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Abstract In this paper, we explore how a visual sys-
tem equipped with a pair of frontally-placed eyes/cameras
can rapidly estimate egomotion and depths for the task
of locomotion by exploiting the eye topography. We
eschew the traditional approach of motion-stereo in-
tegration, as finding stereo correspondence is a com-
putationally expensive operation. Instead, we propose
a quasi-parallax scheme by pairing appropriate visual
rays together, thus obviating the need for stereo corre-
spondence and yet being able to leverage on the redun-
dant information present in the binocular overlap. Our
model covers realistic visual systems where the two eyes
might deviate from the strictly frontal-parallel configu-
ration, and yet the results show that the advantages of
the parallax-based approach are retained. In particular,
it offers better disambiguation of translation and rota-
tion over conventional two-frame structure from motion
approaches, despite not having views covering diamet-
rically opposing directions like that of spherical eyes
or laterally-placed eyes. The rapid processing that such
scheme entails seems to offer a more realizable and use-
ful alternative for depth recovery during locomotion.
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1 Introduction

The subject of this paper is to re-examine visual system
with binocular overlap in the visual field of two eyes
with a different perspective. By different perspective,
we mean that the binocular overlap is not necessarily
leveraged in terms of stereo matching and stereoscopic
depth recovery, within which computational questions
had usually been posed in the computer vision commu-
nity. That is, vision may indeed be diplopic even if the
visual fields of the two eyes have overlap. The motiva-
tions for such re-examination can be traced to at least
three aspects.

1.1 The challenge of using stereopsis for locomotion

The rich development of feature descriptors such as
SIFT (Lowe, 2004) and modern optimization techniques
such as graph cut have resulted in significant increase
in the performance of stereo systems (Szeliski et al.,
2008). It seems reasonable to say that we have unlocked
the secret of creating a successful stereo system. How-
ever, all of these successes presuppose the availability of
abundant computational resources. Unless we are pre-
pared to identify ourselves with the brute-force power
of modern computer, we must re-examine the premises
of computational stereo.

If we trace the origins of AI movements such as ac-
tive and purposive vision, one of the dominant themes
of these movements in the 90’s is that vision is for
serving action like locomotion in the world. Detailed,
general purpose scene reconstruction might contain too
much information and is too slow. Such view is also
echoed by Tsotsos’ argument on complexity (Tsotsos,
1998). All these arguments still ring true today. At the
risk of sweeping generalization, modern computational
approaches have little hope of achieving the swift flight
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of say a bird in structurally complex environment such
as woodland. Indeed, who can say that these modern
approaches have not resulted in a form more unreal-
izable than any conceived in the 90’s? Clearly, we are
not saying that stereopsis has no role to play, but we
are suggesting that it is perhaps more for attending to
slower tasks and for recovering shape in the immediate
space around the body (e.g. for visually guided manip-
ulation of items held in the hands/jaws or bills), rather
than for distance perception of far objects during loco-
motion.

1.2 An instructive look at the natural world

Stereopsis has been investigated in only a narrow range
of species that share the characteristic of a relatively
wide frontal binocular field produced by eyes that are
typically widely spaced and forward-facing, with par-
allel axes and conjugate movements. However, these
are significant features of the visual system in only a
small proportion of extant vertebrates, most notably
primates, and may be a highly specialized rather than
general arrangement in the animal world.

The example of the avian world is instructive. Ex-
cept for the case of owl, the presence of global stere-
opsis in other bird species is based upon conjecture.
McFadden (1994) found some behavioral evidence of
local stereopsis in pigeons; however, these results did
not support the presence of global stereopsis. Short-
toed Snake-eagles are diurnal predators that are de-
scribed in handbooks as having forward facing eyes and
a wide binocular field. However, appearances are de-
ceptive. The functional binocular field of these birds is
vertically long and relatively narrow (maximum width
20◦, see Fig.1). This situation is not unique and has
been found in other species including ostrich, heron and
owl, and suggests that many bird species do not make
full use of the potentially available binocular field. For
many other birds, the frontal binocular fields are less
than 10◦ wide and even as narrow as 5◦ but they are
sufficient for the control of flight and landing at rela-
tively high velocities and in structurally complex (e.g.,
woodland) habitats.

Martin (2007, 2009) argued that stereopsis is too
slow, especially for the purpose of locomotion. Davies
and Green (1994)have pointed out that stereopsis in-
volves considerable neural processing and is too slow
to control the estimation of distance and depth when a
bird is landing upon a perch. McFadden (1993) pointed
out that pigeons have depth perception, and are sensi-
tive to disparities of about 1 arc min (compared to 4 s
in humans), but it is doubtful that this ability is used
in foraging.

Thus, for the case of birds at least, rather than try to
find evidence of binocular fusion and stereopsis, Martin

(2007; 2009) argued that it might be more parsimonious
to consider what the function of binocularity could be if
birds viewed objects diplopically within their binocular
fields. Do two eyes retrieving information from almost
identical flow-fields provide more information than one
eye? Does it add anything beyond mere redundancy? Or
does the visual system gain anything for such overlap-
ping arrangement? The scheme put forth in our paper
provides one possible way to leverage such arrangement.

Even for the case of primates, where one of the most
conspicuous visual specializations is the large area of
overlap between the fields of vision of the two eyes and
the evident existence of stereopsis, stereo processing
might still be too slow for fast locomotion (e.g. when
primates execute swift arboreal movements among the
canopy). The concern during fast locomotion is also
likely to be more about obstacles that are further away,
since the clearance away from these obstacles needs to
be greater at higher speed of movements. Stereopsis is
useful only for depth perception of the immediate space
surrounding the body, typically for tasks such as object
manipulations. As such, one might ask: if one conjec-
tures that there is no fusion of the disparate right-eyed
and left-eyed views of the scene during fast motion, how
can the readily available redundance be made use of?
Is it just mere greater robustness from redundance?

