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Affective Understanding in Film

Hee Lin Wang and Loong-Fah Cheong

Abstract—Affective understanding of film plays an important
role in sophisticated movie analysis, ranking and indexing. How-
ever, due to the seemingly inscrutable nature of emotions and
the broad affective gap from low-level features, this problem is
seldom addressed. In this paper, we develop a systematic approach
grounded upon psychology and cinematography to address several
important issues in affective understanding. An appropriate set of
affective categories are identified and steps for their classification
developed. A number of effective audiovisual cues are formulated
to help bridge the affective gap. In particular, a holistic method
of extracting affective information from the multifaceted audio
stream has been introduced. Besides classifying every scene in
Hollywood domain movies probabilistically into the affective
categories, some exciting applications are demonstrated. The
experimental results validate the proposed approach and the
efficacy of the audiovisual cues.

Index Terms—Affective classification, audiovisual features, emo-
tion, film grammar, movie scene, psychology.

1. INTRODUCTION

ITH the increasingly vast repository of online movies
Wand its attendant demand, there exists a compelling case
to empower viewers with the ability to automatically analyze,
index and organize these repositories, preferably according to
highly personalized requirements and criteria. An eminently
suitable criterion for such indexing and organization would be
the affective or emotional aspect of movies, given its relevance
and everyday familiarity. Endowing an automated system with
such an affective understanding capability can lead to exciting
applications that enhance existing classification systems such
as movie genre. For instance, finer categories such as comedic
and violent action movies can be distinguished, which would
otherwise have been grouped together in the action category
under the present genre classification.

With the ability to estimate the intensity of different emotions
in a movie, a host of intriguing possibilities emerges, such as
being able to rank just how “sad” or “frightening” a movie scene
is. Taken to its logical end, this can lead to personalized affec-
tive machine reviewer applications, doing away with the limita-
tions of predefined movie genres. In short, computable affective
understanding promises a new emotion-based approach toward
currently investigated topics such as automated content summa-
rization, recommendation and highlighting.

Surprisingly, immediately related works in affective classi-
fication of general domain multimedia have been few. While
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many works exist in the wider area of multimedia under-
standing, ranging from scene segmentation [2], sport structure
analysis [3], event detection [4], semantic indexing in docu-
mentaries [5], sports highlight extraction [6], audio emotion
indexing [7] to program type classification [34], literature in
affective classification is sparse and recent. This state of affairs
is mainly due to the seemingly inscrutable nature of emotions
and the difficulty of bridging the affective gap [8], especially in
this case where high-level emotional labels are to be computed
from low-level cues.

Of works that deal with affectively-related issues, [9] com-
puted the motion, shot cut density and pitch characteristics along
the temporal dimension of movie clips from which emotion pro-
files known as “affect curves” are obtained in a two-dimen-
sional (2-D) emotional space known as the Valence-Arousal
space. Ref. [10] used visual characteristics and camera motion
with hidden Markov models (HMMs) separately at both the shot
and scene level in an attempt to classify scenes depicting fear,
happiness or sadness, while [11] proposed a mean-shift based
clustering framework to classify film previews into genres such
as action, comedy, horror or drama, according to a set of vi-
sual cues grounded in cinematography. Ref. [12] proposed finite
state machines (FSMs) with face detection and an audiovisual
based activity index to model and distinguish between conver-
sation, suspense and action scenes.

While these works have advanced research in affective clas-
sification, their output emotion categories in the affective con-
text are somewhat ad hoc and incomplete [10]-[12] ([9] does
not use output emotions). Furthermore, the inputs treated by
these works are previews [11] or handpicked scenes [10], which
due to the prior manual filtering process, are biased by the aims
and methods of the selectors. It remains to show whether these
works can be readily extended to treat more emotions as well as
to analyze complete movies. Crucially, the following important
questions are left unaddressed: How should output emotion cat-
egories be chosen? And what should they actually be?

Thus in establishing a successful movie affective under-
standing system, we put forth, as our first contribution, a
complementary approach grounded in the related fields of cin-
ematography and psychology. This approach identifies a set of
suitable output emotion categories which are chosen with clear
reason, a more complicated task than it seems. The increase
in the number and subtlety of these categories results in a
more difficult, but also more comprehensive and meaningful
classification. In contrast, besides having less complete output
emotion categories, previous works are explicitly based on just
one of the two fields. In the film affective context, they are
thus constricted by the limited information and paradigms at
their disposal. Ref. [9] employed only psychology, and [11]
cinematography, while [10] mentioned psychology briefly but
proceeded solely based on the cinematographic basis.
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Fig. 1. Illustration of scope covered in current work.

For our second contribution, we develop from cinemato-
graphic and psychological considerations a set of effective
audio-visual cues in the film affective context. Though low-
level, some of these features can yield high-level information
which helps to bridge the affective gap. For instance, we for-
mulate a visual excitement feature that takes viewer feedback
directly into account. Other useful features, which have not
been employed in this context, are color energy, chroma dif-
ference, music mode and the proportions of music, speech and
environ (MSE) audio.

In particular, we propose a probabilistic based approach to
extract movie audio affective information from each of the
MSE channels in a more suitable and comprehensive manner
than other film affective works. Movie audio affective extrac-
tion is fraught with many unique difficulties: the challenging
nature of speech and music emotion recognition, confusing
multiple-speaker presence and MSE mixing. Our approach
overcomes these difficulties by splitting the audio analysis
units according to cinematographic knowledge and processing
each MSE channel differently, before integrating the extracted
information by signal duration in a probabilistic manner.

As a broad comparison of our work with others, several main
advantages emerge. Foremost among these, we have a set of
output emotion categories that are theoretically better founded.
Second, we have exploited affective information for audio far
more extensively than others, who concentrated on visual cues
[9]-[12]. Third, the outputs are expressed probabilistically in-
stead of discretely [11], thus increasing output accuracy. Finally,
we have not pre-selected our experimental data; and its size, at
about two thousand scenes, is also larger than the next largest
video corpus used [10] by about an order of magnitude.

Due to the dominance of the “classical Hollywood cinema” in
film [1, p. 89], the scope of this work deals with automatically
analyzing and classifying the affective content of Hollywood
movie scenes, and in turn the entire movies. The scene, also
known as the story or thematic unit, is chosen as the basic unit
of analysis, because it conveys semantically coherent content,
and is the primary unit of distinct phases of plot progression in
film [1, p. 92]. The notion of mise-en-scene, where the design of
props and settings revolve around the scene, further enhances its
potency [1, p. 176]. Not surprisingly, it is usually the individual
scenes that are most sharply etched in the collective memories
of the cinema.

The rest of the paper, as illustrated in Fig. 1, is as follows. We
introduce the background and explore the fundamental issues of

the work in Section II. Section III lays down the proposed com-
plementary approach and discusses how the output emotional
categories as well as input features are actually obtained. The
design and extraction of the low-level audiovisual cues used for
affective classification are elaborated upon in Sections IV and
V, while Section VI describes the probabilistic inference engine
used in this work. Experimental results are presented in Sec-
tion VII, followed by the conclusion in Section VIIIL.

II. BACKGROUND AND FUNDAMENTAL ISSUES

Movie affective classification draws upon methodologies
from two fields: cinematography and psychology. This section
starts off by briefly introducing the necessary foundation of
these two fields and the motivation for using them. We also
explore various fundamental issues implicit in our approach.

A. Cinematographic Perspective

A film is made up of various elements such as editing, sound,
mise-en-scene, and narrative. Governing the relationships
amongst these elements is a set of informal rules known as film
grammar, defined in [14] as “the product of experimentation,
an accumulation of solutions found by everyday practice of the
craft, and results from the fact that films are composed, shaped
and built to convey a certain story.” The value of film grammar
to the present problem lies in the fact that it defines a set of
conventions through which the meanings—many of which are
affective—of cinematic techniques employed by a director can
be inferred.

A quintessential example is that the excitement level of a
scene increases as the shot length decreases. Other examples
include rules about screen movements, cutting on action,
colors and variation of lighting effects etc. By exploiting the
constraints afforded by the film grammar, high-level affective
meaning can emerge from low-level features such as shot length
directly, thus offering a computable approach in bridging the
difficult transition to high-level semantics such as emotions.
Many cues in Sections IV and V are founded on the basis of
film grammar.

B. Psychology Perspective

Film evokes a wide range of emotions. Hence, a fundamental
challenge of movie affective classification lies in the choice of
appropriate output emotion representation in film. How do we
represent emotions in movies, or relate them to existing emo-
tion studies? These questions mirror some of the most impor-
tant topics investigated in psychology, which provides emotion
paradigms helpful for us in proposing reasonable answers to the
questions.

A survey of contemporary theory and research on emotion
psychology reveals the most dominant and relevant general
theoretical perspectives, respectively known as the Darwinian
[38] and cognitive perspectives [39]. The Darwinian perspec-
tive postulates that basic emotions are evolved phenomena that
confer important survival functions to humans as a species,
strongly implying the biological origins and universality of
certain human emotions. An impressive body of evidence in
human facial expression study by Ekman [16] has identified
perhaps the most supported set of proposed basic emotions:
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Happy, Surprise, Anger, Sad, Fear and Disgust. This set of
emotions, which we call “Ekman’s List”, are found to be
universal among humans, and significantly governs our choice
of output emotions and its representation.

