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Active Visual Segmentation
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Abstract—Attention is an integral part of the human visual system and has been widely studied in the visual attention literature. The
human eyes fixate at important locations in the scene, and every fixation point lies inside a particular region of arbitrary shape and size,
which can either be an entire object or a part of it. Using that fixation point as an identification marker on the object, we propose a
method to segment the object of interest by finding the “optimal” closed contour around the fixation point in the polar space, avoiding
the perennial problem of scale in the Cartesian space. The proposed segmentation process is carried out in two separate steps: First,
all visual cues are combined to generate the probabilistic boundary edge map of the scene; second, in this edge map, the “optimal”
closed contour around a given fixation point is found. Having two separate steps also makes it possible to establish a simple feedback
between the mid-level cue (regions) and the low-level visual cues (edges). In fact, we propose a segmentation refinement process
based on such a feedback process. Finally, our experiments show the promise of the proposed method as an automatic segmentation
framework for a general purpose visual system.

Index Terms—Fixation-based segmentation, object segmentation, polar space, cue integration, scale invariance, visual attention.
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THE human (primate) visual system observes and makes
sense of a dynamic scene (video) or a static scene
(image) by making a series of fixations at various salient
locations in the scene. The eye movement between
consecutive fixations is called a saccade. Even during a
fixation, the human eye is continuously moving. Such
movement is called fixational movement. The main distinc-
tion between the fixational eye movements during a fixation
and saccades between fixations is that the former is an
involuntary movement whereas the latter is a voluntary
movement [27]. But the important question is: Why does the
human visual system make these eye movements?

One obvious role of fixations—the voluntary eye
movements—is capturing high resolution visual informa-
tion from the salient locations in the scene as the structure
of the human retina has a high concentration of cones
(with fine resolution) in the central fovea [38], [46].
However, psychophysics suggests a more critical role of
fixations in visual perception. For instance, during a
change blindness experiment, the subjects were found to
be unable to notice a change when their eyes were fixated
at a location away from where the change had occurred in
the scene unless the change altered the gist or the
meaning of the scene [19], [18]. In contrast, the change is
detected quickly when the subjects fixated on the
changing stimulus or close to it. This clearly suggests a
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more fundamental role of fixation in how we perceive a
scene (or image).

The role of fixational eye movements—the involuntary
eye movements—during a fixation is even more unclear. In
fact, for a long time, these eye movements were believed to
be just a neural tick and not useful for visual perception
[22]. However, neuroscientists have recently revived the
debate about the nature of these movements and their
effects on visual perception [27], [16].

While we do not claim to know the exact purpose of
these eye movements, we certainly draw our inspiration
from the need of the human visual system to fixate at
different locations in order to perceive that part of the
scene. We think that fixation should be an essential
component of any developed visual system. We hypothe-
size that, during a fixation, a visual system at least
segments the region it is currently fixating at in the scene
(or image). We also argue that incorporating fixation into
segmentation makes it well defined.

1.1 Fixation-Based Segmentation: A Well-Posed

Problem

In computer vision literature, segmentation essentially
means breaking a scene into nonoverlapping, compact
regions where each region constitutes pixels that are bound
together on the basis of some similarity or dissimilarity
measure. Over the years, many different algorithms [43],
[35], [14] have been proposed that segment an image into
regions, but the definition of what is a correct or “desired”
segmentation of an image (or scene) has largely been
elusive to the computer vision community. In fact, in our
view, the current problem definition is not well posed.

To illustrate this point further, let us take an example of a
scene (or image) shown in Fig. 1. In this scene, consider two
of the prominent objects: the tiny horse and the pair of trees.
Figs. 1b and 1c are the segmentation of the image using the
normalized cut algorithm [35] for different input para-
meters (these outputs would also be typical of many other
segmentation algorithms). Now, if we ask the question:
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Fig. 1. Segmentation of a natural scene in (a) using the Normalized Cut
algorithm [36] for two different values of its input parameter (the
expected number of regions) 10 and 60 are shown in (b) and (c),
respectively.

(a)

Which one of the two is the correct segmentation of the
image? The answer to this question depends entirely on
another question: What is the object of interest in the scene?
In fact, there cannot be a single correct segmentation of an
image unless it has only one object in prominence, in which
case the correct segmentation of the image is essentially the
correct segmentation of that object.

With respect to a particular object of interest, the correct/
desired segmentation of the scene is the one wherein the
object of interest is represented by a single or just a couple of
regions. So, if the tiny horse is of interest, the segmentation
shown in Fig. 1c is correct, whereas the segmentation shown
in Fig. 1b is correct if the trees are of interest. Note, in Fig. 1b,
the horse does not even appear in the segmentation. So, the
goal of segmenting a scene is intricately linked with the object
of interest in the scene and can be well defined only if the
object of interest is identified and known to the segmentation
algorithm beforehand.

But having to know about the object of interest even
before segmenting the scene seems to make the problem
one of many chicken-egg problems in computer vision, as
we usually need to segment the scene first to recognize the
objects in it. So, how can we identify an object even before
segmenting it? What if the identification of the object of
interest is just a weak identification such as a point on that
object? Obtaining such points without doing any segmenta-
tion is not a difficult problem. It can be done using the
visual attention systems, which can predict the locations in
the scene that attracts attention [30], [41], [45], [10].

The human visual system has two types of attention:
overt attention (eye movements) and covert attention
(without eye movement). In this work, we mean overt
attention whenever we use the term attention. The attention
causes the eye to move and fixate at a new location in the
scene. Each fixation will lie on an object, identifying that
object (which can be a region in the background too) for the
segmentation step. Now, segmenting that fixated region is
defined as finding the “optimal” enclosing contour—a
connected set of boundary edge fragments—around the
fixation. This new formulation of segmenting fixated
regions is a well-defined problem.

Note that we are addressing an easier problem than the
general problem of segmentation where one attempts to
find all segments at once. In the general segmentation
formulation, the exact number of regions is not known and
thus several ad hoc techniques have been proposed to
estimate this number automatically. In fact, for a scene with
prominent objects appearing at significantly different
scales, having a single global parameter for segmenting
the scene is not even meaningful, as explained above.

1.2 Overview

We propose a segmentation framework that takes as its input
afixation (a pointlocation) in the scene and outputs the region
containing that fixation. The fixated region is segmented in
terms of the area enclosed by the “optimal” closed boundary
around the fixation using the probabilistic boundary edge
map of the scene (or image). The probabilistic boundary edge
map, which is generated by using all available visual cues,
contains the probability of an edge pixel being at an object (or
depth) boundary. The separation of the cue handling from the
actual segmentation step is an important contribution of our
work because it makes segmentation of a region independent
of types of visual cues that are used to generate the
probabilistic boundary edge map.

The proposed segmentation framework is a two step
process: First, the probabilistic boundary edge map of the
image is generated using all available low-level cues
(Section 3.2); second, the probabilistic edge map is
transformed into the polar space with the fixation as the
pole (Section 3.3), and the path through this polar
probabilistic edge map (the green line in Fig. 6c) that
“optimally” splits the map into two parts is found. This
path maps back to a closed contour around the fixation
point. The pixels on the left side of the path in the polar
space correspond to the inside of the region enclosed by
the contour in the Cartesian space, and those on the right
side correspond to the outside of that region. Finding the
optimal path in the polar probabilistic edge map is a binary
labeling problem, and graph cut is used to find the globally
optimal solution to this binary problem (Section 3.4).