We hasten to add that we own to no better motive
for studying an alternative scheme for leveraging such
redundance other than simple curiosity about its possi-
bility, without necessarily drawing general conclusions
about the existence of such a scheme in the natural
world.

1.3 Dynamic depth cues during locomotion

At this point, it may be asked: what about motion
cues? The primary depth cue during locomotion is in-
deed motion cue. Yet due to the difficulty in structure
from motion (SFM), coupled with the demand for real-
time processing, so far only simple mechanisms have
been proposed for such tasks in biomimetic works for
locomotion, e.g. the rather minimalistic visual system
consisting of elementary motion detectors and dealing
with translation only (Franceschini et al., 1992). In the
field of robotics, many authors have made use of the
“optic flow balance” hypothesis in designing visually
guided wheeled vehicles (Coombs and Roberts, 1993;
Duchon and Warren, 1994; Santos-Victor et al., 1995;
Dev et al., 1997; Weber et al., 1997; Carelli et al., 2002;
Argyros et al., 2004; Hrabar et al., 2004; Humbert et
al., 2007), or aerial vehicles (Corke et al., 2004; Grif-
fiths et al., 2006), and simulating flying agents (Neu-
mann and Bulthoff, 2001; Muratet et al., 2005) and
hovercraft (Humbert et al., 2005). The “optic flow bal-
ance” hypothesis has been tested mainly in corridors
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Fig. 1: Visual field of Short-toed Snake-Eagle. (from Martin (2007), courtesy of Graham R. Martin).

and urban canyons. Despite the success of the “optic
flow balance” hypothesis in robotics, new behavioural
experiments have shown that honeybees actually do not
necessarily centre when traversing a corridor (Ruffier et
al., 2007; Serres et al., 2007). They may follow one of the
two walls at a certain distance. Serres et al. (2008) de-
signed a flying agent that can shift from 'wall-following
behavior' to 'centring behavior'.

Difficulties remain for negotiation of more challeng-
ing corridors including L-junctions or T-junctions, not
to mention in complex scenes such as a forested environ-
ment. No one seemed too anxious to grapple with these
more challenging situations using richer SFM cues. Yet,
as we will show in this paper, the processing of these
richer SFM cues can be made real-time by exploiting
the binocular constraint afforded by the two eyes.

2 Literature Review

There has been a long history in SFM research that
exploits stereo. In the earlier works of motion-stereo in-
tegration, no matter it is the mere juxtaposition of the
results from independent processing of the motion and
stereo information (Ayache and Faugeras, 1989; Grosso
et al., 1989; Kriegman et al., 1989), where the final
estimates of structure were based on some combina-
tion of the outputs of these separate processes (coupled
loosely together sensus (Clark and Yuille, 1994)), or the
tightly coupled approach where the processing of one
type of visual information may depend on the presence
of another (Balasubramanyam and Snyder, 1991; Li
and Duncan, 1993; Shi et al., 1994; Waxman and Dun-

can, 1993; Zhang and Negahdaripour, 2008), the all but
universal assumption is that the overlap in the visual
field is used for computing binocular disparity. This as-
sumption remains true in the later approaches with the
advent of more sophisticated techniques such as PDE
(Strecha and Gool, 2002), variational approach (Huguet
and Devernay, 2007; Pons et al., 2007; Williams et al.,
2005)and factorization (Ho and Chung, 2000).

Then there is another class of related works where
the multiple cameras that are in simultaneous motion
may not have overlap in their field of view and thus
stereopsis is not possible. The general camera model
(GCM) and the generalized essential matrix put forth
(Pless, 2004; Kim et al., 2010) have the advantage of
generality (in that it admits any arrangement of the
cameras). So too in the works of Neumann (2004) ex-
cept that the input to each camera is processed indepen-
dently and the output of each camera is only integrated
at the final stage with those of others. As mentioned,
these works do not assume any binocular overlap. How-
ever, in many biological vision systems, even for those
animals in which the eyes are laterally placed, there
exists some degree of overlap in the visual field in the
frontal direction, and it is only by some effort of imag-
ination that one can conceive of nature not using it in
some form, even though, for various reasons discussed
in the preceding section, the leveraging may not be in
the form of stereopsis.

Finally, there are those works which exploit the or-
ganizational possibility offered by the eye topography.
In particular, by pairing visual rays from different eyes
(or cameras), useful information such as heading di-
rection can be obtained by parsimonious visual pro-
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cessing (Hu and Cheong, 2009). At the heart of such
approach of pairing appropriate visual rays is the idea
of parallax. The traditional formulation of parallax is
based on the fact that the difference in velocity between
two points that are nearby in the image but at differ-
ent depths is nearly independent of rotation (Hildreth,
1992; Longuet-Higgins and Pradzny, 1980; Rieger and
Lawton, 1985). Canceling rotation is advantageous as
it enhances translation pickup; the residual function for
the heading direction has a deeper minimum than the
one based on general motion recovery, leading to a min-
imization that is more robust to the bas-relief ambigu-
ity and image noise in general. However, the twin hard
problems of determining pairs of image features along
depth boundaries and measuring their image velocities
(given the interference of the boundary) plagued such
approaches from its earliest beginnings. To avoid these
problems, Tomasi and Shi (1993) measured the differ-
ential changes in the angles between the projection rays
of pairs of point features. Given spherical field of view,
Lim and Barnes (2008) measured the difference in flow
for visual rays that are in the opposite direction on
the image sphere. Hu and Cheong (2009) extends it to
the case of a pair of laterally-placed eyes or compound
eyes, where again, visual rays from the opposite direc-
tions are paired together, and the difference in their
optic flows is computed. Although the resulting quan-
tity contains a weak residual term induced by the rota-
tion of the head, the rotation is largely removed, hence
the name quasi-parallax being coined for the difference
term.