On the other hand, the cognitive perspective postulates that
appraisal, a thought process that evaluates the desirability
of circumstances, ultimately gives rise to emotion. Using a
dimensional approach to describe emotions under such a par-
adigm, several sets of primitive appraisal components thought
to be suitable as the axes of the emotional space have been
proposed [15], so that all emotions can be represented as points
in that space. Such a representation is suited for laying out the
emotions graphically for deeper analysis. The most popular
appraisal axes VAD, proposed by Osgood et al. [17] and also
Mehrabian and Russell [18], are shown to capture the largest
emotion variances, and comprise of Valence (pleasure), Arousal
(agitation) and Dominance (control). For this work, we have
found a simplified form, the VA space, helpful in visualizing
the location, extent and relationships between emotion cate-
gories. Dominance is dropped because it is the least understood
[33], and its emotional variance accounts for only half that of
Valence and Arousal.

Outside psychology, [32] utilized a different set of emotions
for machine emotional intelligence. However, that set was
chosen for human-computer interaction purposes, and is not
suitable for describing affective content in movies.

C. Some Fundamental Issues

We first address a few fundamental issues, beginning from
the emotion ground truth labeling stage: should the film affec-
tive content be evaluated according to the emotion response of
the viewer or what the director intents the viewer to feel? The
answer partly hinges on the nature of the currently conceived
affective applications. Since they are certainly viewer centric,
it is more meaningful to use viewers to calibrate the affective
content. This is also consistent with the requirements of fu-
ture possibilities involving personalized affective applications,
which will need viewer emotion response. Not to mention that
polling the directors for their intentions rather than the viewers
for their emotion responses for numerous movie scenes is far
more difficult.

But this raises the question on how the inherent subjec-
tivity of viewer emotion response should be dealt with. Some
elements of uncertainty and subjectivity, depending on the
unique emotion “makeup” of each individual, are inevitable
in the viewer’s movie experience. However, the collective
mean, or normative emotion response of a statistically large
audience is stable and reproducible, especially when dealing
with conventional films with a body of accepted “subjective”
practices and principles, and thus can be considered objective.
Similar assumptions underline the validity of feedback-based
psychological studies [18]. For our work, we have thus obtained
this normative emotion response to movie scenes in our video
corpus from a group of dedicated test subjects.

We emphasize that, though normative emotion response and
director intentions broadly concur, they are not equivalent. This
is apparent from the difficulties which even highly successful di-
rectors have met in conveying their visions. To us, this implies
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that viewer feedback is an essential element of any viewer-cen-
tric film affective system. However, from the standpoint of fu-
ture works involving personalized affective applications, a po-
tential drawback is the large amount of emotion responses to
scenes (of the order of a thousand) required to reliably char-
acterize the unique emotion makeup of an individual viewer,
which is too cumbersome for an ordinary user to provide. How-
ever, this problem can, we feel, be greatly alleviated by casting
the problem of characterizing a viewer as finding the moderately
small differences between the individual viewer and normative
emotion responses.

D. System Overview

We now give a system overview of our affective scene classi-
fication system. For consistency, the input to the system com-
prises of movie scenes manually segmented according to the
criteria adopted in [2]. For each scene, the audio and the visual
signal are processed separately. The visual signal is segmented
into shots and key-frames to facilitate computing visual cues
for each scene. The audio signal is then separated according to
audio type (music, speech, environ or silence) before being sent
into a support vector machine (SVM) based probabilistic infer-
ence machine to obtain high-level audio cues at the scene level.
The audio and visual cues are finally concatenated to form the
scene vectors, which are sent into the same inference machine
to obtain probabilistic membership vectors. Fig. 2 illustrates the
system overview.

III. FRAMEWORK DESIGN

As aresult of the intended domain of applications and perhaps
to simplify matters, all prior related works have relied heavily
on just one of three perspectives: Darwinian, cognitive (VA) or
cinematographic. In this paper, we demonstrate the advantages
of utilizing all three perspectives in affective classification in
film domain, and propose a complementary approach that for
the first time exploits the information and emotion paradigms
methodically from these perspectives to decide on the choice of
output emotion categories and low-level input features.
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Fig. 3. The VA spaces occupied by basic emotions, Anger (+), Sad (o),
Fear (x), Happy (x), Surprise (square) and Disgust (diamond), according to
manual feedback, centered around mean and bounded by one std. deviation.
The exact emotion words used are, in order of increasing arousal in each
set: (Angry—anger, aggression), (Happy—relaxed, leisurely, kind, affectionate,
enjoyment, joyful, happy), (Sad—sad, depressed), (Fear—fearful, terrified),
(Surprise—tense, surprised) and (Disgust—disdainful, disgust).

A. Complementary Approach

1) Characteristics of Each Perspective: The cinemato-
graphic perspective provides the advantage of direct insight
into film domain production rules, and is eminently suited
for formulating new input features. However, its paradigm
classifies film according to genre, rather than emotions. Genre
is too coarse for emotion categorization, e.g., genres such
as drama and romance contain a multiplicity of emotions.
Nevertheless there is the possibility of using genre to indirectly
gauge the relevance of any proposed emotion categories. The
Darwinian perspective provides the theoretical basis on how to
categorize emotions meaningfully, but says nothing about other
rich information residing in the film domain.

The cognitive (VA) perspective has the advantage of decom-
posing emotions into its constituent elements. Such representa-
tion offers the possibility of visualizing the entire emotion spec-
trum at a glance in a 2-D feature space, thereby facilitating the
analysis of the membership coverage and neighbor relations of
different emotion categories. We indeed employ the VA rep-
resentation when quick visualization is called for. Due to its
seeming simplicity, some works have suggested feature-to-VA
mapping. But such a proposition is fraught with severe difficul-
ties, especially when applied to the film affective domain. As
further explained in the feature selection Section III-D, this is
primarily due to the complex distribution of features with re-
spect to emotions.

However, the main reason why we do not adopt the VA as the
sole feature space for representing emotions is because some of
the output emotions cannot even be sufficiently differentiated
therein. We refer the reader to Fig. 3 (details in Section III-B),
as well as the dichotomized VAD representations of output emo-
tions (Table II, third column), respectively sourced from the

TABLE 1
SUMMARY OF COMPLEMENTARY APPROACH
Perspective| Cinematographic Darwinian Cognitive (VA)
Area of Most related to Organize emotions | Represent emotions
Strength | production of film into families in VA space well
Toqls Film Grammar Basic Emotions VA Space
provided
T =
. Guide to choose \ 1sqallzat10n of
Main nitial emotion emotion member-
Contri- Input features - ship and neighbor
. categories. . -
bution relationship.
Input features.
Input features.

strongest proponents of VAD [18], [19]. By their own accounts,
VA space reveals severe to near total overlap between some
output emotion categories in the VA space: namely the (Anger,
Surprise), (Fear, Anger) and (Disgust, Fear) pairs. These con-
clusions agree with the assessments of leading emotion theo-
rists who criticized VA for being insufficient to “capture the dif-
ferences among emotions” [36] and having “little explanatory
value, and not much predictive power” [37].

2) Characteristics of Complementary Approach: From the
strengths and limitations of being restricted to just one perspec-
tive, it is clear that affective understanding in film can benefit
from a complementary approach where each perspective offers
its tools and paradigms to address facets of the affective problem
that it handles well and others are not able to. For our approach
to retain the original theoretical bases of these perspectives, we
utilize their tools and paradigms in the manner consistent with
their purported theoretical strengths and properties, as examined
in the preceding sub-section, and summarized in Table I.

Due to a loose underlying consistency amongst the perspec-
tives, features motivated primarily by one perspective may ex-
hibit discernible relationships with others. Thus some may, in
attempting to “unify” matters, force features arising naturally
from all perspectives (e.g., the underlying physiological basis
of speech audio features causes it to map more naturally in
the Darwinian perspective) to map to the VA representation be-
fore mapping to the output emotions. However, this hierarchical
approach introduces information loss, stability and efficiency
issues, especially in a complex domain such as affective clas-
sification. Instead the complementary approach fuses these fea-
tures in a heterarchical manner by expressing them directly in a
high dimensional space (concatenated into vectors), from which
meaningful patterns can be extracted by a powerful inference
engine. In this way, complex dependencies amongst features
and output emotions can be captured directly and losslessly, thus
ensuring greater classification accuracy. The rest of the section
will apply this complementary approach to show how the per-
spectives work together to decide on the choice of output emo-
tions and low-level input features.