1.3 Contributions
The main contributions of this paper are:

e Proposing an automatic method to segment an object
(or region) given a fixation on that object (or region)
in the scene/image. Segmenting the region contain-
ing a given fixation point is a well-defined binary
labeling problem in the polar space, generated by
transforming the probabilistic edge map from the
Cartesian to the polar space with fixation point as
pole. In the transformed polar space, the lengths of
the possible closed contours around the fixation
points are normalized (Section 3.1); thus, the seg-
mentation results are not affected by the scale of the
fixated region. The proposed framework does not
depend upon any user input to output the optimal
segmentation of the fixated region.

e Since we carry out segmentation in two separate
steps, it provides an easy way to incorporate
feedback from the current segmentation output to
influence the segmentation result for the next
fixation by just changing the probabilities of the
edge pixels in the edge map. See Section 5 for how it
is used in a multifixation framework to refine the
segmentation output. Also, the noisy motion and
stereo cues do not affect the quality of the boundary
as the static monocular edges provide better locali-
zation of the region boundaries and the motion and
stereo cues only help pick the optimal one for a
given fixation.
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2 RELATED WORK

Although fixation is known be an important component of
the human visual system, it has largely been ignored by
computer vision researchers [32]. The researchers from
visual attention, however, have investigated the reasons
for the human visual system to fixate at certain salient points
in the scene. The primary goal of such research has been to
study the characteristics (e.g., color, texture) of the fixated
location by tracking the eye of human subjects looking at still
images or videos and use that information to make a
prediction model that can estimate the possible fixation
locations in the scene [30], [36], [41], [20], [45], [10]. The map
showing the likelihood of each point in the image to be
fixated by a human visual system is called saliency map. In
[1], the saliency map is used to group the oversegmented
regions, obtained using the mean-shift algorithm, into a
bigger region representing the object. In essence, instead of
using color information directly, they use the derived feature
(saliency) to group the pixels together. So, it is in the spirit of
any intensity or color-based grouping algorithm as per the
segmentation step of the algorithm is concerned.

While visual attention research has made significant
progress in making better predictions of what draws our
attention [20], [31], [10], it does not explain what happens
while the human visual system is fixated at a particular
location in the scene. The human visual system spends
significant amount of time fixated compared with the
amount of time spent making saccades [17]. So, it is
intuitive to think that the visual processing in the cortex is
critically dependent on fixation. We propose a segmentation
approach that takes the fixation as input and outputs a
region. That way, any visual system can make a series of
fixations at salient locations and perceives the scene in
terms of the regions corresponding to these fixations.

There is a huge literature on various methods to segment
images and videos into regions. Most segmentation algo-
rithms depend upon some form of user input, without
which the definition of the optimal segmentation of an
image is ambiguous. There are two broad categories: first,
the algorithms [35], [14], [43] that need various user-
specified global parameters such as the number of regions
and thresholds to stop the clustering; second, the interactive
segmentation algorithms [6], [39], [4], [33] that always
segment the entire image into only two regions: foreground
and background. There are some hierarchical approaches
[2] that do not require user input and they work well,
especially for the image with a single object in prominence.
Martinez et al. [26] correctly identifies the problems with
the Normalized-Cut-based method [35] and proposes a
solution to automatically select the global parameter for the
segmentation process. But, since the cost of a cut is still
computed in the Cartesian space, the “short-cut problem,”
explained later in Section 3.1, might still be an issue.

Boykov and Jolly [6] pose the problem of foreground/
background segmentation as a binary labeling problem
which is solved exactly using the max-flow algorithm [7]. It
requires users to label some pixels as foreground or
background to build their color models. Blake et al. [5]
improved upon Boykov and Jolly [6] by using a Gaussian
mixture Markov random field to better learn the foreground
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and background models. Rother et al. [33] requires users to
specify a bounding box containing the foreground object.
Arbelaez and Cohen [3] require a seed point for every
region in the image. For foreground/background segmen-
tation, at least two seed points are needed. These
approaches report impressive results given appropriate
user inputs. Stella and Shi [39] automatically selects
multiple seed points by using spatial attention-based
methods and then use these seed points to introduce extra
constraints into their normalized cut-based formulation.

Unlike the interactive segmentation methods mentioned
above, [44], [4] need only a single seed point from the user.
Veksler [44] imposes a constraint on the shape of the object to
be a star, meaning the algorithm prefers to segment convex
objects. Also, the user input for this algorithm is critical as it
requires the user to specify the center of the star shape
exactly in the image. Bagon et al. [4] need only one seed
point to be specified on the region of interest and segments
the foreground region using a compositional framework.
The algorithm outputs multiple disconnected regions as
foreground even when the input seed point lies inside only
one of those regions. It is computationally intensive and
merges oversegmented regions, as is the case for many
segmentation approaches [42], to form the final segmenta-
tion. It means that the mistakes made in the oversegmenta-
tion stage cannot be corrected. In contrast to this, our method
makes only one decision about the region boundary and that
is at the end of processing. In addition, the so-called “seed”
point, in our case, is meaningful and is motivated from the
fixation point of the human visual system.

Kolmogorov et al. [21] combine color, texture, and stereo
cues to segment a binocular video into foreground and
background regions. The computation of disparity values
occurs simultaneously with the segmentation of the fore-
ground. The video, however, should be captured with static
cameras. In this paper, we segment the videos captured with
a moving camera and with multiple independently moving
objects in the scene. Also, we compute the low-level cues like
color, texture, stereo, and motion separately and use all the
cues only to create a better probabilistic boundary map. The
segmentation step of finding the optimal closed boundary is
only affected by the probabilistic boundary map.

3 SEGMENTING FIXATED REGION

As stated earlier in Section 1.2, segmenting a fixated region
is equivalent to finding the “optimal” closed contour
around the fixation point. This closed contour should be a
connected set of boundary edge pixels (or fragments) in the
edge map. However, the edge map contains both types of
edges, namely boundary (or depth) and internal (or
texture/intensity) edges. In order to trace the boundary
edge fragments in the edge map to form the closed contour
enclosing the fixation point, it is important to be able to
differentiate between the boundary edges from the non-
boundary (e.g., texture and internal) edges.

We generate a probabilistic boundary edge map of the
scene wherein the intensity of an edge pixel is proportional
to its probability to be at an object (or depth) boundary.
The intensity ranges from 0 to 1. In qualitative terms, the
boundary edges will appear brighter (darker) than the
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Fig. 2. (c) and (d) are the polar gradient edge maps generated by
transforming the gradient edge map of the disc with respect to the
fixations in red and green), respectively.

(d)

internal and texture edges in the (inverse) probabilistic
boundary edge map. All available visual cues are used to
generate such an edge map. The static cues (e.g., color and
texture) are used to generate an initial edge map which is
modified using stereo or motion cues. The detailed
discussion on how we use binocular cues along with static
cues to generate the probabilistic boundary edge map is
given in Section 3.2.