In this paper, we propose a quasi-parallax approach
for visual systems equipped with a pair of eyes/cameras
with overlapping visual field in the frontal direction.
The simplest of these systems is that of a frontally-
placed pair of eyes/cameras with parallel optical axes
pointing straight ahead. We also extend the formula-
tion to the case where the optical axes may not be par-
allel, and this covers the important case when the eyes
of an animal are divergent (in many animals, the bony
sockets of the eyes are somewhat outward-pointing). As
opposed to most works on such systems with overlap-
ping visual field cited in the preceding paragraph, the
crucial difference in our system is that no binocular
disparities are computed, thus obviating the need for
stereo correspondence and making the method particu-
larly useful for real-time locomotion. At a more funda-
mental level, we show through our work that the binoc-
ular arrangement of eyes admits another possibility for
exploitation, that vision may indeed be diplopic and yet
we can gain important information from this arrange-
ment. As both this work and (Hu and Cheong, 2009)
are based on the notion of quasi-parallax but each with
different eye configurations, it is of interest to exam-
ine whether the eye configuration will impact on how

well the parallax-based methods can resolve the bas-
relief ambiguity. As we will show later in the exper-
imental section, all the advantages of parallax-based
methods shown for spherical eyes or lateral eyes cov-
ering diametrically opposing directions are retained for
the case of frontal eyes examined in this paper. In par-
ticular, given quasi-parallax measurements with equal
quality, the performance of the frontal eyes is on par
with similar parallax-based systems with spherical eyes
or lateral eyes, despite not having views covering di-
ametrically opposing directions. The crucial factor in
a parallax-based scheme is the quality of the parallax
measurements, not the field of view per se.

3 Basic Model for Frontally-placed Camera

Pair

We start with the simplest model (Fig. 2), that of two
frontally placed cameras, with their image planes copla-
nar and the optical axes parallel. The two cameras are
mounted rigidly on a platform, each displaced an equal
distance b from the platform origin Op. The world co-
ordinate system (WCS) is placed at the platform origin
and its axes align with the axes of camera coordinate
system (CCS). We will use the subscripts l and r to
represent the entities associated with the left and the
right cameras respectively.

Fig. 2: Top view of a frontally-placed camera pair.

3.1 Motion and Flow Representation

With respect to the WCS, let the platform move with a
translation υ=(U, V,W )T and a rotation ω=(α, β, γ)T .
This induces the following right and left camera mo-
tions (υr,ωr) and (υl,ωl) in their own reference frames:

υr = (U, V + bγ,W − bβ)T ,ωr = (α, β, γ)T

υl = (U, V − bγ,W + bβ)T ,ωl = (α, β, γ)T
(1)

whose terms differ by a sign whenever the variable b ap-
pears. For brevity of subsequent presentation, we intro-
duce br = b and bl = −b for the right and the left cam-
era respectively. Thus, for the ith camera, i = r, l, with
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perspective projection model and known focal length f ,
the following equations relate the 3D camera motions
and the optical flow (ui,vi) at the image point (x,y)
arising from a 3D scene point with depth Zi (Longuet-
Higgins and Pradzny, 1980):

ui =
(W − biβ)x− fU

Zi
+
αxy

f
− β(f +

x2

f
) + γy

=
1

Zi
utri + uroti

vi =
(W − biβ)y − f(V + biγ)

Zi
− βxy

f
+ α(f +

y2

f
)− γx

=
1

Zi
vtri + vroti

(2)

where 1
Zi

(utri ,vtri ) and (uroti ,vroti ) are the components
of the flow due to the translation and rotation respec-
tively. Note that the translational flow contains terms
that depend on the platform rotation parameters β and
γ, because these platform rotations induce translations
in the cameras. Eliminating the depth Zi from the re-
spective pair of equations gives us the differential epipo-
lar constraint of the individual camera:

uiv
tr
i − viutri = uroti vtri − vroti utri i = r, l (3)

whose bilinear nature has been noted by various authors
(Heeger and Jepson, 1992; Ma et al., 2000; MacLean,
1999; Vieville and Faugeras, 1995).

3.2 Quasi-parallax

Conventional two-frame SFM works that do not lever-
age on the structural constraint afforded by the two
cameras usually suffer from the bas-relief ambiguity, es-
pecially under small field-of-view (FOV). Here we make
use of the structural constraint by collecting from the
two cameras projection rays that are parallel to each
other. We call the points associated with such a pair of
matching rays as matching point (see Fig. 2). For the
case of simple setup addressed in this section, these are
simply points with the same image coordinates. These
points have the desirable property that their rotational
flows are the same. Taking inspiration from the classical
parallax idea proposed by Rieger and Lawton (Rieger
and Lawton, 1985), we subtract the two equations in
(3) from one another. This removes many of the ro-
tational terms, thus enhancing translation pickup and
alleviating the bas-relief ambiguity:

urv
tr
r − ulvtrl − vrutrr + vlu

tr
l

= urot(vtrr − vtrl )− vrot(utrr − utrl )
(4)

Since the rotational flows at the matching pairs are
equal, we have omitted the subscript of the rotational
flows urot and vrot. Writing out the translational and
rotational flows in full, we obtain:

Uf(vr − vl)− V f(ur − ul) +W (yur − yul − xvr + xvl)

= b
(

2f(xαβ + yβ2 − yγ2)− 2xyαγ + (2f2 − 2y2)βγ

+ (yβ + fγ)(ur + ul)− xβ(vr + vl)
)

(5)

Clearly, when b=0, we obtain perfect parallax. The
RHS of equation (5) vanishes and we can solve the
translation directly by linear least squares. In the gen-
eral case of b 6= 0, the RHS is non-zero: this corresponds
to the translational flow component still containing in-
duced terms caused by the platform rotation. Thus,
we term the resulting flow difference between matching
points as quasi-parallax. Since our approach is similar
in spirit to the parallax approach, it enjoys similar nu-
merical advantages with regards to the bas-relief ambi-
guity. Yet it circumvents the limitations of the parallax
approach mentioned in the preceding section because
there is no need to restrict ourselves to flow pairs near
depth boundaries.