B. Output Emotion Categories

A well chosen set of output emotions, besides simplifying
complexity, is vital for consistent and principled manual ground
truth labeling. In our view, this set should obey the following
four criteria:

1) Universality: Each emotion can be universally compre-
hended and experienced.
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TABLE II
DESCRIPTOR CORRESPONDENCE BETWEEN DIFFERENT PERSPECTIVES

Output Emotions Feelings Dichotomized| Genre
(Psychological) (Viewer) VA Space | (Cinema)
Anger Exciting, Dangerous, -V+A Action,
(Aggression) Aggressive, Angry +V+A Adventure
Depressed, Sad,
Sad Bad, Hopeless -V-A Meclodrama
Fear Scary, Fearful, Terrified -V+A Horror
Surprise Surpri§§d, ) -V+A Suspffnse,
Tense, Anticipation +V+A Thriller
Exuberance, Joyous,
Happy Enjoyment, Happy, +V-A Comedy
Heart-Warming, Tender, +V+A
Sentimental, Relaxed
Disgust - -V+A, -V-A -
Neutral Neutral, Boring (V=0)-A -

Italicized feelings corresponding to Happy differ from the non-italicized
feelings in terms of arousal, a fact that will be used later. The +,- represents
the positive and negative half of the Valence(V) and Arousal(A) axes.

2) Distinctiveness: Each emotion is clearly distinguishable
from the other.

3) Utility: Each emotion should have significant relevance in
the film context.

4) Comprehensiveness: The emotions in the set should be ad-
equate to describe nearly all emotions in film.

The first two criteria pertain to any general emotion cate-
gorization, whereas the last two are relevant for film domain
application.

As discussed in the preceding section, the cinematographic
perspective offers the notion of genre as possible output emo-
tions but the genre is a movie (and not affective) descriptor, and
hence is too blunt and inappropriate for describing scene-level
affective content. The Darwinian perspective offers Ekman’s
List which has been proven through substantial experimental
backing to be universally identifiable and distinguishable across
cultural borders [40]. Ekman’s List has the chief advantages of
fulfilling the first two criteria, and is thus used as the principal
guide in choosing output emotions.

We now want to adapt Ekman’s List to satisfy the other two
criteria specific to film. To begin, we investigate the relevance
of Ekman’s List to cinema viewers. We carried out a survey
where nine respondents, each randomly assigned two movies,
were asked to propose a word for each individual movie scene
that would suitably describe their feelings about it, given a list
of 151 emotion words found in [18] as a nonexhaustive guide.
We note that because the respondents felt there were many
emotionally neutral scenes, we add to the basic emotions in
Ekman’s List a Neutral emotion category (no emotion). The
second column of Table II lists the most commonly suggested
emotion words and their correspondences with the emotion
categories. From the table, we can see how the more specific
emotion words are related to the emotion categories. This, with
one exception, attests to the utility of the basic emotions, in the
sense that they can be readily associated with the more specific
emotion words.

Unsurprisingly, the exception “Disgust” cannot find any cor-
respondence with the genres and viewer feelings. This is pri-
marily due to the lack of scenes that seek to evoke “pure” dis-
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gust in the viewer. Furthermore, cinematic scenes with an ele-
ment of Disgust often contain a strong element of Fear and are
thus subsumed under it. Due to its lack of utility in the cinema
context, Disgust is henceforth dropped, leaving us with a set of
what we term the six output emotions (Happy, Surprise, Anger,
Sad, Fear, and Neutral).

For the sake of comparison, Table II also lists the correspon-
dence between the output emotions and their approximate lo-
cations in VA space (third column), as well as the rough corre-
spondence with film genres (fourth column). This corroboration
serves to strengthen the notion that the output emotions are rel-
evant for describing movie affective content. Note that some of
the genres such as drama and romance, which reflect a multi-
plicity of emotions, cannot be matched uniquely to the output
emotions and are thus omitted from Table II.

To check for comprehensiveness, we used VA space as a tool
to visualize the extent of coverage of the output emotions. It
serves as an approximate test for comprehensiveness, in the VA
sense, by showing up any large VA areas neglected by the emo-
tions. To visualize the output emotions, we associate them to
the closest related emotion words—drawn from viewer feed-
back in Table II, second column where possible—as found in the
151 emotion words list. This is because we view each group of
emotion words associated to an output emotion as “constituting
a family of related affective states, which share commonalities
in their expression, physiological activity, and in the types of
appraisal that call them forth” [35]. These emotion words are
finally mapped to the VA space in Fig. 3, using the mean and
standard deviation values of valence and arousal of those emo-
tion words computed from manual feedback [18].

The diagram reflects the extent of coverage of the output emo-
tions. Disgust is mapped for completeness, while Neutral, be-
cause it represents absence of emotion, does not have visualiza-
tion data. The emotion areas which are more densely occupied
form a rough U-shape; such distribution reflects the psycholog-
ical reality that areas of high Arousal-neutral Valence and low
Arousal-high Valence characterize uncommon affective states
and are thus sparsely occupied. Expectedly, the only significant
unoccupied region of VA space is centered on the neutral va-
lence, low arousal area, vindicating the inclusion of the Neutral
emotion in the output emotions.

C. Finer Partitioning of Output Emotions

As a natural extension of our work, we investigate into the
possibility of finer meaningful output emotions. This is moti-
vated by the fact that not all the six output emotion categories
have equivalent status in the context of this work. The “Happy”
emotion enjoys a privileged position in cinema, as mainstream
cinema-goers still prefer to have a positive and enjoyable movie
experience. This is attested by the fact that amongst the genres
that can be strongly identified with an emotion (Table II, fourth
column), comedy is by number of movies the most popular
genre (about 75 000), followed by the action genre at a distant
second (about 18 000) [45].

The Darwinian perspective provides another motivation to
subdivide “Happy”’, which is observed to contain the most diver-
sity in affective states [35], and hence able to yield sufficiently
distinctive finer partitions. This observation is explained by the
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fact that four of the six basic emotions (Anger, Sad, Fear, Dis-
gust) in Ekman’s List have immediate survival functions, and
have thus evolved unique reaction patterns [36], including fa-
cial expressions, upon which Ekman’s List is based. In contrast,
“Happy” contains multiple distinctive sub-families of positive
feelings under it because due to the lack of immediate survival
need, none have evolved its own unique facial expression away
from the smiling expression [46]. This is borne out by the cogni-
tive (VA) perspective in Fig. 3, which shows “Happy” affective
states to be the most numerous. Hence we feel that it would be
useful and cinematically relevant to extend our work by further
partitioning the feelings used to describe “Happy”.

We now attempt to partition “Happy” with the four criteria of
output emotion selection in mind. To retain cinematic utility,
comprehensiveness and universality, we confine ourselves to
defining the partitions with the feelings used by viewers to de-
scribe “Happy” emotion in Table II. Referring to the italicized
and nonitalicized words used to describe “Happy” feelings in
Table II, there seems to be two sufficiently distinctive sub-fam-
ilies of “Happy”. The two reasons supporting this partition are
as follows.

Affectively, the nonitalicized feelings encompass enjoy-
ment and exuberance, and such scenes tend to be comedic
or merry-making. The italicized feelings embody relaxation,
kindness and tenderness, and these scenes are likely to be
leisurely or heartwarming. Also in VA space, the two groups
of feelings tend to be high and low in arousal respectively
(Fig. 3). For the rest of the paper, these partitions are labeled as
Joyous and Tender Affections (henceforth abbreviated as TA)
respectively. As examples, a scene where a parent comforts a
child who has lost a toy falls under TA while comedic situations
or boisterous friendly reunions fall under Joyous. Classification
tests are carried out for both sets of output emotions before and
after this partitioning.

D. Feature Selection

As the summary in Table II shows, depending on the way each
perspective views the affective aspect of film, different input
features are elicited, which are fused together in accordance
with the heterarchical organization of features proposed in our
complementary approach. Though features exhibiting law-like
or rigorous relationships with the emotion representations of
various perspectives are desirable from a classification stand-
point, they are incongruous with the vast artistic freedom in
the film domain. For instance, the dim lighting characteristic
of Fear scenes does not imply TA scenes cannot be similarly lit.
Here we obtain features by utilizing guidelines stating how each
perspective suggests features with significant affective implica-
tions. These guidelines are provided below, while the resultant
features are detailed in the next two sections.

1) Cinematographic perspective: There often are film
grammar rules with affective implications. Examples include
the shot duration and lighting key introduced in Sections V-A
and V-C, respectively. The corresponding features can then be
computed. Sometimes, these rules suggest features which are
mapped to VA space instead of directly to the output emotions.
An example is the shot duration in Section V-A.

2) Darwinian Perspective: Many results in categorical per-
ception show that the representation of some entity is critically

related to its categorical membership [44], which implies that
the underlying representations are different resulting from
different categorical membership. The Darwinian perspective,
by virtue of furnishing much of the basic emotional categories,
clearly influences what features are to be used to represent
these emotion categories. For instance, the audio features in
Section IV, namely the Audio Type Proportion (ATP) and
Scene Affective Vector (SAV), are selected (with the aid of
cinematographic rules) in such a way that best separates the set
of proposed emotion categories.