Any algorithm that traces the closed contour through
the probabilistic boundary edge map in the Cartesian
space inherently prefers smaller contours as the overall
cost, which essentially is the product of the length of the
closed contour and the average cost of tracing the edge
pixel along the contour, increases with their size. For
possible closed contours with similar average boundary
probabilities for their edge pixels, the scale makes smaller
contours preferable to bigger contours. Our solution to the
scale problem is to transform the edge map from the
Cartesian to the polar Coordinate system (Section 3.1) and
to segment the polar probabilistic boundary edge map to
find the closed contour (see Section 3.4).

3.1 Polar Space Is the Key!

Let us consider finding the optimal contour around the red
fixation point on the disc shown in Fig. 2a. The gradient edge
map of the disc, shown in Fig. 2b, has two concentric circles.
The big circle is the actual boundary of the disc, whereas the
small circle is just the internal edge on the disc. The edge map
correctly assigns the boundary contour intensity as 0.78 and
the internal contour 0.39 (the intensity values range from 0 to
1). The lengths of the two circles are 400 and 100 pixels. Thus,
the cost of tracing the boundary and the internal contour in
the Cartesian space will be, respectively, 88 = (400 x (1 —
0.78)) and 61 = (100 x (1 —0.39)). Clearly, the internal
contour costs less, and hence it will be considered optimal
even though the boundary contour is the brightest and
should actually be the optimal contour. In fact, this problem
of inherently preferring short contours over long contours
has already been identified in the graph cut-based ap-
proaches where the minimum cut usually prefers to take a
“short cut” in the image [37].

To fix this “short cut” problem, we have to transfer these
contours to a space where their lengths no longer depend
upon the area they enclose in the Cartesian space. The cost
of tracing these contours in this space will then be
independent of their scales in the Cartesian space. The
polar space has this property, and we use it to solve the scale
problem. The contours are transformed from the Cartesian
coordinate system to the polar coordinate system with the
red fixation point in Fig. 2b as the pole. In the polar space,

both contours become open curves, spanning the entire ¢
axis, starting from 0 to 360 degrees. See Fig. 2c. Thus, the
costs of tracing the inner contour and the outer contour
become 80.3 =365 x (1 —0.78) and 220.21 =361 x (1 —
0.39), respectively. As expected, the outer contour (the
actual boundary contour) now costs the least in the polar
space and hence becomes the optimal enclosing contour
around the fixation.

It is important to make sure that the optimal path in the
polar space is stable with respect to the location of the fixation,
meaning that as the fixation point moves to anew location, the
optimal path in the polar space for this new fixation location
should still correspond to the same closed contour in the
Cartesian space. For the new fixation point (the green “X”) in
Fig. 2b, both contours have changed shape (see Fig. 2d), but
the “optimal” (or brightest) contour remains the same.
Detailed discussion on the issue of stability with respect to
the change in fixation location is done in Section 7.1.

3.2 Probabilistic Boundary Edge Map by Combining
Cues

In this section, we carry out the first step of the segmentation
process: generating the probabilistic boundary edge map
using all available visual cues. There are two types of visual
cues on the basis of how they are calculated: 1) static cues
that come from just a single image; 2) stereo and motion
cues that need more than one image to be computed. The
static cues such as color, intensity, or texture can precisely
locate the edges in the scene, but cannot distinguish
between an internal texture edge from an edge at a depth
discontinuity. On the other hand, stereo and motion can
help distinguish between boundary and internal edge as
there is a sharp gradient in disparity and flow across the
former and no significant change across the latter. But
unlike static cues, the stereo and motion cues are generally
inaccurate at the boundary. This leads to the need to use the
stereo and(or) motion cues and the static cues together such
that they both identify and precisely locate the boundary
edges in the scene.

3.2.1 Using Static Cues Only

Let us first consider the case when we only have a single
image without any motion or stereo cues to help disambig-
uate the boundary edges from the rest. In that case, we need
some intelligent way to make the distinction between edges.
Let us start with the Canny edge map (Fig. 3b) of the image
(Fig. 3a). The Canny edge detector finds edges at all the
locations where there is a gradient in the intensity and
returns a binary edge map, meaning all edge pixels are
equally important. This makes the binary edge map useless
for our purpose. However, if we assign the magnitude of
the gradients at these locations as their respective prob-
ability of being at the boundaries, we have a meaningful
boundary edge map. But it still has two main problems:
First, the gradient magnitude is not always a good indicator
of whether an edge pixel is at a boundary or not; second,
Canny or similar intensity-based edge detectors are unable
to find boundaries between textures and rather create
strong edge responses inside a textured region.

Recently, an edge detector has been proposed by Martin
et al. [24] that learns, using a linear classifier, the color and
texture properties of the pixels across boundary edges
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Fig. 3. Inverse probabilistic edge maps of the color image shown in (a). Darker pixels mean higher probability. (b) The Canny edge map. (c) The
gradient edge map. (d) The output of the Berkeley pb detector [24]. (e) The final probabilistic boundary edge detector on combining static static cues

with the motion cue.

versus that across the internal edges from a data set
containing human-labeled segmentations of 200 images.
The learned classifier is then used to assign appropriate
probability (between 0 and 1) to the computed edges to be
at a region boundary. Additionally, this edge detector
handles texture in the image better than Canny or any
intensity-based edge detectors. (See Fig. 3d. The spurious
texture edges from Fig. 3c have been successfully removed.)

For single images, we are going to use the output of the
Berkeley edge detector as the probabilistic boundary edge
map to segment the fixation regions, which is explained
later in the paper. Since this probabilistic edge map is
calculated only out of color and texture cues, the edge map
expectedly has strong internal edges (See BC, CD, CF in
Fig. 4a) which are not actual depth boundaries.

To differentiate the internal edges from boundary
(depth) edges, the stereo (and) or the motion cues are used.
At a depth discontinuity or the boundary of a moving
object, the optical flow and the disparity value change
significantly. Also, inside an object, the disparity or the flow
values remain largely unchanged. Based on this logic, the
edge map is modified such that the edge pixels with strong
gradient of either disparity or flow values across them are
stronger (hence, have higher probability) than the ones with
no gradient across them, which are essentially the internal
edges on the objects.

3.2.2 Using Stereo and Static Cues

Let us combine stereo with static cues. We compute a dense
disparity map for a pair of rectified stereo pair using the
algorithm proposed by Ogale and Aloimonos [30]. Let us say,
the range of disparity values lies between 0 and maximum
value D. Our objective here is to use these disparity values to
decide if an edge pixel is at a depth discontinuity.

Depth discontinuity causes a sudden change in the
disparity values and the amount of change depends on the
actual physical depth variation at the edge and the camera
configuration. Also, the disparity values does not change
across the internal edges on the object, barring small

(@) (b) (c)

Fig. 4. Reinforcing the depth boundaries and suppressing the internal
edges in the boundary edge map generated using static cues, shown in
(a), to generate the final depth boundary, shown in (c), using the
magnitude of the flow values, shown in (b).

variations due to the error in the disparity map itself. So,
the edge pixel with considerable change in the disparity
values is considered to be a boundary edge. On the other
hand, the edge pixels with a slight change in the disparity
value are considered internal edges.