Collecting all the N equations from the entire set of
matching points, we can write the system of equations
in the following form:

Ax1 = b(Bx2) (6)

here x1=(U, V,W )T , x2=(αβ, β2, αγ, βγ, γ2, β, γ)T , and
the jth row of A and B are respectively as below (omit-
ting the subscript j on the RHS for brevity):

aj = (fvr − fvl, ful − fur, yur − yul − xvr + xvl)

bj = (2fx, 2fy,−2xy, 2f2 − 2y2,−2fy,

y(ur + ul)− x(vr + vl), f(ur + ful))

(7)

The term bBx2 on the RHS in equation (6) can be
regarded as the residue arising from the quasi-parallax
and its value is typically very small due to the small
baseline value b and that most of the terms are second
order in the rotational parameters.

3.3 Solving the Motion Parameters

As the RHS in equation (6) are negligibly small, we
propose a two-stage scheme to solve for the translation
and rotation separately.
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Step 1: estimate initial translation. We ignore the
RHS of (6) and solve the resulting homogeneous system
Ax1=0. The initial translation υ̂ is recovered up to a
scalar unknown.

Step 2: estimate initial rotation. Given the current
translation estimate υ̂, we can now use the epipolar
constraint equation (3) to recover the rotation param-
eters. Equation (6) is not suitable for rotation recovery
because the rotational terms are largely removed here.
Writing out in full, we have: for i = r, l representing the
right and the left cameras respectively. Substituting the
initial translation estimation υ̂=(sU, sV, sW )T into (8)
and collecting all the equations from both the right and
the left cameras, we obtain a system of equations in the
form of:

M · (α, β, γ, b
s
β,
b

s
γ,
b

s
αβ,

b

s
αγ,

b

s
β2,

b

s
βγ,

b

s
γ2)T

= M · θ = d
(9)

The unknown vector θ contains both first order and
higher order rotational terms. Considering the typi-
cal rotation values, the contribution of the higher or-
der terms can be ignored in the initial estimation step.
Thus:

Step 2.1: we simplify equation (9) to obtain:

M1 · (α, β, γ,
b

s
β,
b

s
γ)T = M1 · θ1 = d (10)

where M1 is a N × 5 matrix comprising of the first
five columns from M. We can now solve the linear
system and the first three components of the solution
vector θ1 correspond to the initial rotation estimate
ω̂0=(α̂0, β̂0, γ̂0)T .

Step 2.2: refine the estimate ω̂0. Substituting the
current value of ω̂0 into the terms containing b

s in (9)
and rearranging, we obtain:

M2 · (α, β, γ,
b

s
)T = d (11)

We solve the above equation for an updated rota-
tion estimate. The newly obtained estimate is substi-
tuted back into (9) to generate an updated (11) which
is solved again for a more refined solution. This process
is repeated until the solution converges and a stable
rotation estimate ω̂=(α̂, β̂, γ̂)T is obtained. Essentially
we can make do with a simple linearization because the
second order effect is small. Numerical tests conducted
under a range of motion-scene configurations and base-
line values reported in the experimental section show
that the estimate usually converges to a stable solution
after two or three iterations.

Step 3: refine the motion estimation.

Step 3.1: We substitute the current rotation es-
timate (α̂, β̂, γ̂)T back into x2 of (6) and form a new
equation:

(A,−Bx2) ·
(
x1

T , b
)T

= Ã · x̃1 = 0 (12)

We solve the homogeneous system (12) for an up-
dated translation estimate υ̂. Obviously, if b is known,
the absolute value of the translation can be determined.
Otherwise, only the translation direction can be deter-
mined.

Step 3.2: Given this updated translation estimate
υ̂, we use the scheme in step 2 to obtain a more updated
rotation estimate ω̂.

Step 3.3: If the current motion estimate differs
from that of the previous iteration by less than 0.1%,
stop. Otherwise, repeat steps 3.1 and 3.2 until the so-
lution is stable.

4 Extensions to the Basic Arrangement

In the natural world, one is met with eyes that are
neither purely frontal nor lateral. For instance, even a
predatory bird such as the Short-toed Snake-eagle does
not have completely frontal eyes (see Fig. 1) (Martin,
2007). Even a visual system possessing frontally-placed
eyes may destroy this simple arrangement via eye move-
ments such as sideway gaze and convergence. While it
is possible to perform image rectification to restore the
parallel-axes stereo geometry and then use the basic
model solution, it is very much against our philosophy
of computational parsimony, because feature correspon-
dence would be needed to establish the rectification
transformation. Thus, if the quasi-parallax solution is
to be a useful strategy for locomotion at all, we must
seek extensions to the basic solution provided above.

4.1 Quasi-parallax of Sideway Configuration

From the quasi-parallax framework introduced in the
preceding section, it is an easy step to extend it to the
case of the two eyes gazing sideway.

Fig. 3: Top view of the sideway configuration.
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(
(f2 + y2)U − fWx− V xy

)
α+

(
(f2 + x2)V − fWy − Uxy

)
β +

(
(x2 + y2)W − fV y − fUx

)
γ

+ bi
(
(uy − vx)β + (β2 − γ2)fy + fxαβ + fuγ − xyαγ + (f2 − y2)βγ

)
= fUv − fuV − vWx+ uWy

(8)

Fig. 3 shows the top view of a sideway configuration
where the two cameras have been both rotated by the
same angle φ around their Y axes and now gaze in a
sideway direction. We call φ the sideway gaze angle.