3) Cognitive (VA) Perspective: The requirement of VA to
stringently reduce features to at most two dimensions renders
many complex, multimodal but informative features unsuitable
for direct feature-to-VA mapping. This is especially so when
features are supposed to model the high-level film domain,
thus limiting the usefulness of VA for feature selection. But
occasionally, the concept of affective dimensions (in our case
valence and arousal) recommends features with a strong con-
nection to those dimensions. Good examples of such features
are color energy and visual excitement in Section V.

IV. AuDIO FEATURES

Hitherto under-exploited, audio cues play an important role in
this work. Five channels of information in film have been iden-
tified by Metz [13], which are: 1) the visual image, 2) print and
other graphics 3) music, 4) speech and finally 5) sound or en-
vironmental effects. Interestingly, the majority of them (MSE:
music, speech and environ) are auditory rather than visual, im-
plying that the auditory stream is a potentially rich source of in-
formation. We show how effective low-level audio cues may be
derived based on considerations (particularly in relation to the
seven output emotions chosen) discussed in Sections II and III.

A. Audio Type Proportion

Audio type classification refers to the classification of a short
audio interval into music, speech, environ or silence, while the
audio type proportion (ATP) refers to the relative durations of
the respective audio types to the scene duration in any particular
scene. Although audio types based on different MSE combina-
tions exist, they are confusing and consequently rarely occur.
The exception is speech-music, where the voice follows the af-
fect and tune of the music (like in songs). This combination
is classified as music, which is adequate for our classification
purposes.

While the audio aspect of film grammar is not as formalized
as its visual counterpart, discernable ATP signatures exist
for different emotions. This is due to both cinematographic
and Darwinian considerations, where different audio types
are naturally suited to provoke different emotions. We have
illustrated some of these patterns in Fig. 4. As a powerful mood
inducing medium, music is suitable for most types of emotions
(first set of histograms), as seen from the majority of evenly
spread music proportion histograms. This is especially true for
Fear scenes, but much less so for Neutral and Joyous scenes.
Neutral scenes have downplayed music because of their lack
of emotional content and emphasis on dialogue. Interestingly,
dialogue is also found to be critical in conveying the intended
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Fig. 4. Music and Environ (top and bottom) ATP histograms, where the x-axis
denotes the proportion of the respective audio types.

atmosphere of friendly gatherings or comedic situations, which
dominate Joyous scenes.

For the second set of histograms, scenes with a higher propor-
tion of environ usually feature Aggression (noise from frantic
activity, gunfire, etc.) or Fear. However, other emotions have no
need for environ noise, hence its presence is minimized. An-
other salient example is Surprise, mostly generated by silence,
which creates unbearable anticipation and tension. Due to the
dual connections with the output emotions and cinematography,
the ATP audio cues are motivated by the cinematographic and
Darwinian perspective.

Having explained the ATP histograms from cinema obser-
vation, it is useful to automatically sift out the broad patterns
characterizing each audio type histogram series by clustering
histograms according to their distributions. To begin the clus-
tering process, we first sort the histograms according to the sum
of their own cumulative histograms. The Earth Mover Distance
(EMD) [2] is then computed for every pair of consecutively or-
dered histograms to produce an array Agyp. In an iterative
manner, the ranked histograms are split at an unsplit location
of Apyp with the largest EMD value, gy p.- This is subject to
the maximal EMD possible between any two histograms within
any current histogram cluster exceeding [gy\p, or unity. For our
experiments, exactly two clusters are formed for each audio type
histogram series. The results of this ATP clustering are shown
in Table III.
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TABLE III
RELATIVE AUDIO TYPE PROPORTIONS FOR BASIC EMOTIONS

Emotions | Anger | Sad | Fear |Joyous | Surprise | T.A. | Neutral

Music + + + - + + -

Speech - - + - - +
Environ + - + - - - -
Silence - + - - + + -

The symbols [+, -] represent the relatively large and small typical propor-
tions of the respective audio types for each emotion.

To obtain the ATP, the entire audio stream is first divided into
scenes based on the manual scene segmentation done before-
hand. Then starting and ending with the scene boundaries, type
classification is carried out for every two seconds segment for
every scene. Silence is first identified by thresholding the av-
erage segment energy. Two features, which are chroma differ-
ence and low short time energy ratio (LSTER) [24], are then
extracted from each segment. Chroma difference is a novel fea-
ture effective for differentiating music from environ. Let C be a
chroma [28] vector, then the chroma difference is

11
> 1Ci1 = Gl M
i=1

where C} is the ith entry of C. Whereas in noise, energy is uni-
formly distributed in the chroma, in music it is highly concen-
trated in the frequencies played. This ensures that music tends to
have higher chroma difference than environ. Segments are then
classified into its MSE type by the two features using a simple
SVM.

B. Audio Scene Affect Vector (SAV)

As pointed out, each MSE channel contains significant affec-
tive information. Due to the predominance of speech, and strong
linkage between speech features and output emotions, speech
plays the most important role amongst the triad. Music is simi-
larly informative but due to its modest usage is slightly less in-
fluential. Finally, though environ sound is the least distinctive of
the triad, it can still distinguish between broad sets of emotions.

This suggests the approach of mapping suitable low-level fea-
tures for each audio type to output emotions separately, and
then integrating such information across a scene to obtain the
scene affective composition, also known as the audio scene af-
fect vector (SAV). The SAV is a vector denoting the amounts, or
probabilities, of the output emotions existing in a scene. Since
the dimension and nature of the SAV is solely dependent on the
exact output emotions chosen, it is intimately related to the Dar-
winian perspective.

Good accuracy for speech and music mood detection has
been achieved by the current state of the art. Ref. [26] achieved
78.1% accuracy in classifying speech emotions for Ekman’s
List of emotions. The dataset comes from twelve speakers,
reading standard scripts under laboratory conditions. Ref. [25]
obtained 86.3% accuracy in classifying music clips into the
four classes of contentment, exuberant, anxious and depression,
with data consisting of meticulously prepared clips from the
classical and romantic period.
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Fig.5. Tllustration of the process of concatenating the segments into affect units
to be sent into the probabilistic inference machine. D is for discarded speech
segments that straddle shot boundaries.

In contrast, the vast diversity of movies has thrown up for
us a very difficult dataset. The speech segments alone contain
speech spoken by diverse races, gender, age groups and in mul-
tiple English dialects, styles, pitch, speed and volume. Similarly,
the music segments feature large diversity of styles from dif-
ferent eras, generated from different instruments. In addition to
being subjected to various levels of noise, both music and speech
are classified into seven output emotions.

Due to our large database size and the vast variety of audio
encountered in each MSE channel, it is impractical to carry out
supervised training at the audio segment level. Since there is a
need to integrate the information obtained across all channels
at the scene level, the proposed algorithm (Fig. 5) is as follows.
Conceptually, audio segments belonging to the same type and
scene are concatenated together. There is only one constraint:
speech segments cannot concatenate across shot boundaries, be-
cause they usually denote speaker change, whereas music easily
stretches across shots.

These concatenations are then partitioned into equal affect
units of 8, 4, and 2 s duration for music, speech and environ
sound respectively. These durations are typically the least time
required for a confident manual assessment of the affective con-
tent for the corresponding audio type. For instance, four seconds
is about the least time required to manually discern the emo-
tion of a speech fragment. Affect units are then labeled with the
output emotion of the scenes to which they belong. Different
sets of features suitable for each audio type [24]-[28], organized
into vectors, are then extracted from the affect units.

Here we present the basis behind the features used. More
than 50 years of research has yielded speech features affected
by psycho-physiological characteristics like air intake, vocal
muscle, intonation and pitch characteristics that vary with
emotions. Also known as prosodic features, they include
speech fundamental frequency, speech power, pitch contour,
and frequency sub-band power. We refer the reader to [41],
[42] and other excellent references found in [26]. For music
mood identification, there is little consensus at present on the
exact mechanism whereby music evokes emotions. However,
numerous references such as [43] and those found in [25],
in accordance with established music knowledge, agree that
aspects like music mode, intensity, timbre, and rhythm play
important roles in evoking different musical moods.

The more significant features include: 1) energy statistics;
2) LFPC and its delta statistics; 3) low energy ratio; 4) spectral
roll-off and centroid; 5) MFCC and its delta statistics; 6) ZCR

statistics; 7) spectral flux and normalized version statistics;
8) chroma and its delta statistics; 9) normalized chroma statis-
tics; 10) LSTER; 11) normalized octave energy bands statistics;
and 12) music scale. Except for cues 2) and 12), used only for
speech and music, respectively, all other cues are extracted from
all the audio types. Statistics, where mentioned in conjunction
with cues, refers to the mean and variance of the respective
cues. These statistics are computed based on equal duration
frames (very short audio) within each audio segment. The
frame durations used in this work are 100 ms for speech and
200 ms for music and environ.

