant role than the errors in the calibration parameters.

The conclusion of this paper is that if the image quality is
acceptable and the feature distribution is relatively dense and uni-
form, we might want to use a calibrated SFM algorithm even
though the focal length estimate or the principal point estimate
has small errors. The resultant small loss in accuracy might be
acceptable compared to the uncertainty faced in estimating the
focal length or principal point using a general uncalibrated SFM
algorithm. Furthermore, if one chooses to perform self-calibration,
one should err on the high side under such condition, as over-
estimating the focal length results in a smaller bias in the FOE
estimate. If, however, one has to deal with high image noise or
sparse and clustered feature distribution, the perennial problems
that plague SFM estimation even for the calibrated case would
certainly be compounded by the calibration errors, posing grim
problems for any general 2-frame SFM recovery algorithm. In
particular, the presence of local minima under such noisy condi-
tion means that there is a distinct advantage in under-estimating
the focal length. While it results in larger bias in the FOE estimate,
the solution is nevertheless more stable with respect to the influ-
ence of local minima. These are the factors that one should con-
sider under a particular operating condition and decide whether
it is better to perform self-calibration or to use an existing cali-
brated setting despite small error in the parameters.
Appendix A

A.1. Procedure for computing JR

The simulations carried out in this paper is based on computing
the cost function in Eq. (5) or equivalently Eq. (6). In particular, we
adopt the ‘‘epipolar reconstruction” scheme, that is, setting ni in
both these equations to be along the estimated epipolar direction
(the results obtained are independent of the choice of ni since
the formation of the bas-relief valley is mainly dictated by the
numerator terms). Given this scheme and for a particular FOE can-
didate ððx̂0Þ; ŷ0Þ, JR can be expressed as:

JR ¼
X c1 � c2âþ c3b̂þ c4ĉ

� �
g

0
@

1
A

2

ð17Þ
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where

c1 ¼ uðy� ŷ0Þ � vðx� x̂0Þ

c2 ¼
xy

f̂
ðy� ŷ0Þ �

y2

f̂
þ f̂

 !
ðx� x̂0Þ

c3 ¼
xy

f̂
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þ f̂
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ðy� ŷ0Þ

c4 ¼ xðx� x̂0Þ þ yðy� ŷ0Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x̂0Þ2 þ ðy� ŷ0Þ2

q
and we minimize JR over all points in the image to solve for the rota-
tion variables â; b̂; ĉ. This is a typical linear least squares fitting
problem, which we solved by the singular value decomposition
method. We performed this fitting for each fixed FOE candidate
over the whole 2-D search space and obtained the corresponding
reprojected flow difference JR.

A.2. Effect of erroneous principal point

We use (xs,ys) to represent an image pixel location in an image
coordinate system with its origin located at the lower left corner of
the image. If the principal point of the camera is situated at (Ox,Oy)
in this new coordinate system, then (x,y) and (xs,ys) are related by
(x,y) = (xs � Ox,ys � Oy). Given an error ðOxe ;Oye

Þ in the principal
point estimate, the corresponding error function JR can be shown
to be given by2

JR¼
X xþOxe� x̂0;yþOye

� ŷ0
� �

� v rote�
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Z ;
xoeþOxe
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where urote and v rote are given by:

urote ¼ � bf � b̂f̂
� �
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The corresponding terms in t1and t2 are:

t1;0 ¼ �x̂0 þ Oxe ;�ŷ0 þ Oye
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2 Note that in deriving these equations and plotting the figures, the true and the
estimated FOEs should be independent of the choice of the principal point, as the FOE
actually indicates a direction in space—that of the 3D translation.
To derive the conditions conducive for the formation of the bas-
relief ambiguity, we apply the same condition that the constant-
direction vectors (t2,0 + t2,Z) and t1,0 should be perpendicular to
each other. We obtain, analogous to Eq. (11), the following:

y0e
þ Oye

� afZ þ âf̂Z

x0e þ Oxe þ bfZ � b̂f̂ Z
¼ ŷ0 � Oye

x̂0 � Oxe

ð18Þ

The corresponding condition for making kt2,2k small gives rise
to the following:

axy
f
¼ âðxþ Oxe Þðyþ Oye

Þ
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bxy
f
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which are obviously not satisfiable at all points of the image. How-
ever, if we make the assumption that the second order effect kt2,2k
only comes into play at the peripheral image points where x and y
are large and that the magnitude of the error ðOxe ;Oye

Þ is small
compared to x and y at these peripheral points, then the original
constraint a

f ¼ â
f̂
; b

f ¼
b̂

f̂
of Eq. (13) is still approximately true. Substi-

tuting this into Eq. (18), we obtain, after some manipulation, the
following form:

y0e � afZ 1� f̂
f

� �2
� �

x0e þ bfZ 1� f̂
f

� �2
� � ¼ ŷ0 � Oye
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