If we let the new world coordinate system be Op-
XpYpZp, and if the platform motion expressed in this
coordinate system is υ=(U, V,W )T and ω=(α, β, γ)T ,
then the 3D camera motions expressed in the respective
camera coordinate systems are, for i = r, l:

υi = (U − βbi sinφ, V + γbi cosφ+ αbi sinφ,

W − βbi cosφ)T

ωi = (α, β, γ)T

(13)

Carrying out analogous operation as before, we ob-
tain the counterpart of equations (5) and (8), that is,
the quasi-parallax equation (14) and the two epipolar
constraint equations (15) (i = r, l).

While there are more terms in these equations, the
nature of the equations are essentially the same as those
of (5) and (8), since the rotational flows at the matching
points are still the same. Thus, a scheme very similar
to that in Sect. 3.3 can be used to solve for the motion
parameters and the unknown φ. Readers can refer to
Appendix for more details.

4.2 Quasi-parallax of Convergent/Divergent

Configuration

The two eyes or cameras may not be parallel to each
other, either because they converge to fixate on some
object at some finite distance, or because the optical
axes are divergent even in the relaxed state. Without
loss of generality, we represent such convergent or di-
vergent configuration as that shown in Fig. 4, where
the right and the left cameras are rotated by an angle
of θr = θ and θl = −θ around their Y axes respectively
and the WCS Op-XpYpZp is as that in Section 3.1. We
define θ as the convergence angle.

Given motion υ=(U, V,W )T , ω=(α, β, γ)T of the
platform, the individual camera motions expressed in
their own camera coordinate systems are, for i = r, l,
as follows:

υi =
(
U cos θi − (W − biβ) sin θi, V + biγ,

(W − biβ) cos θi + U sin θi

)T
ωi = (α cos θi − γ sin θi, β, γ cos θi + α sin θi)

T

(16)

Fig. 4: Top view of the convergent configuration.

(a)

(b)

Fig. 5: Eyes with divergent optic axes. (a) Z-axes

placed near the frontal direction so that the angle of

divergence θ is small. (b) θ can be made to approach

zero if the visual field of each eye extends sufficiently

into the opposite hemisphere.

Clearly, the two camera rotations ωr and ωl are
different. This poses a problem for the rotation cancel-
lation step in our quasi-parallax formulation. It seems
clear that one must accept compromise if we were to re-
tain the virtue of simplicity in our formulation. Here we
assume that the angle θ is small enough, so that most of
the rotational flow can be canceled by the subtraction
operation carried out at corresponding matching points
with the same (x, y) coordinates. This assumption on
θ may not be as restrictive as it seems for the follow-
ing two reasons. Firstly, any convergent eye movements
during high-speed locomotion are likely to be for ob-
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Uf(vr − vl) + V f(−ur + ul) +W
(
y(ur − ul)− x(vr − vl)

)
= b cosφ(2fxαβ + 2fyβ2 − 2xyαγ + 2f2βγ − 2y2βγ − 2fyγ2 + yβur + fγur + yβul + fγul − xβvr − xβvl)

− b sinφ(2xyα2 − 2x2αβ + 2y2αβ − 2xyβ2 + 2fyαγ − 2fxβγ − fαur − fαul − fβvr − fβvl)

(14)

(fWx− f2U + V xy − Uy2)α+ (fWy − f2V − V x2 + Uxy)β + (fUx−Wx2 + fV y −Wy2)γ

+ bi cosφ
(
(vx− uy)β − fuγ − fxαβ − fy(β2 − γ2) + xyαγ − (f2 − y2)βγ

)
− bi sinφ(fuα− xyα2 + fvβ + (x2 − y2)αβ + xyβ2 − fyαγ + fxβγ) = fuV − fUv + vWx− uWy

(15)

jects at some distances away, and thus the convergence
angle will be small. Secondly, even for significantly di-
vergent eye configuration like that of the Short-toed
Snake-eagle illustrated in Fig. 1, all is not lost. If the
eyes are sufficiently spherical, we are free to position the
Z-axes of the two cameras appropriately such that for
the regions of the two eyes facing the front (the regions
shaded in grey in Fig. 5(a)), it is equivalent to a slightly
divergent binocular configuration with small angle of
divergence θ. Note that if the visual field of each eye
extends sufficiently into the opposite hemisphere (as
in Fig. 5(b)), we can even position the Z-axes of the
two cameras such that it approaches the simple par-
allel configuration. Given this small θ assumption, we
make the following simplifications: cos θ ≈ 1, cos2 θ≈1,
and sin2 θ≈0. Carrying out the same operations as be-
fore, we obtain the quasi-parallax equation as (17) and
the epipolar constraint equations (for i = r, l) as (18).

We use the following scheme to solve for the motion
parameters and the convergent angle θ.

Step 1: estimate initial translation and sin θ. We
ignore the RHS of (17) as before, and also further omit
the terms containing rotation parameters in the LHS
as they are all coupled with sin θ and thus constitute
second order effects. As a result, we obtain:

U
(
fvr − fvl − (vlx+ vrx− uly − ury)sinθ

)
+ V (ful − fur) +W

(
vlx− vrx− uly + ury

− (fvl + fvr)sinθ
)

= 0

(19)

Gathering all such equations, we solve the result-
ing homogeneous system A4y=0 for the initial direc-
tion of translation and the initial value of sin θ. Here
y=(sU, sUsin θ, sV, sW, sW sin θ)T is treated as a vec-
tor of independent unknowns, and s is the unknown
scale factor. The translation can only be solved up to
the scale factor s, but the value of sin θ can be obtained
as the average of the ratio of the first two and the last
two components of y.

Step 2: estimate initial rotation. Given y, we can
now solve equations (18) for the rotation parameters.

Dropping second order rotational terms from (18), we
obtain equation (20).

Gathering all such equations and solving the result-
ing linear system, we can obtain the solution vector
rinit=(α, β, γ, bβ/s, bγ/s)T . The dependency between
the components of rinit is ignored and the initial rota-
tion estimate is simply obtained as the first three com-
ponents of rinit. The newly obtained estimate is sub-
stituted back into equations (18) to take into account
the second order rotational terms. The updated (18) is
solved again for a more refined rotation estimate. This
process is repeated until the solution converges.