Here, we introduce the cue that detects music scale, which
according to the influential “Doctrine of the Affections” [20],
measures the valence of a music piece (minor scale for sad and
major scale for happy). In conventional music, it is the music in-
terval relationships between simultaneously played three-notes
known as triad chords that determine the music scale. In partic-
ular, major and minor scales use four-three and three-four in-
terval patterns respectively between the notes in a triad chord.
Hence we have devised an algorithm that uses correlation ker-
nels of the interval patterns on the Fourier transforms of every
200-ms frame of a music piece. The frame is then labeled ac-
cording to the interval pattern that outputs the highest energy.
Finally, the music scale of the music is quantified by the pro-
portion of frames in the music labeled as major.

For each MSE type, the feature vectors are then divided into
K groups, with each group being sent into a SVM probabilistic
inference machine to obtain the output vectors V,, while the
remaining K — 1 groups function as training data. This inference
machine, which is mentioned in detail in Section VI, takes an
input feature vector and outputs a N x 1 row vector V,,, where
N is the number of affective categories and the entries of V,,
represent the probabilities of the feature vector belonging to the
respective categories. Let the number of affect units, indexed by
1, in a scene be N's. Let their corresponding durations be ¢; and
output vectors be V, ;, then

Ns
audio Scene Affect Vector (SAV) = norm Z tiVau,i
i=1

@

The SAV, which constitutes part of the final scene audio
cues, possesses several advantageous qualities. First, it is
time weighted to accurately reflect the contribution of every
classifying unit. Second, since the output vectors V,,, ;, contain
probabilities, the SAV has a natural probabilistic interpretation;
each SAV entry (SAVE) denotes the probability of the scene
belonging to the corresponding category like V,,,. Third, due to
the integration of information from many affect units, the SAV
is far less prone to outlier errors. Finally, using affect units of
short durations better models the possibility of affects changing
throughout the scene.

Without using SAV, the discrete classification performances
for both individual speech and music segments are 45% and
40% respectively. This is due to the vast diversity of audio that
are encountered but not sufficiently trained for. However, using
the SAV probabilistic framework increases the classification ac-
curacy to 65% and 57%, respectively, at the scene level.
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V. VISUAL FEATURES

We describe several visual cues and show their relationships
with respect to the perspectives laid out in Section III. As a
preliminary, unless otherwise stated, the visual cues are com-
puted exclusively in the hue, lightness, and saturation (HLS)
color space. This is justified purely on the psychological evi-
dence [19] that humans perceive the “emotional” influence of
colors with respect to its HLS components. HLS histograms,
where applicable, are generated by dividing each axis into 20
equal intervals. For reasons of computational efficiency, all vi-
sual features (except motion features) are computed from key
frames. The first frame of every shot is declared a key-frame and
further key-frames from each shot are then selected according
to [2]. Then the feature extraction operator Feat|.] is applied to
the Scene as follows:

Feat[Scene]

=) (txFeat[KF4])/ >t 3)

k k

where k is the key-frame index of Scene, and t;, is the number
of frames that key-frame KF', represents.

A. Shot Duration

From the cinematographic perspective, the perceived passage
of time, also known as the pace, is manipulated to great effect
by editing effects like cuts, which defines the shot length. As
each shot conveys an event, the director can heighten arousal and
intensify a scene by increasing the event density via rapid shot
changes [22]. To the viewer, rapid shot changes capturing the
main action from different angles certainly convey the dynamic
and breathtaking excitement far more effectively than a long
duration shot [11], [23].

Obtaining the shot boundaries is an essential first step.
However, since the system only needs to detect intra-scene shot
boundaries, it does not need to consider challenging editing
effects like dissolves or fades. We compute the shot boundary
profile, M, for each pair-wise frames as the sum of L 2-norm
between the L histograms for all matching 20 x 20 blocks
between the pair of frames. Shot boundary is declared at frame
1 only if the frame fulfils these three criteria:

oM
C1(i —_— > Thyy,
()| 7l b1
. 9*°M
J7 =i

C3(i): fori — 15 < j < i + 15,C1(j) and C2(3j) should both
be true only when j = ¢; Thy; and Thy, are experimentally
determined thresholds. C2 is used to disambiguate true shot
boundary from consecutive high peaks observed in the presence
of fast or large moving objects (the latter case would have small
C2). C'3 encodes the condition that shots must last for a per-
ceivable length of time. Average recall and precision rates are
around 94%. The average shot length of a scene is then calcu-
lated as (total scene duration)/(no. of shots in scene).

697

B. Visual Excitement

Motion plays a central role in the cinema experience owing
to the intimate correlation between the degree of mental excite-
ment and the perception of motion on screen. This correlation,
broadly proven by a psycho-physiological study [21], seems to
result from the natural association of fast motion with danger
and excitement, as well as new activity or information. From
the cognitive (VA) perspective, computing the arousal arising
from motion, which we call visual excitement, is useful in dif-
ferentiating between emotions in different halves of the arousal
axis (Fig. 3). Hence we explore a method to accurately deter-
mine this visual excitement by the motion present in a video
sequence.

Existing approaches [9]-[11] have proposed reasonable
features to measure visual excitement. However, in the affec-
tive context, those features suffer from a somewhat arbitrary
mapping to visual excitement. In contrast, our proposed feature
is actually obtained from a nonlinear regression of actual
psychophysical results obtained for visual excitement, thus
reflecting the critical link between the low-level feature and
visual excitement.

Our visual excitement measure is based on the average
number of pixels that according to human perception are
changed between corresponding frames. This change is com-
puted in the perceptually nearly uniform CIE Luv space, since
visual excitement is intended to model human perception, and
frame difference (L 2-norm) calculations are required across
the entire spectrum of possible colors. To smooth over noise,
the frame difference is calculated over a 20 x 20 block as

wta = /sp(L1 —

_[1/3,
5L = { 1/3 + (savr, — 1/3)2,

Lo)? +1/3((w1 = uo)® + (01 — v0)?),

SavL Z 1/ 3 (5)
otherwise

where (L1, u1,v1) and (Lo, ug,vo) are the average CIE Luv
values of corresponding blocks of consecutive frames and a
block is declared as changed if wf4 is greater than certain
threshold thresgq. Since frames low in the average frame
luminance s,,1, tend to return lower visual excitement values,
a scaling factor sy, is used to increase the sensitivity of z¢q to
luminance differences for dark frames. Let H be the Heaviside
step function, Ny the number of blocks in a frame and let k&
index the blocks of each frame. Then X¢q is defined as

Npy

de = Z H(.de(k‘) — thresfd)/NH. (6)
k=1

Finally, the visual excitement for each scene is computed as

N.
(10/Ne) Z[Xﬁur (Xta)" s )

where N, is the number of frames in the scene and f indexes
the frame. In order to prevent bias toward slow motion clips, we
add an offset bias (Xtq)"" where W is a constant.
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Fig. 6. Graph of the computed visual excitement measure plotted against the
manual scale ranking for each movie clip.

To determine the optimal parameters for the visual excitement
measure as objectively as possible, a diverse test set comprising
of 82 video clips of various types and degrees of motion and
lighting conditions are manually selected and segmented from
seven movies. These clips feature explosions, large occlusions
and special effects averaging around 15 s each and have only
one type or degree of motion.

Three test subjects are instructed to give an approximate score
to each clip, as far as humanly possible, according to how the
motion (not the content) excites them. The clips that each test
subject feel to be the most exciting and sedate are assigned 10
and 0, respectively, and used as reference (calibration) clips. Fi-
nally all the rest of the clips are scored manually on a linear
excitation scale of 0 to 10. Based on the scores, a proposed re-
gression function with suitable parameter value of W = 0.75 is
obtained, with errors ranging from 0.1% to 13.45% and a mean
of 3.91%.

From the results (Fig. 6), it is observed that the measure corre-
lates very closely with the manual scale ranking. As mentioned
before, few informative affective cues are suitable for such rig-
orous regression to even a very limited definition of psycholog-
ical arousal (visual excitement). However, the results show that
the proposed measure is indeed a good indicator of visual ex-
citement.

C. Lighting Key

In the cinematographic perspective, lighting is an extremely
powerful tool, used specifically for the purpose of affecting the
emotions of the viewer and establishing the mood of a scene.
Generally two major aesthetic lighting techniques are frequently
employed. Low-key lighting, or chiaroscuro lighting, is charac-
terized by a contrast between light and shadow areas, whereas
high-key, or flat lighting, deemphasizes the light/dark contrast
[22], [1]. To generate the light-heartedness and warm atmos-
phere typical of TA and Joyous scenes, an abundance of bright
illumination and a light background, in the form of high-key

lighting, is usually employed. In the same vein, film grammar
prescribes the use of dim lights, shadow play, and predominantly
dark background to recreate the Sadness, Fear, and Surprise for
sad, frightening, or suspense scenes [22].

From the above definitions of the two lighting keys, their
differences are determined by two factors: 1) the general level
of light and 2) the proportion of shadow area. Ref. [11] pro-
posed detecting lighting key using the product of the mean and
variance of the brightness of a frame. However, the mean is
very sensitive to extreme values and the variance may not be
discriminative enough; a high-key lighting frame produced by
simply wrapping the brightness values of a low-key lighting
frame around the maximum intensity retains the same variance.