Our approach to using relative disparity across the edge
pixels to change their boundary probability is in agreement
with the finding of the neurophysiological study [41] that
the depth perception in a monkey brain depends upon the
relative and not the absolute disparity. But how a given
amount of relative depth change maps to the boundary
probability is an important question which we cannot
answer precisely. Logically speaking, the amount of change
in the disparity should not matter as it occurs due to the
relative placement of the objects in the scene. A depth
boundary between two closely placed occluding objects
should be as good a depth boundary as the one between a
tree against a background far away from it.

To calculate the disparity change at an edge pixel, we
place a circular disc with opposite polarity in the two halves
separated by the diameter oriented along the tangent at the
edge pixel (see Fig. 4b), and accumulate the disparity values
from all pixels inside of the disc. The absolute value of the
sum represents the difference in the average disparity on the
both sides of the edge pixel. The radius of the disc is
proportional to the image size. For our experiments, it is 0.02
of the image diagonal. Also, the disc template is weighted by
its size to remove any affect of scale on this calculation. The
reason to accumulate the change over a neighborhood
around an edge pixel is to make sure that the presence of
noise does not affect the process of finding depth edges.

Now that we have calculated the average change in
disparity for an edge pixel, denoted by Ad, we have to map
this to a probability value. To do that, we use a logistic
function P(Ad) given in (1). In this function, the ratio of the
two parameters, (3»/01, represents the threshold over which
the value of disparity change means the presence of a depth
boundary. Also, there is a range around this threshold in
which the probability changes from 0 to 1:

1
C Ltexp(=fiz+ )

The parameters (8 and (;) are learned using logistic
regression on the two sets of depth gradients: one for the
edge pixels on the boundary of objects, and the other for the
edge pixels inside the objects. To select these edge pixels,
five objects in a stereo pair are manually segmented. We
collected the gradient values randomly at 200 boundary and
internal edge locations. After logistic regression, the

P(z) 1)
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Fig. 5. The estimated logistic function converting optical flow gradient
into probability is shown in blue.

parameters are found to be 8, =2.4 and (8, =1.3. (The
measurements are in pixel units.)

3.2.3 Using Motion and Static Cues

Motion is different from stereo for two main reasons: First,
unlike stereo, where a nonboundary edge does not have
disparity change across it, an internal edge can also have a
valid change in the flow across it. For instance, if a flat
wheel is spinning along its axis, the flow vectors change
direction across the spokes of the wheel, which are actually
internal edges. Second, the optical flow vector representing
motion information is a 2D vector, whereas the disparity is
a scalar quantity making it easier to calculate their gradient
than for the flow vector.

It is beyond the scope of this paper to define what
constitutes a consistently moving object in terms of the flow
vectors on them. Instead, we consider any change in the
magnitude of the flow vector across an edge as a measure of
discontinuity in depth across that edge. This definitely
holds well when the relative motion between an object and
the camera is translation in the X-Y plane only. As the
motion in most videos primarily involves translational
motion, the assumption holds good for all of them as it is
evident in our experiments.

Justlike the stereo case, we calculate the absolute change in
the x-component and y-component of the optical flow map
across an edge pixel separately using the oriented circular
discs, and let us say AU and AV represent the changes,
respectively. Then, the flow gradient across the edge pixel is
given by v/ AU? 4+ AV”. Once again, the gradient value maps
to a probability through the logistic function given in (1). Just
like the stereo case, we train the parameters of the logistic
function using the optical flow gradients from both at the
boundary and inside of five moving objects in three different
videos. The parameters of (1) are estimated tobe 3; = 5.5 and
B2 = 4.2. Fig. 5 shows the estimated logistic function as well
as the training data.

An example of how the motion cue identifies the depth
boundaries in the image is shown in Fig. 4, wherein the
internal edge are clearly fainter (low probability) and
the boundary edges are darker (high probability). With the
improved boundary edge map, as the algorithm traces the
brightest closed contour (AGHEA shown in Fig. 4a) around
the fixation point, it will also be the real depth boundary of the
region containing the fixation (Fig. 6d). In our experiments

ﬁ :

(a) (b) (c) (d)

Fig. 6. (a) The inverse probabilistic boundary edge map after combining
motion cues with monocular cues. The fixation is shown by the green
circular dot. (b) The polar edge map generated using the fixation as the
pole. (c) The optimal contour through the polar edge map, splitting it into
two parts: inside (left) and outside (right). (d) The closed contour around
the fixation when transferred back to the Cartesian space.

with videos, we have used the optical flow algorithm
proposed by Brox et al. [9].

Before proceeding to the next stage of finding the closed
contour in the probabilistic boundary edge map around a
given fixation, it is important to note that, in order for all
points in the image to have a valid closed contour, the
image borders have to be added as the edges. They will
ensure enclosedness even for the fixations lying on the
regions only partially present in the image. See, for instance,
the car in column 5 of Fig. 15. A part of its closed boundary
has to be the left border of the image. To make sure that
they are preferred over the real edges, the intensity of the
border edges corresponding is kept low.

3.3 Cartesian to Polar Edge Map

Let us say Egglis the corresponding polar plot of the
probabilistic boundary edge map E,, in the Cartesian space,
and F(z,,y,) is the selected pole (that is the fixation point).
Now, a pixel Eggl(r, 0) in the polar coordinate system
corresponds to a subpixel location {(z,y):z = rcosd +
Zo,y =rsind +y,} in the Cartesian coordinate system.
Ey(z,y) is typically calculated by bilinear interpolation,
which only considers four immediate neighbors.

We propose to generate a continuous 2D function W(.)
by placing 2D Gaussian kernel functions on every edge
pixel. The major axis of these Gaussian kernel functions is
aligned with the orientation of the edge pixel. The variance
along the major axis is inversely proportional to the
distance between the edge pixel and the pole O. Let S be
the set of all edge pixels. The intensity at any subpixel
location (z,y) in Cartesian coordinates is

o
W(I>y) = Zexp (_0_21 - 0__27> X Eﬁb(xivyi)7

€S T Yi
cosb;

{xz} - [ sin@i} {x, fx}
Y | —sinb; cost; | |vyi—vy]’

K
: 21 270-57:[(27613
V@ — ) + (i - wo)

is the orientation at the edge pixel ¢, K| = 900 and K, = 4 are
constants. The reason for setting the square of variance along
the major axis, 0, , to be inversely proportional to the distance
of the edge pixel from the pole is to keep the gray values of
the edge pixels in the polar edge map the same as the
corresponding edge pixel in the Cartesian edge map. The
intuition behind using variable width kernel functions for

where
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Fig. 7. Left: The green nodes in the first column are initialized to be
inside, whereas the red nodes of the last column are initialized to be
outside the region of interest. Right: The output of the binary labeling
output after minimizing the energy function using graph cut. Note that
though the first and the last rows in our graph are connected, they are
not shown connected by an edge here for the sake of clarity.

different edge pixels is as follows: Imagine an edge pixel
being a finite-sized elliptical bean aligned with its orientation
and you look at it from the location chosen as the pole. The
edge pixels closer to the pole (or center) will appear bigger
and those farther away from the pole will appear smaller.

The polar edge map’Eg,‘:l(r7 0) is calculated by sampling
W (x,y). The values onggl are scaled to lie between 0 and 1.
An example of such polar edge map is shown in Fig. 6b.
Our convention is that the angle § € [0°,360°] varies along
the vertical axis of the graph and increases from the top to
the bottom, whereas the radius 0 < r < 7,4, is represented
along the horizontal axis increasing from left to the right.
Tmae 15 the maximum euclidean distance between any two
locations in the image.