Step 3: refine motion estimate.
Step 3.1: Substituting the current rotation esti-

mate into (17), we obtain an improved solution for
translation and sin θ by solving a new homogeneous
system A5y1=0. Here, we need to specify the unknown

y1=(sU, sUsin θ, sV, sV sin θ, sW, sW sin θ, sb, sbsin θ)
T

.
Step 3.2: Given y1, we repeat step 2 to refine the

rotation estimate.
Step 3.3: If the current motion estimate differs

from that of the previous iteration by less than 0.1%,
stop. Otherwise, repeat steps 3.1 and 3.2 until the so-
lution is stable.

4.3 Implementation Details

We first use the variational method of (Bruhn et al.,
2005) to obtain 100% dense flow field. Clearly, not all
flow estimates have the same reliability. Following (Bruhn
et al., 2005), an energy-based confidence measure cenergy
is used to assess the relative reliability of the flow es-
timate (u, v) at every image location. If Ei is the en-
ergy functional that penalizes deviations from model
assumptions (such as brightness constancy and smooth-
ness) at pixel i, we define the confidence measure cenergy
to be inversely proportional to Ei:

cenergy =
1

Ei + ε2
(21)
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U
(
fvr − fvl + (uly + ury − vlx− vrx+ 4fxα+ 2f2γ − 2x2γ + 2fyβ) sin θ

)
+ V

(
ful − fur + (2fyα− 2xyγ) sin θ

)
+W

(
(vl − vr)x− (ul − ur)y − (fvl + fvr + 2xyβ + 2f2α− 2x2α− 4fxγ) sin θ

)
= b

(
(ul + ur)(fγ + yβ)− (vl + vr)xβ + (2f2 − 2y2)βγ + 2fy(β2 − γ2)− 2xyαγ + 2fxαβ + (vl − vr)fβ sin θ

) (17)

α
(
V xy − f2U + fWx− Uy2 + (fV y + f2W + 2fUx−Wx2)sinθi

)
+ β

(
Uxy − f2V − V x2 + fWy + (fUy

−Wxy)sinθi
)
+ γ

(
fV y + (fUx−Wx2 −Wy2) + (f2U − 2fWx− Ux2 − V xy)sinθi

)
+ bi

(
(vx− uy)β − fuγ

− fxαβ + xyαγ − fyβ2 − (f2 − y2)βγ + fyγ2 + (fvβ + xyβ2 + fyαγ − xyγ2 + x2αβ − f2αβ + 2fxβγ)sinθi
)

= fuV + vWx− fUv − uWy + (fvW + Uvx− Uuy)sinθi

(18)

α
(
V xy − f2U + fWx− Uy2 + (fV y + f2W + 2fUx−Wx2) sin θi

)
+ β

(
Uxy − f2V − V x2 + fWy + (fUy

−Wxy) sin θi
)
+ γ

(
fV y + fUx−Wx2 −Wy2 + (f2U − 2fWx− Ux2 − V xy)sinθi

)
+ bi(vrxβ − uryβ − furγ)

= furV − fUvr + vrWx− urWy + (fvrW + vrxU − uryU) sin θi

(20)

Here ε serves as a small regularisation parameter
that prevents the denominator from becoming singu-
lar. Equipped with the above confidence measure, we
divide the flow field of each camera into 20 confidence
levels. In our experiment with 600×480 images, we do
a first cut by selecting only matching points with confi-
dence level at level 16 and above (that is, the top 25%).
The confidence level of a matching pair is taken to be
the lower of the two confidence levels of the two flow
measurements.

Besides the confidence criterion, we also need to
make sure that the flow difference at matching points
is not too small with respect to the noise expected. For
this purpose, we add a further selection measure cmag:

cmag =

√
(ur − ul)2 + (vr − vl)2

max(|(ur, vr)|, |(ul, vl)|)

We use the following thresholding scheme to trim the
number of matching points to the top 150 pairs:

cmag > τ(i) (22)

where the threshold τ(i) depends on how much confi-
dence we have in the quasi-parallax measurements, as
indicated by the confidence level i. In our experiment,
we use a simple linear relationship τ(i) = −0.05i+ 1.15
(that is, τ varies linearly between 0.35 to 0.15 for i
ranging from 16 to 20).

5 Experiments on Synthetic Data

We first carry out experiments on synthetic but realis-
tic data by using the Brown range image database (Lee

and Huang, 2000) which contains many static natural
scenes. Fig. 6 shows some typical scenes in the database:
forest, outdoor and indoor. Unless otherwise stated, we
use scene (a) in the simulations that ensue. The average
scene depth of this scene is about 7 m. We endow the
scene with 3D motions, and project the points and their
flows onto each camera’s image plane. As the relative
motion between the cameras and the scene are known,
the result of our method can be evaluated by compar-
ing with the ground truth. Note that while the direction
and magnitude of the rotation can be estimated, only
the direction of the translation is recovered, with its
magnitude only recoverable when b is known. The cam-
era pair is in the ideal frontal parallel configuration,
unless otherwise noted, as from Section 5.7 onwards.
Through a series of experiments, we clarify the effects
of various factors such as motion-scene configuration on
the performance of our quasi-parallax method. Its per-
formance is also compared against that of the so-called
gold standard bundle adjustment method.

5.1 Different Motion Configurations

We present different 3D motions with varying param-
eter: translation-to-rotation ratio ε (ε=0.1, 0.2, 1,
5, 10) so as to investigate the effect of motion configu-
rations. The value of ε is computed as the ratio of the
total magnitude of the translational flow and that of the
rotational flow from all available points. We set other
parameters as follows: the focal length is 6 mm, FOV
is 50◦, b=0.2 m, and the image dimension is 600×600
pixels (5.6× 5.6 mm in metric unit).
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(a) (b)

(c) (d)

Fig. 6: Range images of typical scenes. (a) Forest 1,

(b) Forest 2, (c) Outdoor and (d) Indoor scenes.