We have therefore attempted to formulate two visual features
that can accurately quantify the aforementioned components of
lighting key in order to better detect it. The median, Med,, is
used as an indicator of the first component, which is the general
level of brightness, due to its robustness in the presence of ex-
treme values. The second component, the proportion of shadow
area, can be characterized by using the proportion of pixels,
Pro,, whose lightness fall below a certain shadow threshold
Thg. This threshold is experimentally determined to be 0.18,
at which an average saturation and highly textured surface no
longer appears as textured.

D. Color Energy and Associated Cues

Psychological studies on color have shown that valence is
strongly correlated to brightness and to a lesser extent satura-
tion while arousal is strongly correlated to saturation [19]. Thus
to capture these affective relationships, we have introduced what
we call the color energy cue. This cue depends proportionally
on the saturation, brightness and area occupied by the colors
in a frame [22]. It depends also upon the hue, as in whether
it contains more red (energetic) or blue (relaxing) components
and the degree of contrast between the colors [22]. From the
cognitive (VA) perspective, color energy measures the joint va-
lence-arousal quality of a scene arising from the color composi-
tion alone. Thus, the degree of valence or arousal in a scene can
be partially inferred by its color energy. For instance, a Joyous
effect can be manufactured by setting up a scene with high color
energy.

Color Energy is defined as the product of the raw energy and
color contrast:

ZZp ¢;) x p(ej) x d(e;, ¢j) X

where c is a histogram bin indexed by i, j to iterate over every
single bin index in the HLS histogram of an image and p( -)
is the histogram probability. d(c;, ¢;) is the L 2-norm in HLS
space while M is the total number of pixels, over which index
k iterates. sy, vy are respectively the saturation and lightness
values while E(hy,) is the energy of the hue, assigned a range be-
tween [0.75-1.25], depending on its angular distance to blue and
red respectively. By the same token, we compute the proportion
of pixels with saturation below 20%—an experimentally deter-
mined threshold when a color starts to be perceived as gray—to
form another cue.

ZE }Lk Sk?)k (8)
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Finally, it is noted that the viewer emotional distance to a
scene varies loosely with camera distance, which in turn varies
inversely with visual detail. For instance, directors often use
close-up shots of characters to facilitate viewer empathy [1].
Thus the visual detail, approximated by the average grey level
co-occurrence matrix (GLCM) of a scene and implemented
using two-pixel-distant straight and diagonal kernels, is used as
a visual cue to characterize the emotional distance of the scene.

VI. CLASSIFICATION AND INFERENCE

The features as described by Sections IV and V are extracted
and concatenated into row vectors to form the data points char-
acterizing every scene. Due to the highly irregular nature of their
probability densities, the classification method needs to be se-
lected with care. In particular, no artificial constraint should be
foisted on the data. This excludes parametric based methods or
ad hoc rule based methods from consideration. In view of the re-
quirements, we use a specially adapted variant of SVM, which
has proven highly successful for classification.

The SVM, which can map vectors from an input space into
a possibly infinite dimensional feature space and find the best
separating hyperplane therein, has only two adjustable parame-
ters and tends to be less susceptible to the curse of dimension-
ality [29]. This scheme does not make unwarranted indepen-
dence assumptions regarding the interaction between audio and
visual cues; any such interaction is left to the SVM to learn and
exploit. As a kernel based method, it is also able to model ex-
tremely complicated class boundaries. Finally, the variant used
allows flexibility in the features chosen and more importantly,
outputs a posteriori probabilities for every category, permitting
more refined characterization than binary outputs and allowing
the presence of multiple emotions.

To begin with, the data are normalized by shifting the centroid
to the origin before dividing it by the mean of the absolute mag-
nitudes. Then K-fold cross validation is used with grid search
to obtain the optimal penalty and margin parameters. Subse-
quently, radial basis kernel SVMs are individually trained for
each class pair, so that only features with discriminative value
are used. This tailors the features for each class-pair for optimal
performance and speed. In line with the ambiguous nature of
those training data with dual labels, these data are included in
the training set of both labels, and excluded only if the SVM
class-pair coincides with the dual labels. A posteriori sigmoidals
fitted to the decision values of the SVMs are then learnt for each
class-pair [30], where the sigmoidals are of the form, with a,b
as adjustable parameters,

1

T 1+ exp(af; +b) ©)

pi
where p; is an a posteriori and f; a decision value. These sig-
moidals are shown to be very good in modeling the a posteriori.
A test vector v, is then processed by each class pair SVM to ob-
tain the decision values, which are in turn fed into the respective
sigmoidals to produce class-pair probabilities. These probabil-
ities are finally combined together to compute the a posteriori
of v, for every category [31].
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TABLE 1V
MOVIES USED FOR AFFECTIVE CLASSIFICATION
Action Horror
The Fifth Element Ghostship
Speed Queen of the Damned
Lord of the Rings I The Haunting
James Bond (Golden Eye) What Lies Beneath
True Lies The Others
Men In Black Dream Catcher
Saving Private Ryan Ring
Starship Troopers Gothika
Star Wars 1 Legend of the Mummy
Waterworld
Jumanji
Drama/Melodrama (D/M) Romance/Comedy (R/C)

Forrest Gump There's Something About Mary
Magnolia My Best Friend's Wedding
Ghost Up Close and Personal
Life is beautiful Bedazzled

City of Angels

50 First Dates

Artificial Intelligence

Maid in Manhattan

The Sixth Sense

Love Actually

Bruce Almighty
Notting Hill

VII. EXPERIMENTAL RESULTS

Our training data consists of 36 full-length and mostly
recent mainstream Hollywood movies chosen to represent the
more popular films. This translates into 2040 scenes, whose
percentage distribution by output emotions are Neutral (24%),
Fear (8%), Joyous (13%), Surprise (16%), TA (11%), Anger
(17%) and Sad (12%). There is also a diversity of director styles
so that the training scenes are likely to be unbiased. Table IV
divides these films according to the major genres.

A. Manual Scene Labeling

To obtain the ground truth for experimentation, we attempt
to manually match the affective content of a scene to one of the
output emotions. If ambiguities arise, we resort to the VA dia-
gram (see text and Fig. 8 in the Appendix). Three persons are
employed to independently label each scene. To prevent fatigue
and systematic bias, an individual labels only one random movie
daily, of a genre different from the previously labeled movie.
Except for unanimous decisions that stand, all scenes with dis-
senting views are reviewed using Fig. 8 as a guide, which usu-
ally result in common agreement. Scenes where no agreement
can be reached have dual labels; the main label that received two
votes, and an alternate label that received one vote. Dual label
scenes comprise of 14.08% of all scenes; there are no cases with
three differing votes.

B. Discussion

Using a take-one-movie-out approach, we reserve the scenes
of one movie for testing while using the rest for training. This
approach is repeated for every movie in Table IV, where every
testing scene is classified into one of the output emotions. The
final aggregated result for all movies is then presented in the
form of a confusion matrix given in Table V, and in Table VI
for the extended framework. A comparison between Table V and
VI reveals that the former can be computed from the latter. The
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TABLE V TABLE VIII
CONFUSION MATRIX FOR AFFECTIVE CLASSIFICATION (%) OVERALL CLASSIFICATION RATE (%)
Anger Sad Fear Joy/TA | Surprise | Neutral Correct Alternate Selected Incorrect
Anger 69.10 4.50 5.34 8.99 7.30 4.78 Visual 42.86 9.87 49.27
Sad 2.66 61.13 3.32 15.95 10.96 5.98 Audio 61.39 10.34 28.27
Fear 7.03 1.62 84.32 0.00 6.49 0.54 Audio/Visual 74.69 11.13 14.18
Joy/TA 3.56 9.01 0.21 78.83 2.73 5.66
Surprise | 6.16 10.87 10.15 5.073 64.50 3.26
Neutral 4.72 6.74 1.57 10.11 5.62 71.24 RANKINGE)??LFEEICXTIVE CUES
TABLE VI CUES % CUES %
CONFUSION MATRIX FOR EXTENDED FRAMEWORK (%) Silence Proportion 38.1 | Visual Excitement 20.2
Joyous SAVE 32.1 [ Speech Proportion 20.2
Anger Sad Fear | Joyous |Surprise| TA | Neutral Fear SAVE 28.7 | Median Lighting 19.7
Anger | 69.38 3.93 5.62 8.15 7.30 0.84 4.78 Surprise SAVE 27.5 | Shadow Proportion 19.4
Sad 2.66 61.13 3.65 3.99 10.96 | 11.96 5.65 TA SAVE 274 | GLCM 18.3
Fear 7.57 1.08 83.78 0.54 6.49 0.00 0.54 Anger SAVE 27.4 | Average Shot Length 17.6
Joyous | 6.59 1.55 0.388 | 80.62 1.94 2.71 6.20 Sad SAVE 26.2 | Color Energy 17.4
Surprise| 6.16 11.23 9.42 1.81 65.22 3.26 2.90 Neutral SAVE 26.1 | Music Proportion 16.7
TA 0.00 17.35 0.00 3.20 3.20 71.69 4.57 Environ Proportion 23.7 | Saturation Proportion 16.0
Neutral | 4.50 7.19 1.57 5.84 5.40 4.05 71.46
TABLE VII cases, deciding for one label over another depends to a large

CONFUSION MATRIX FOR PAIRWISE AFFECTIVE CLASSIFICATION (%)

Anger Sad Fear | Joyous |Surprise| TA | Neutral

Anger 0 3.76 6.61 7.57 6.56 0.52 4.44

Sad 0 0 3.19 3.19 11.68 | 15.81 6.75

Fear 0 0 0 0.47 7.97 0 1.22

Joyous 0 0 0 0 1.75 2.85 5.61

Surprise 0 0 0 0 0 2.97 4.02

TA 0 0 0 0 0 0 3.91
Neutral 0 0 0 0 0 0 0

clear separation of the Joyous and TA categories confirm that
they are distinct categories, and also attests to the discriminating
power of the SVM framework used. Henceforth, the rest of the
discussion will concentrate on analyzing the more difficult and
informative extended framework case. For a clearer analysis of
the algorithm performance, the confusion rates between every
pair-wise emotion (computable from Table VI) are presented in
Table VII.