3.4 Finding the Optimal Cut through the Polar Edge

Map: An Inside versus Outside Segmentation
Let us consider every pixel p € P of Eﬁglas a node in a
graph. Every node (or pixel) is connected to their four
immediate neighbors (Fig. 7). A row in the graph represents
the ray emanating from the fixation point at an angle ()
equal to the row index. The first and the last rows of the
graph are the rays 6§ = 0°and 6 = 360°, respectively, which
are essentially the same ray in the polar representation.
Thus, the pairs of nodes {(0°7), (360°,7)}, V7 € [0, Tmaq]
should be connected by edges in the graph. The set of all the
edges between neighboring nodes in the graph is denoted
by €2. Let us assume [ = {0, 1} are the two possible labels for
each pixel where [, =0 indicates “inside” and [, =1
denotes “outside.” The goal is to find a labeling f(P) — I
that corresponds to the minimum energy where the energy
function is defined as

QN =D Uplp) + X D Vbl ly), (2)

pepP (p.9)€Q

pol : pol
V.. = exp( — npr,pq) i Epppg # 0, 3
Dy { k otheprwise, 8)
1 ifl, £,
6(lp, 1) = {0 otherwise, )

where A =50, n=5, k=20, Elj = (E}(r,,0,) + El (r,,
6,))/2, Uy(1,) is the cost of assigning a label [, to the pixel p
and V,, is the cost of assigning different labels to the
neighboring pixels p and gq.

There is no information about how the color information
of the inside and outside of the region containing the

fixation. So, the data term U for all the nodes in the graph
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Fig. 8. The fixations, indicated by the green circular dots on the different
parts of the face, are shown overlaid on the inverse probabilistic edge
map of the leftmost image. The segmentation corresponding to every
fixation as given by the proposed algorithm is shown right below the
edge map with the fixation.

except those in the first column and the last column is zero:
Uy(l,) =0,Vp € (1,0),0 <1 < rpge, 0° < 6 < 360°. However,
the nodes in the first column that correspond to the fixation
point in the Cartesian space must be inside and thus are
initialized to the label 0: U,(l, =1) = D and U,(l, =0) =0
for p € (0,0),0° < 6 < 360°. The nodes in the last column, on
the other hand, must lie outside the region and are
initialized to the label 1: U,(l, =0) = D and U,(l, =1) =0
for p € (rpas,0),0° < 0 < 360°. See Fig. 7. In our experi-
ments, we choose D to be 1,000; the high value is in order to
make sure the initial labels to the first and the last columns
do not change as a result of minimization. We use the graph
cut algorithm [8] to minimize the energy function, Q(f). The
binary segmentation step splits the polar edge map into two
parts: left side (inside) and right side (outside). The binary
segmentation is finally transferred back to the Cartesian
space to get the desired segmentation. For example, see
Fig. 6¢c and Fig. 6d.

4 RELATIONSHIP BETWEEN FIXATION AND
SEGMENTATION

When the fixation point lies inside a homogeneous region
with no strong internal textures, the exact location of the
fixation with respect to the region boundary does not affect
the segmentation result. It is the same closed contour for
any fixation point inside the region. However, there are
scenarios when change in fixation inside the region changes
the segmentation output. It happens generally when only
static monocular cues (color and texture) are used to
generate the probabilistic boundary edge map as it leaves
strong internal edges in the edge map. There are essentially
three such scenarios: 1) when smaller regions are fully
contained in the original region (or object); 2) in the
presence of dominant internal textures and complex light-
ing effects; 3) when the fixated region (or object) are
extremely concave and has long and thin structures.

4.1 Case 1: Closed Regions Inside an Object

Such objects (e.g., a face) have smaller objects (e.g., eyes
and mouth) contained fully inside of them. Given the
probabilistic boundary edge map (see Fig. 8), fixations on
the smaller regions (or objects) result in the segmentation
of those regions as shown in Fig. 8. It is intuitive to see
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Fig. 9. The densely textured crocodile image is shown on the left. The
top row of images contains fixations at different locations on the
crocodile overlaid on its inverse probabilistic boundary edge map, while
the bottom row of images contains the corresponding segmentation
obtained using the proposed algorithm.

that fixating on eyes and mouth should make the visual
system see those parts of the face, whereas fixation
anywhere else on the face should make the entire face
more perceptible. So, such variation in the segmentation
with the changing fixation locations is desirable, and
makes the proposed algorithm closer to how the human
visual system might look at objects like faces. If, however,
stereo or motion cues were used and there is no nonrigid
motion of the facial features, the internal edges on the face
corresponding to the eyes and the lips would vanish and
all fixations on the face would result in the same
segmentation, the entire face.

But a probabilistic boundary edge map with strong and
valid internal edges can be generated even in the presence
of motion or stereo cues. For instance, consider that the
person whose face we considered above is laughing even as
he moves his face. In that case, the edges along the mouth
have different flow across them, making them strong
boundary edges. The final probabilistic edge map will have
strong internal edges corresponding to the boundaries of
the mouth and obviously the boundary contour of the face.
(Such a probabilistic edge map would be akin to the one
with the static monocular cues only.) Now, once again,
fixating on the mouth will segment that mouth, whereas
fixating anywhere else on the face outside of the mouth will
give us the entire face, similar to what happened in the face
example stated above. In these circumstances, not getting
the same closed contour for all the fixation points inside of a
contour is justified.

4.2 Case 2: Texture and Complex Lighting Effects

This case arises when we process single image only,
meaning that there is no binocular or motion cues to
remove the internal edges from the edge map. Although
Malik et al. [25] can handle homogeneous textures using
textons, nonhomogeneous textures are hard to tackle and it
creates spurious internal edges and disappearance of some
boundary edges. Another factor contributing significant
spurious internal edges is complex lighting effects on the
object. See Fig. 9, an image of a crocodile in the wild. Its
probabilistic boundary edge map clearly shows how these
two factors have given rise to spurious internal and weak
boundary edges, causing significant variation in the
segmentation as the fixation shifts from one location to
another on the body of the crocodile. Such variation in
segmentation with fixation is not desirable, but it can only
be fixed either using binocular and (or) motion cues as

Fig. 10. The problem of thin elongated structure along the radial axis. P
is the pole (or fixation) inside the structure with an elongated part of
constant width d. ¢ is the angle any two opposite points along the two
parallel sides of the elongated structure at a distance r away from the
pole. The parallel lines appear merged to the Point P if § < 1° for the
farthest point along the parallel sides of the structure.

explained in Section 3.2 or high-level information shape
information such as knowledge of what a crocodile looks
like and how it can deform its body.

4.3 Case 3: Concave Shapes with Thin Structures

The location of fixation inside a concave region with thin
elongated structures can affect the segmentation output as
the thin structures get merged in the polar space due to
fixed sampling along the angular axis. While converting the
probabilistic boundary edge map from the Cartesian to the
polar space is an important step of the proposed segmenta-
tion algorithm (Section 3.3), it also causes a slight problem
for shapes with thin structures and when the fixation lies
sufficiently far away from these thin structures.