We compare the recovered motion parameters (υre,
ωre) with the ground truth (υgt, ωgt). The results are
shown in Table 1. The errors of the translation υ and
the rotation ω are defined as the angles between υre

and υgt, and between ωre and ωgt respectively. The er-

ror in the magnitude is defined as | ||υre||
||υgt|| − 1| for trans-

lation and | ||ωre||
||ωgt|| − 1| for rotation.

Without noise in the flow input, the results in Ta-
ble 1 look fairly good. Yet, even without noise, it can be
seen that with decreasing ε, the accuracy of the system
deteriorates. At ε = 0.1, the translation recovery incurs
significant errors of 20% or more in both direction and
magnitude. It could be that with rotation-dominant
motion (small ε), the quality of the quasi-parallax de-
grades with the weak translation. This is especially a
problem since we did not impose any selection criterion
on the quasi-parallax measurements in this experiment.

(a) (b)

Fig. 7: Estimation errors as a function of noise level,

and over a range of ε. Dotted curves represent the

case where all quasi-parallax measurements are used,

solid curves represent the case that only the top 150

quasi-parallax measurements are retained. The symbol

N.A. represents that the solution does not converge.

We now add isotropic, Gaussian noise to the 2D
motion field, with the standard deviation of the noise
amplitude ranging from 0% to 10% of the length of
the individual 2D motion vector. One hundred separate
runs are carried out for each noise level, and the mean
values of the direction errors are plotted in Fig. 7 as
dotted curves. We only plot the direction errors since
the trend is similar for the magnitude errors (and in
the magnitude case, the error remains bounded by 16%
for the range of conditions tested). Note that for some
noise level, no stable solution can be obtained (indi-
cated as N.A. in Fig. 7). This is not surprising since
in this simulation, all quasi-parallax measurements are
used, without considering their reliability.

We now improve the quality of the quasi-parallax by
selecting the top 150 pairs of matching points ranked
according to the magnitude of the flow difference (here
the confidence level of the flow does not come in since
we are not dealing with real images). The improved
results are plotted in Fig. 7 as the solid curves. From
these results, we conclude that: (1) selecting good quasi-
parallax plays an important role in reducing the nega-
tive impact caused by noise in the optic flow input; (2)
our quasi-parallax scheme can handle a wide spectrum
of motions ranging from translation-dominant motion
(ε=10) to rotation-dominant motion (ε=0.1); and (3)
the accuracy of the motion estimates improves with in-
creasing the translation-to-rotation ratio ε.

5.2 Different b

The distance b is half of the baseline which is one of the
most important parameters of any stereo configuration.
It also plays an important role in our quasi-parallax
framework, as it appears as the multiplier in the RHS
of equation (6). It determines the magnitude of the RHS
and thus might affect the convergence of our iterative
algorithm which is initialized by ignoring the RHS. On
the other hand, it is also intuitively clear that large b
improves the quality of the quasi-parallax, because it
is more likely to yield matching points with significant
depth differences.

In this group of experiments, we vary the offset b
from 0.01m to 0.5m, with ε=1 and other parameters the
same as before. Fig. 8 shows the errors in the motion
estimation with different offsets and different noise lev-
els. Generally, there is an increase in performance with
larger b, with the improvement leveling off when the
offset exceeds a certain threshold. The first conclusion
is that under the range of operating conditions tested,
the effect caused by initially ignoring the RHS of equa-
tion (6), even under large b, is negligible. As for the de-
creasing errors with b in Fig. 8(a), (b), and (c), the phe-
nomenon can be explained by Fig. 8(d),which expresses
the relationship between the number of good matching
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Table 1: Motion recovery for different ε.

Motion parameter Error of motion estimation

ε υgt(cm/s) ωgt(×0.001rad/s) υ direction υ magnitude ω direction ω magnitude

10 (3,3,11) (0.5,0.5,0.1) 0.0006 0.0004 0.0002 0.0000
5 (2,2,8) (0.5,0.5,0.1) 0.0031 0.0010 0.0009 0.0001
1 (1,1,5) (0.5,0.5,0.1) 0.0079 0.0013 0.0011 0.0006
0.2 (1,1,3) (1,2,0.23) 0.0571 0.0821 0.0083 0.0039
0.1 (1,1,2) (2,4,0.58) 0.2310 0.2021 0.0322 0.0407

(a) (b)

(c) (d)

Fig. 8: Estimation errors as a function of offset b. (a)

Translation direction. (b) Rotation direction. (c)

Rotation magnitude. (d) Number of good matching

rays defined as those with cmag > 0.2.

rays (defined as those with cmag > 0.2) and b. Intu-
itively, increasing baseline is conducive to forming good
parallax because it is more likely to have large depth
differences in the matching points. Having a larger pool
of good parallax measurements to choose the top 150
matching points in turn improves the quality of the
input to the algorithm. However, once the baseline is
large enough, the depth difference in the matching pair
is no longer correlated to the baseline, thus explaining
the plateau in the plots. Thus, in the design of a quasi-
parallax-based system, we should seek the point beyond
which increase in baseline does not lead to further im-
provement in error performance. For our case, where the
scene depth is at least 10m away, the threshold seems
to be b = 0.2m from the plots in Fig. 8. For nearer
scene depths such that the depth changes relative to
the average scene depth are larger, the threshold will be
smaller. We repeat the experiments with the same for-

est scene but with the scene content placed much closer
at an average depth of 3.5m and at 2m. At these set-
tings, which seem closer to the conditions under which
some animals navigate in enclosed forests, we obtain a
threshold value of b = 0.05m and b = 0.03m respec-
tively. These values of b seem to be in keeping with the
eye separation distances found in some mammals.