Of the 21 possible pairs of emotions, Sad-TA, Sad-Surprise,
Fear-Surprise, Anger-Joyous, Anger-Surprise, Sad-Neutral,
and Anger-Fear are, in descending order, the seven pairs most
culpable for errors. The confusion arises due to the frequent
co-existence of these emotion pairs, attested by the dual labels
that are attached to most of these scenes. For example, tender-
ness is often portrayed when someone comforts a despondent
loved one, thus posing a difficult problem in the identification
of the Sad-TA pair. Similarly, because all unpleasant low
arousal scenes are classified as Sad, and a major source of
unpleasantness is usually due to tension/suspense, therefore,
the Sad-Surprise pair also shows high errors.

As for the third pair, Fear-Surprise, these emotions are so in-
tertwined in cinema that it is sometimes hard to even manually
differentiate between them. Regarding the fourth pair, Anger-
Joyous, the difficulty arises because Joyous comedic scenes are
usually slapstick in nature, and contain a fair amount of ac-
tion elements inside, hence the confusion with Anger. Anger-
Surprise and Anger-Fear also tend to co-exist and our experi-
ence with the manual labeling process shows that for borderline

extent on one’s personal tolerance for fear. A person with low
tolerance will be more acutely aware of the fear element, and
tend to choose the Fear or Surprise labels. Finally, neutral scenes
are dominated by short scenes with dialogue in dull or subdued
tones, which are not uncommon in Sad scenes, thus compli-
cating the discrimination of the Sad-Neutral pair.

Having discussed the difficult cases, it is nevertheless well
to note that the confusion matrix indicates that most scenes are
classified correctly. Despite the challenge of classifying every
scene of the entire movies, and the significantly larger number
and increased subtlety of emotional categories compared to ex-
isting works, the overall correct classification rate is 74.69%,
or 85.82% if “alternate selected” scenes are included (last row
of Table VIII). The second column under ‘Alternate Selected’
refers to those cases of dual label scenes whose dominant and
alternate labels have received the second highest and highest
probabilities respectively. Given the intrinsic ambiguity of these
scenes and such a stringent criterion imposed, we believe that
these so-called “alternate selected” scenes have been adequately
classified and fully deserve a separate result category. Empiri-
cally speaking, the promising results suggest the classification
of the affective categories is well-posed and separable using
low-level cues.

The results also shed light on the relative influence of the
audio and visual cues on classification. Rows 2 and 3 of
Table VIII present the classification results using the audio
and visual cues individually and jointly. First, it is evident that
combining both audio and visual cues together for classification
significantly outperforms either of the cues individually. The
results also corroborate our view that audio cues are far more
informative than visual cues with respect to affective content,
conforming to our initial expectations. To the extent that the
visual cues presented in this paper have captured the visual
reality, we observe that there is a general lack of strong corre-
lation between the simple low-level visual cues presented here
and the affective content. For instance, except at the extreme
regions of the HSL color space, color does not correlate well
with the affective content [19]. This lack of correlation is
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—.[Movie Genre Classification Movie RecommendanonfRankmg]
Computation of
Film Affective Movie Affective
Content at L Vector Analysis
Scene Level Understanding
Scene Level
Affective Analysis
( Internet | [ Movies | (Framework | [  Possible Roadmap of Affective based Applications |
Fig. 7. llustration of possible roadmap for applications based on affective understanding in film. Shaded areas denote completed tasks.
compounded by the fact that the director is constrained by the TABLE X
plot and general settings in the amount of freedom to set up MOVIE GENRE CLASSIFICATION BASED ON SCENES
visual env1r0nments.that W.lll evoke the desired Ipoods. Movie Title Manual ™ Label > L abal
However, these difficulties do not seem to arise as severely Jumanji A H A
for low-level audio cues, where sound in film seems to be more LOI‘fi of th}? Rings | A H A
immediately purposeful than visual details. In fact, the corre- Saving Private Ryan A D/M A
lati b he 1 level audi d th f Up Close and Personal R/C D/M R/C
.atl.on etween the low-level audio cues gn the scene affect Notting Hill RIC DM RIC
is in general so strong that unless there is a good reason for Life is Beautiful D/M R/C D/M
them to contradict (e.g., for comedic effect), the scene itself Artificial Intelligence D/M A D/M
can easily be misinterpreted or appear jarring. Table IX ranks The labels refer to the genres: Action(A), Horror(H), Ro-

each cue according to the average rate of correct SVM classifi-
cation between every pair of categories using only that cue (the
take-one-out method). This table corroborates the finding that at
the low-level, audio is more informative than visual cues. In par-
ticular, if one views absence of sound as an audio cue (a negative
kind of audio cue), the top eight cues are all audio cues, with si-
lence proportion as the most effective one. The sheer presence
of absolute silence can be most dramatic and unsettling at times.

The performance of our algorithm compares favorably with
the 78.7% reported by Kang [10], the only work we are aware of
that has performed affective classification on Hollywood scenes.
However, with regards to Kang’s results, there are several im-
portant caveats. The test and training sets contain only selected
scenes that are unambiguously manually labeled as one of only
three classes: happy, sad or fear. The scenes were also selected
from only six movie segments each lasting half an hour, as op-
posed to all the scenes in a movie.

C. Application

Machine understanding of the affective aspect of Hollywood
multimedia can enhance and complement existing classification
systems at several levels of resolution. Here we demonstrate ap-
plications at two levels: the more generalized movie genre level,
and the more refined movie affective vector level (Fig. 7). Other
possible applications include using scene-level affective results
for story unit extraction.

1) Movie Genre Level: As it is, movie genres are sometimes
too blunt to reflect the true character of a movie. For instance,
genre labels seldom differentiate between comedic action and
film noir action movies, or between tender drama and melo-
drama movies, although these differences substantially impact
the movie experience. An obvious application of our work is
to offer a more refined classification of any given movie and to
detect dual genre movies, thus complementing existing genre
classifications. In general, the genre of a movie can be largely
determined by the proportion of time occupied by each of the
affects. For example, a movie that has a significant amount of
Fear and Surprise scenes is likely to belong to the horror genre.

mance/Comedy(R/C) and Drama/Melodrama(D/M).

Therefore, we let every movie be characterized by a movie af-
fective vector (MAV), or V;
N;
V,; = Norm Z A iTsi

s=1

(10)

where ¢, s, and [V; are the movie index, scene index and total
number of scenes respectively. A, ; is the vector of probabilities
of each affective category and 7, ; is the duration of sth scene
in the ith movie. Effectively, V; captures the affective content
of a movie in terms of both the duration and confidence level of
each affect.

The notion of affective vector then can be readily extended
to the genre, V,, where the summation and normalization is
carried out over each genre rather than a movie. The genre of
a movie can then be determined by the distance measured be-
tween an MAV and that of a genre. We adopted the symmetrical
Kullback-Leibler distance measure. Let the individual entries
of the query and genre affective vectors be V; ,,, and V, p,, in-
dexed by m which runs over every affective category, and 4, g
which are the movie and genre indices respectively. The mea-

sure M, (i, g) is then defined as
Vy,m
Vim) )

Mois0) = 3 (Viwtog (122 ) 4+ Vo
m=1
(11)

g,m

A movie ¢ is then assigned the genre ¢ that returns the lowest
M, (i, g). Using take-one-out testing, 80.6% of all the movies
are assigned the correct genre. The rest of the movies are listed
in Table X, where the third and the fourth columns list the labels
having the highest and second highest confidence respectively.
As can be seen, the second labels of all these movies correspond
to the manual labels.