Let us understand why having a thin structure can
change segmentation output with changes in the fixation
location. Referring to Fig. 10, for the elongated part of the
shape, the pair of points separated by a distance d and at a
distance r away from the pole subtends an angle of § (in
radian) at the pole P such that 6 ~ <. If we choose the
granularity to be 1 degree along the angular axis, the
subtended angle 0 should be greater than {%; for the farthest
point on the thin structure of any shape. In other words, for
a thin structure of constant thickness d, the farthest point on
the structure should be at most at a distance r away from
the pole to stay separated in its polar image where r < %150,

Thin elongated structure that does not satisfy the
condition stated above merges to form a line and hence
the proposed segmentation method is unable to trace the
boundary of the thin structure exactly. See how the fixation
on the neck of the Giraffe in Fig. 11a results in the partial
detection of the rear leg as the optimal path through the
polar edge map cuts in the middle of that leg (Figs. 11b and
11d). Look at the blown-up image of the portion in the polar
space where the path cuts the leg prematurely (Fig. 11c) and

(a) (b) ©

Fig. 11. The problem of merging in the presence of a thin elongated
structure. (a) The inverse probabilistic boundary edge map of an
image containing a Giraffe with the fixation shown by the green dot.
(b) The optimal path through the polar transformation of the edge
map. (c) The part of the leg merged together in the polar space is
highlighted. (d) The optimal polar path in the Cartesian space.
(e) The highlighted portion of the leg in the Cartesian space.



MISHRA ET AL.: ACTIVE VISUAL SEGMENTATION

thus an edge is hallucinated in the Cartesian space (Fig. 11e).
However, if the fixation is made close to the leg in the Giraffe
in Fig. 11, the exact contour of the leg will be revealed fully.
Keeping that in mind, we propose a multiple fixation
strategy to obtain the boundary of such shapes exactly.

5 MuLTIPLE FIXATION-BASED SEGMENTATION

So far, we have described segmentation for a given fixation.
Our objective now is to refine that segmentation by making
additional fixations inside the initial segmentation to reveal
any thin structures not found in the initial segmentation.
Detecting these thin structures can be expensive and
complicated if we choose to fixate at every location inside
the region. We are going to instead fixate at only a few
“salient” locations and incrementally refine the initial
segmentations as the new details are revealed. This way
we can be certain of not missing any complicated parts of
the shape. But where are these salient locations?

5.1 Locations to Make Additional Fixations

The “salient” locations inside the segmentation correspond
to those significant changes in the region boundary that
results in the protrusion of the contour away from the center.
Although there can be many ways to identify these locations,
the simplest and fastest way to find them is through the
skeleton of the segmented region. It represents the basic
shape of the region boundary. We select the junctions of the
skeleton as the salient locations as a junction is guaranteed to
be present if the boundary has any protruding part.

Although skeleton extraction based on thinning is
generally sensitive to slight variations in the region
boundary, the divergence-based skeleton extraction pro-
posed by Dimitrov et al. [12] is stable and does not lead to
spurious junctions. In fact, using the threshold on the
divergence value (which is 0.4 for all our experiments),
the spurious junctions arisen due to slight change along the
boundary contour can be completely avoided. Besides, the
purpose of extracting the skeleton is only to select other
possible fixation points inside the segmented region and not
to use it to refine the segmentation per se. Thus, the exact
topology of the skeleton does not matter to the task at hand.
More importantly, choosing fixation points on the skeleton
meets the single most important criterion for our segmenta-
tion refinement algorithm to succeed: The fixation points must
lie inside the segmented region.

From the set of junctions in the skeleton, we choose the
junction closest to the current fixation point. For example, in
Fig. 12, the blue dot in (e) is the next fixation point selected
by our algorithm because it is the closest junction on the
skeleton (d) of the current segmentation in (c) to the current
fixation point (the green dot) in (b). To avoid fixating at the
same location twice during the refinement process, all the
previous fixations are stored and are used to verify whether
the new junction has been fixated previously as all of the
junctions are fixated serially. Also, after making a series of
fixations, the closest junction is found as the one at the
minimum distance from any element in the set of already
fixated locations.

5.2 Refining Initial Segmentation

Now, the question is how do we refine the initial segmenta-
tion by incorporating new details revealed by making
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Fig. 12. Multiple fixations to refine the initial segmentation. (a) The
original color image containing the Giraffe (the object of interest).
(b) The inverse probabilistic boundary edge map and the given
fixation (the green circular dot). (c) The segmentation result for the
given fixation. (d) The skeleton of the current segmentation with
detected junctions shown by the blue circular dots. The junctions not
marked are too close to the original fixation. (e) The next fixation (the
blue circular dot) in the modified edge map. (f) The segmentation for
the new fixation. (g) The modified edge map after incorporating
additional information revealed by the new fixation. (h) The final
segmentation after fixating at all the other junctions.

additional fixations? There are two aspects of this process
that we should emphasize at the outset: First, the fixations
are made in a sequence and, in every step of the process, the
boundary edge map is updated to carry the information
about the part of region contours found by the valid previous
fixations; second, only if the new fixation traces all the
known region contours from previous steps, the additional
contours revealed by the new fixation are incorporated to
refine the segmentation further.

At every stage of the refinement process, there is a
segmentation mask of the fixated region. The edge fragments
that lie along the region boundary and are sufficiently long
(>10 pixels in our experiments) are considered the correct
region contours. Accordingly, the probabilistic boundary
edge map (in the Cartesian space) is modified such thatall the
edge pixels along these contours are assigned a probability of
1.0. For any additional fixation, the modified edge map is
used to find the corresponding segmentation.

If the segmentation for a new fixation does not trace
almost all the known contour pixels, the corresponding
segmentation is not considered valid for refining the
current segmentation. However, if the new segmentation
traces most of the known contours, say, 95 percent (for our
experiments) of all the known edge pixels along the
contour, the new segmentation is combined with the
current segmentation in a binary OR manner. Using
the updated current segmentation, the probabilistic bound-
ary edge map is modified to include any new contours
revealed by this fixation. The process of refinement stops
when all the salient locations have been fixated. Fig. 12e
shows the probabilistic boundary edge map refined using
the previous segmentation shown in Fig. 12c. Additionally,
Fig. 13 shows how the examples of refined boundary edge
maps in the third column, and also shows the multiple
fixation refinement process successfully reveals the thin
structures of the objects.
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Fig. 13. Segmentation refinement using multifixation segmentation
strategy. Column 1: The inverse probabilistic boundary edge map with
the first fixation. Column 2: Segmentation result. Column 3: The
modified edge map with the next most important fixation. Column 4:
Segmentation result for the next fixation.

6 EXPERIMENTS AND RESULTS

6.1 Segmentation Accuracy

Our data set is a collection of 20 videos with average length
of seven frames and 50 stereo pairs along with their ground-
truth segmentation. For each sequence and stereo pair, only
the most prominent object of interest is identified and
segmented manually to create the ground-truth foreground
and background masks. The fixation is chosen randomly
anywhere on this object of interest. The videos used for the
experiment are diverse: stationary scenes captured with a
moving camera, dynamic scenes captured with a moving
camera, and dynamic scenes captured with a stationary
camera.