Further inspection reveals that these results indeed reflect the
dual nature of the majority of the movies in Table X. For ex-
ample, Life is Beautiful is actually a romance/comedy in the
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TABLE XI
MOVIE LEVEL AFFECTIVE VECTOR
Action Agr | Sad |Fear| Joy | Sur | TA |Neu Horror Agr | Sad |Fear| Joy | Sur | TA | Neu
The Fifth Element 31 [10] 1 9 |32 | 5 [ 12 | Ghostship 9 8 |34 3 [20] 5 |22
Speed 69 | 8 8 3 4 3 6 Queen of the Damned 11 [ 16 | 29 1 33 3 7
Lord of the Rings I 19 [ 11 ]25] 9 [ 28] 4 4 The Haunting 4 6 1231 0 [39] 3 |24
James Bond (Golden Eye) 45 | 11 3 3 18 | 6 15 What Lies Beneath 4 13014 2 |22]10] 17
True Lies 41 | 8 2 7 | 14| 5 | 23 | The Others 9 [26 |11 | 2 [43] 6 3
Men In Black 331 3 1 2 (421 17 Dream Catcher 191 7 |42 6 6 3 17
Saving Private Ryan 24 126 | 3 S 11019 ] 13 Ring 2 717711 4 3 6
Starship Troopers 60 | 7 2 |10 ] 4 3 |13 Gothika 5 19 | 55 1 9 5 6
Star Wars | 36 | 9 4 |18 7 3 | 24 | Legend of the Mummy 8 6 | 19 1 |28 2 |37
Waterworld 36 | 8 1 101241 9 [ 12
Jumanji 13 1261313 29| 7 9
Drama/Melodrama (D/M) Romance/Comedy (R/C)

Forrest Gump 17 119 ] 2 [ 10 | 4 | 21 | 28 | There's Something About Mary 12 | 3 1 [ 65] 2 4 | 12
Magnolia 21 23] 4 8 8 [ 15]21 My Best Friend's Wedding 8 5 0 |28 2 |52 4
Ghost 23 | 121 9 3 6 [ 22 ] 24 Up Close and Personal 1314 2 7 5 138 ] 21
Life is beautiful 21 |17 ] 2 |37 ] 6 9 7 Bedazzled 12 ] 2 2 |68 ] 4 4 8
City of Angels 11 [33 ] 3 5 8 [26] 15 50 First Dates 7 5 2 | 61 2 17 | 6
Artificial Intelligence 18 [ 32 [ 8 2 | 1719 |15 Maid in Manhattan 8 5 0 |22 1 |47 | 16
The Sixth Sense 4 [ 41 ] 4 3 18 | 14 | 17 Love Actually 3 8 0 |32 2 14 ] 9

Bruce Almighty 12 | 7 2 |44 ] 2 |18 ] 16

Notting Hill 12 116 | 1 16 | 5 |21 ]29

The abbreviations for the emotions are respectively: Aggression (Agr), Sad (Sad), Fear (Fear), Surprise (Sur), Tender Affections (TA) and Neutral (Neu).

first half and a melodrama in the second half, while Saving Pri-
vate Ryan is accurately described as a melodrama with a strong
action element. On the other hand, Artificial Intelligence is cor-
rectly classified as an adventure (action) movie with much melo-
drama. Interestingly, although Lord of the Rings I is billed as an
action movie, it has far more than its expected share of scary
scenes. Classified by the algorithm as being most similar to the
horror genre, the movie would warrant a caution for young chil-
dren viewing it.

2) Movie Affective Vector (MAV) Level: Atthe next finer level
of analysis, the MAV offers a more detailed picture of a movie.
Due to the probabilistic inference framework adopted, the rel-
ative amounts of each affective component within a movie can
now be estimated, as shown in Table XI. This facilitates ranking
of the movies according to a very useful and hitherto unimple-
mented aspect: its affective content. For instance, the affective
vector of a movie can rank just how “happy” or “aggressive”
etc. a movie is.

We survey Table XI for broad quantifiable trends by genre,
noting that the existence of characteristic genre MAV patterns
underlies the consistency of the MAV. Aggression and Surprise
feature prominently for the action genre while the D/M genre is
dominated by TA and Sad elements. The R/C movies are marked
by strong Joyous/TA affects while horror movies tend toward
Fear/Surprise inducing scenes.

At the very top of the Aggression ranking list are Speed
and Starship Troopers; the former is unrelentingly fast paced
while the latter is extremely violent. Unsurprisingly, most
other movies from the action genre followed closely, with
the exceptions being Saving Private Ryan, which has strong
melodramatic elements, and Jumanji, which, being of the
type “family entertainment,” abstained from overt violence.
Popular horror cinema can generally be differentiated by the
main directing technique employed to induce fear: creating

overtly threatening situations (Fear) or the more subtle tension
(Surprise), which shows up clearly in their MAVs. The Ring
and Gothika are outright frightening, while The Others depends
far more on Surprise; the rest of horror movies possess a rather
even mix of both elements.

As a rule of thumb, the summation of Fear and Surprise is a
good indicator of the “scariness” of a movie. According to this
indicator, The Ring and What Lies Beneath would correctly be
the scariest and mildest movies, respectively. The same pattern
appears for R/C movies, which generally belong to two groups:
comedy/slapstick (Joyous) or sentimental (Tender Affection).
Similarly, MAV can be used to classify these two groups and
to rank them according to the summation of Joy and TA: Bedaz-
zled is slapstick, My Best Friend’s Wedding is sentimental, and
Notting Hill aptly has the MAV of a subtle drama depicting a
tortuous romance.

Besides using the MAV on its own for analysis, it can also
complement the manually assigned genre of a movie if avail-
able, which provides the context for a more refined interpreta-
tion of the MAV. For example, whereas a high Neutral score for
D/M movies is understandable, it usually signifies boredom for
horror movies, as the obscurity of Legend of the Mummy can
attest. Sadness in all other genres except D/M should also gen-
erally be interpreted as the disquieting or oppressive as opposed
to the tear inducing variety. Movies from D/M genre tend to rep-
resent the whole gamut of human emotions more evenly, being
a reflection of life. Here, Aggression reflects the degree of in-
terpersonal conflict while TA and Sad indicates the amount of
melodrama.

From the aforementioned paragraphs, MAV analysis is able
to yield broadly accurate ranking results according to different
affects and even differentiate between different sub-genres,
leading to automatic movie recommendation according to
personalized affective preferences. To our knowledge, this is
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a capability not yet available in existing systems. With further
investigation, more interesting and subtle patterns from MAV
analysis are likely to emerge.

VIII. CONCLUSION

In this paper, a complementary approach has been proposed
to study and develop techniques for understanding the affective
content of general Hollywood movies. We laid down a set of
relevant and theoretically sound emotional categories and em-
ployed a number of low-level features from cinematographic
and psychological considerations to estimate these emotions.
We discussed some of the important issues attendant to auto-
mated affective understanding of film. We demonstrated the vi-
ability of the emotion categories and audiovisual features by
carrying out experiments on large numbers of movies. In par-
ticular, we introduced an effective probabilistic audio inference
scheme and showed the importance of audio information. Fi-
nally, we demonstrated some interesting applications with the
resultant affective capabilities.

Much work remains to be done in this largely unexplored
field. First, with regards the shortcomings of our work, the
small proportion of scenes that are wrongly classified shows up
the inherent limitation of low-level cues (especially visual) in
bridging the affective gap. Therefore, in the immediate future,
we intend to implement more complex intermediate-level cues
to further improve present results. Second, the existence of
multiple emotions in scenes requires a more refined treatment.
Finally, we will also investigate the possibility of finer sub-par-
titioning of the present affective categories, as well as further
scene affective vector level analysis.

APPENDIX
APPENDIX: VA SPACE FOR GROUND TRUTH ARBITRATION

To arbitrate over the output emotion assigned to emotionally
ambiguous scenes that defy manual labeling of ground truth, we
attempt to lay out the output emotions in the VA space (Fig. 8) so
that the entire emotional spectrum can be visualized in a glance
and used as a guide. Note that Fig. 8 is meant to conceptually
depict the neighboring relationships between categories and ap-
proximate spheres of membership rather than literally demar-
cating crisp boundaries. In cases of ambiguity, the ground truth
labeler can use the VA map as a last resort to arrive at a more
objective final label. For example, in several scenes of The Sixth
Sense, the protagonists conversed in worried tones. Although
Worry does not clearly belong to any of the categories, thinking
in terms of VA axes suggests that the scene falls within the low
A-V- part of the VA space; hence these scenes are categorized
under Sad (see also [47] for using VA space to categorize im-
ages emotionally).

To function as an arbitrating tool, Fig. 8 should avoid the emo-
tion overlap discussed in Section III-A and illustrated by Fig. 3,
while preserving cinematic relevance and comprehensive cov-
erage in the VA space. Hence it is necessarily a modification
of Fig. 3, and the boundaries of the output emotions have been
suitably modified. Surprise is situated in negative valence re-
gions to reflect the fact that Surprise scenes are mostly tense
and suspenseful, as opposed to being pleasantly surprisingly.

703

Arousal

Joyous

Valence

Fig. 8. Conceptual illustration of the approximate areas where the final affec-
tive output categories (in bold) occupy in VA space.

Aggression has also been shifted closer to neutral valence to ac-
knowledge that such scenes are usually meant to excite, and not
to provoke extreme infuriation.
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