The segmentation output of our algorithm is compared
with the ground-truth segmentation in terms of the
F-measure defined as 2PR/(P + R), where P stands for
the precision which calculates the fraction of our segmenta-
tion overlapping with the ground truth and R stands for
recall which measure the fraction of the ground-truth
segmentation overlapping with our segmentation.

Table 1 shows that after adding motion or stereo cues to
the color and texture cues the performance of the proposed
method improves significantly. With color and texture cues
only, the strong internal edges prevent the method from
tracing the actual depth boundary. (See Fig. 15, Row 2.)
However, the motion or stereo cues clean the internal edges
as described in Section 3 and the proposed method finds the
correct segmentation (Fig. 15, Row 3).

To also evaluate the performance of the proposed
algorithm in the presence of the color and texture cues
only, the images from the Alpert image database [2] have
been used. The Berkeley edge detector [25] provides the
probabilistic boundary maps of these images. The fixation
on the image is chosen at the center of the bounding box
around the foreground. In case of multiple objects, a fixation
point is selected for each of them. For a fixation point, our

TABLE 1
The Performance of Our Segmentation
for the Videos and the Stereo Pairs

For videos F-measure
With Motion 0.97 £0.02
Without Motion 0.62 £ 0.02
For stereo pairs
With Stereo 0.95+ 0.01
Without Stereo 0.65 + 0.02

See Fig. 15.

TABLE 2
One Single Segment Coverage Results

Algorithm Score (Single) Score (Double)
Our Method 0.83 +£0.019 0.81 £0.03
Bagon et al. [4] 0.87 & 0.010 N.A.
Alpert et al. [2] 0.86 £+ 0.012 0.68 £ 0.05
NCut [35] 0.72 £ 0.012 0.58 £+ 0.06
MeanShift [43] 0.57 £+ 0.023 0.61 £ 0.02

The scores (F-measure) for other methods except [4] are taken from the
website hosting the database. N.A. means the score not available for

algorithm finds the region enclosed by the depth boundary
in the scene, where it is difficult to find only the color and
texture cues. However, when the color and texture gradient
is such that it is higher at the pixels on depth boundary than
that inside the object, the segmentation results are consistent
with the expected outcome. As we can see in Table 2, we
perform better than even the state of the art for the set of
images with two objects and close to [2], [4] for the images
with a single object. The consistent performance of our
algorithm for two types of images in the data set can be
attributed to the scale-invariance property of our algorithm.
Also, the definition of segmentation in [4] is such that, for a
selected seed on any of the two horses in Fig. 14, left, both
horses will be segmented. This illustrates that seed point in
[4] has no significance other than selecting a good initial
segment to start the processing of segmentation. In contrast,
our segmentation finds only the horse being fixated, making
the so-called “seed point” of our algorithm a meaningful
input which identifies the object of interest.

In Fig. 16, we provide a visual comparison between the
output of the proposed segmentation and the interactive
GrabCut algorithm [33] and Normalized Cut [37] for some of
the difficultimages from the Berkeley Segmentation Database
[25]. For normalized cut, the best parameter (between 5 and
20) for each image is manually selected and the correspond-
ing segmentation is shown in the last row of Fig. 16.

6.2 Semantic Significance: An Empirical Study

In the experiments so far, we have found that the proposed
method segments the fixated region (or object) accurately
and consistently, especially in the presence of both
binocular and statoc cues. But in the case of static cues
only, a fixation on an object often results in a segmentation
that is mostly just a part of that object in the scene. What is
interesting, however, is to study if there is a consistency in
segmenting that part if we fixate at the same location inside
an object as it appears in different images. In other words,
we empirically study how semantically meaningful are the
regions segmented by the proposed algorithm so that the

Fig. 14. Left: An image with two fixations (the symbol “X”). Right: The
corresponding segmentation for these fixations as given by the
proposed framework.



MISHRA ET AL.: ACTIVE VISUAL SEGMENTATION

649

Fig. 15. Columns 1-3: A moving camera and stationary objects. Column 4: An image from a stereo pair. Column 5: A moving object (car) and a
stationary camera. Column 5: Moving objects (human, cars) and a moving camera. Row 1: The original images with fixations (the green “X”). Row 2:
The segmentation results for the fixation using statoc cues only. Row 3: The segmentation for the same fixation after combining motion or stereo

cues with monocular cues.

algorithm can be used as a useful first step in the object
recognition process.

For this study, we are going to use the ETHZShape
database [15], which contains 255 images of five different
objects, namely Giraffes, Swans, Bottles, Mugs, and Apple-
logos. As the final probabilistic boundary edge detector is
calculated using static cues only, the fixation location plays
an important role in deciding what we get as the
segmentation output. For instance, fixation on the neck of
a Giraffe results in the segmentation of its neck, see Fig. 17.
If all the internal texture edges, however, are suppressed
using, say, binocular cues, fixating anywhere on the Giraffe
would lead to the segmentation of the entire Giraffe. Thus,
it is important to choose the same fixation location inside
the object, so that the variation due to this change in fixation
location can be discounted for.

We need to make sure that we fixate at all the different
parts of an object. We avoid selecting these fixations
manually as our selection would be heavily biased by the
individual preference. Instead, we use the shape of the object
to find the salient locations inside it to fixate and the
segmented regions for these fixations are then manually
labeled as a part if it appears so. This way, the parts are
created from the low-level information and are only labeled
by human subjects.

The question now is what are those salient locations to
fixate at and will those fixations be at similar locations
inside the object across different instances of that object in
the database? We hand segment the object in each image
(we randomly select one in the image with multiple objects),
and fixate at the middle of the branches of the skeleton of
the binary object mask. A branch of the skeleton correspond

Fig. 16. The first row contains images with the fixation shown by the green X. Our segmentation for these fixations is shown in the second row. The
red rectangle around the object in the first row is the user input for the GrabCut algorithm [34]. The segmentation output of the iterative GrabCut
algorithm (implementation provided by www.cs.cmu.edu/~mohitg/segmentation.htm) is shown in the third row. The last row contains the output of
the Normalized cut algorithm with the region boundary of our segmentation overlaid on it.
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Giraffes Applelogos

(Logo)

(Body)

Fig. 17. Examples of segmented object parts. The red circular dot shows
the fixation point and the green contour is the boundary of the
segmented region for that fixation point. Giraffes, Swans, Mugs, Bottles,
and Applelogos are found to have four, three, three, two, and one part
(s), respectively.

to an object part such as neck, leg, etc. The junctions in the
skeleton correspond to where the parts combine to form the
complete object.

We fixate at all the salient locations on the objects and
collect the segmented regions corresponding to those fixa-
tions. Then, we examine every segmentation manually and
label the segmented region as an object part if it results from
fixations at similar location on the object in most images in the
database. See Fig. 17 for a sample of the parts of all five objects.
Obviously, the number of parts for an object depends upon
the complexity of its shape. The Giraffe has the highest
number of parts whereas Applelogo has the least. (For
Applelogos, we don’t include the leaf of the apple as its part
as, in our work, the object is a compact region.)

For each object, we count the number of times an object
part is fixated and what percentage of the total number of
fixations resulted in the segmentation of that part as well as
that of the entire object and semantically meaningless parts.
These numbers are shown in the corresponding row of the
table for that object. See Table 3. Different parts have
different likelihood of being segmented on being fixated.
But some parts like the handle of a Mug, the entire
Applelogo, the neck of a Swan, etc., have high likelihood
of being segmented on being fixated.

Another important statistic of interest is how often one of
the fixations on the object results in the segmentation of the
entire object. For that, we calculate the overlap of the
biggest segmented region for each object with the hand-
segmented object mask. We calculate the mean of the
overlap of the biggest region over all images in the
database. See Table 4. The likelihood of segmenting an
entire object is dependent upon how textured the object is.
The Applelogos are segmented entirely by a single fixation,
whereas bottles mostly have labels on them and are
generally only segmented into its upper or lower half.

7 FIXATION STRATEGY

The proposed segmentation method clearly depends on the
fixation point, and thus it is important to select the fixations
automatically. Fixation selection is a mechanism that
depends on the underlying task as well as other senses (like

TABLE 3
Detection of a Fixated Object Part
(a) Swans
Neck Body | Beak | Whole | Non-parts
Neck | 55.22 0 0.00 26.8 17.91
Body | 0.00 | 28.91 | 0.00 | 37.34 33.73
Beak | 0.00 0.00 87.5 0.00 12.50
(b) Giraffes
Head Neck Leg Body | Whole Obj | Non-parts
Head | 71.66 | 0.00 0.00 0.00 16.67 11.67
Neck | 0.00 | 75.86 | 0.00 0.00 6.87 10.34
Leg 0.00 0.00 | 35.00 | 0.00 3.57 61.40
Body | 0.00 0.00 0.00 | 26.92 25.0 48.07
(c) Mugs
Round top | Handle | Body | whole Obj | Non-parts
Round Top 90.00 0.00 0.00 0.00 10.00
Handle 98.9 0.00 0.00 0.00 1.1
Body 0.00 0.00 14.28 47.40 38.31
(d) Bottles
Neck Body | Whole Obj | Non-parts
Neck | 44.61 0.00 18.46 36.92
Body | 0.00 | 28.16 16.90 54.92
(e) Applelogos
[ [ Applelogos | Non parts |
| Body | 91.8 | 8.2

Each entry (i, j) of the table is the percentage of total fixations on the
part i that resulted in the segmentation of the part j, which is decided
manually.

sound). In the absence of such information, one has to
concentrate on generic visual solutions. There is a significant
amount of research done on the topic of visual attention [30],
[41], [36], [45], [20], [34], [9] primarily to find the salient
locations in the scene where the human eye may fixate. For
our segmentation framework, as the next section shows, the
fixation just needs to be inside the objects in the scene. As
long as this is true, the correct segmentation will be obtained.
Fixation points can be found using low-level features in the
scene and, in that respect, the recent literature on features
comes in handy [25], [28]. Although we do not yet have a
definite way to automatically select fixations, we can easily
generate potential fixations that lie inside most of the objects
in a scene.

7.1 Stability Analysis

Here, we verify our claim that the optimal closed boundary
for any fixation inside a region remains the same. The
possible variation in the segmentation will occur due to the
presence of bright internal edges in the probabilistic
boundary edge map. To evaluate the stability of segmenta-
tion with respect to the location of fixation inside the object,
we devise the following procedure: Choose a fixation
roughly at the center of the object and calculate the optimal
closed boundary enclosing the segmented region. Calculate
the average scale S, of the segmented region as \/Area/T.

TABLE 4
The Mean of the Highest Overlap (x100) for Each Image
Object name | Mean overlap
Giraffes 71.47
Swans 86.85
Mugs 84.13
Applelogos 95.13
Bottles 52.96
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Fig. 18. Stability curves for region segmentation variation with respect to
change in fixation locations.

Now, the new fixation is chosen by moving away from the
original fixation in random direction by n - Sg,, where
n=9{0.1,0.2,0.3,...,1}. If the new fixation lies outside
the original segmentation, a new direction is chosen for
the same radial shift until the new fixation lies inside the
original segmentation. The overlap between the segmenta-
tion with respect to the new fixation, R,, and the original
segmentation, R,, is given by ‘R"Gg"l

We calculated the overlap values for 100 textured regions
and 100 smooth regions from the BSD and Alpert
Segmentation Database. It is clear from the graph in
Fig. 18a that the overlap values are better for the smooth
regions than for the textured regions. Textured regions
might have strong internal edges, making it possible for the
original optimal path to be modified as the fixation moves
to a new location. However, for smooth regions, there is a
stable optimal path around the fixation; it does not change
dramatically as the fixation moves to a new location. We
also calculate the overlap values for the 100 frames from
video sequences; first with their boundary edge map given
by Martin et al. [24] and then using the enhanced boundary
edge map after combining motion cues. The results are
shown in Fig. 18b. We can see that the segmentation
becomes stable as motion cues suppress the internal edges
and reinforce the boundary edge pixels in the boundary
edge map [24].

8 DiscussioN AND FUTURE WORK

The proposed framework has successfully separated the
segmentation process into cue processing and segmenting
the region containing a given fixation point. The visual cues
are used only to influence the probability of the pixels in the
image to be the depth/object boundary. After calculating
the probabilistic boundary edge map, the segmentation of
the fixated object/region becomes a well-defined binary
labeling problem in the polar space.

An important advantage of separating cue processing
from segmentation step is that these two steps form a
feedback loop between them. The forward process of
generating a closed contour given a point inside the
probabilistic boundary edge map is a bottom-up step,
whereas using the resulting region to either modify the
probabilistic edge map, say, using shape information, or to
select the next fixation point using that information stored
in the region is a top-down process. The multiple fixation
based refinement of initial segmentation described in
Section 5 is an example of an interaction between the
bottom-up and the top-down process. In this case, the top-
down process was using only the shape of the segmented
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region to predict the next location to fixate to refine the
previous segmentation.

The top-down process can be more elaborate. In addition
to using the part of an object segmented using the first
fixation point in Fig. 17 to predict the fixation point inside
the other part of that object, the shape of that part can
modify the probabilistic boundary map such that the edge
pixels along the expected contour is strengthened. A similar
strategy to combine the top-down with bottom-up process
has been employed in [13], wherein the authors first focus
on a component of a face and use the prior knowledge
about the shape of that component to segment it better.

9 CONCLUSION

We proposed here a novel formulation of segmentation in
conjunction with fixation. The framework combines static
cues with motion and/or stereo to disambiguate between
the internal and the boundary edges. The approach is
motivated by biological vision, and it may have connections
to neural models developed for the problem of border
ownership in segmentation [11]. Although the framework
was developed for an active observer, it applies to image
databases as well, where the notion of fixation amounts to
selecting an image point which becomes the center of the
polar transformation. Our contribution here was to for-
mulate an old problem—segmentation—in a different way
and show that existing computational mechanisms in the
state-of-the-art computer vision are sufficient to lead us to
promising automatic solutions. Our approach can be
complemented in a variety of ways, for example, by
introducing a multitude of cues. An interesting avenue
has to do with learning models of the world. For example, if
we had a model of a “horse,” we could segment the horses
more correctly in Fig. 14. This interaction between low-level
bottom-up processing and high-level top-down attentional
processing, is a fruitful research direction.
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