5.3 Different Scenes

The effect caused by different scenes is similar to that
caused by b in the preceding subsection, as different
scene types with different degree of roughness has a
direct impact on the amount of good quasi-parallax
measurements. Here, we perform experiment on typi-
cal scenes individually, including the two forest scenes,
the outdoor and the indoor scenes shown in Fig. 6. The
conditions for this group of experiments are as follows:
ε=1, FOV = 50◦, the noise level (noise-to-signal ratio)
= 5%, and the offset b ranging from 0.05m to 0.5m.

Fig. 9 shows that the performance on the forest
scene is better than that on the indoor scene given the
same offset b. Such observation can be explained from
the fact that the indoor scene contains much more pla-
nar areas than the forest scene, and nearly zero paral-
lax is generated over much of the image when the offset
b is small, which does not lend to numerical stability.
Fig. 9(d) corroborates our explanation.

5.4 Different FOV

In addition to baseline, the FOV is another important
parameter of a vision system, especially so for the func-
tion of motion estimation. We let the FOV range from
10◦ to 60◦, fixing ε=1 and with other parameters re-
maining unchanged. Clearly, by virtue of the fact that
a smaller FOV is viewing a smaller part of the scene,
there will be smaller amount of depth changes; thus
the quality of the quasi-parallax measurements will be
affected, resulting in the deterioration of performance,
as shown in Fig. 10(a) and (b). However, this is not
our main point of interest here. What we are keen to
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(a) (b)

(c) (d)

Fig. 9: Estimation errors as a function of offset b and

different scenes (a: forest 1, b: forest 2, c: outdoor, d:

indoor). (a) Translation direction. (b) Rotation

direction. (c) Rotation magnitude. (d) Number of

good matching rays defined as those with cmag > 0.2.

get at is that, given the same quality in the quasi-
parallax measurements, do we expect the algorithm’s
performance to vary with the change in the FOV per
se? For this purpose, we control the quality of quasi-
parallax input—measured by cmag, the magnitude of
the flow difference of the matching points—to be the
same, despite changes in the FOV.

As can be seen from Fig. 10(c) and (d), the errors
in the motion estimates are relatively independent of
the FOV. Thus the deciding factor for the accuracy of
the quasi-parallax based method is the amount of depth
difference, not the FOV per se.

5.5 Comparison Against Bundle Adjustment (BA)

In this section, we compare our method against the so-
lution obtained by the so-called gold standard BA algo-
rithm. The purpose of the comparison is not intended to
establish the superiority of our method over BA or oth-
erwise; in any case, the BA method is usually applied
to scenarios where the differential techniques cannot be
applied, and more importantly, it usually serves to re-
fine the initial estimates from other algorithms. The
purpose of the following comparison is rather to shed
some light on the issue of bas-relief ambiguity which
usually plagues two-frame SFM. While the superior-
ity of the parallax scheme has been demonstrated for
spherical FOV and for a pair of laterally placed eyes

(a) (b)

(c) (d)

Fig. 10: Estimation errors as a function of the FOV.

For (a) and (b), the quality of the quasi-parallax input

varies (naturally) with the FOV; for (c) and (d), we

control cmag, the quality of the quasi-parallax input,

to be the same despite changes in the FOV.

covering diametrically opposite viewing sphere (Hu and
Cheong, 2009; Lim and Barnes, 2008), do we expect
the parallax-based approach to exhibit the same dis-
ambiguation of the bas-relief problem for the frontally-
placed eyes covering a small part of the viewing sphere,
especially in comparison to the conventional two-frame
SFM approached represented by BA?

We applied the extended BA algorithm proposed in
(Hu and Cheong, 2009), with appropriate modifications
taking into account the obvious geometry difference in
the eye configuration. The outline of the extended BA
are as follows: (1) use linear subspace method to obtain
an initial estimate of each camera motion separately;
(2) from the camera motion estimates, obtain an initial
estimate of the global platform motion; (3) bundle ad-
just the global platform motion by minimizing the dif-
ference of the actual flow and the back-projected flow
generated from the platform motion.

The conditions of the comparison are as follows:
b=0.2 m, ε=1 and 0.1, the noise level in the flow is
5%, and the FOV ranging from 10◦ to 60◦. The top 150
pairs of matching points are used by our quasi-parallax
(QP) algorithm as before, whereas 150 feature points
are selected randomly for each camera in the BA algo-
rithm. In Fig. 11, the motion estimation results of the
BA algorithm and our QP method are compared. It is
clear that QP outperforms BA significantly under small
FOV; however, given sufficient FOV (e.g. FOV>45◦),
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(a) (b)

(c) (d)

Fig. 11: Comparison of quasi-parallax (QP) and

Bundle adjustment (BA) methods under different

FOV. For (a) and (b), ε=1; for (c) and (d), ε=0.1.

their performances are comparable since the bas-relief
ambiguity is no longer a problem. In view of earlier re-
sults such as (Hu and Cheong, 2009) for lateral eyes and
the current set of results for frontal eyes, we can con-
clude that the parallax-based method is generally more
effective in removing the bas-relief ambiguity, and this
superiority is independent of having eyes covering dia-
metrically opposite viewing sphere.

5.6 Frontal vs Lateral Configuration

We now directly pit the performance of the frontal eyes
versus the lateral eyes in resolving the bas-relief am-
biguity using the quasi-parallax approach. Again, the
noise level is 5% of the flow. One hundred separate runs
are done for every condition tested and the mean value
is reported. The same forest scene is used as before. The
image content seen by the lateral eyes can be generated
from the same forest scene without any problem, since
the Brown range data is captured from a sensor encom-
passing a horizontal FOV of almost 270◦. We use the
same number of matching points (150 pairs) for both
configurations.

We use the same parameters as in section 5.2 but
with the offset b changing from 0.01m to 0.5m. Fig. 12
shows the results. As was shown in section 5.2, in the
frontal case, larger b results in matching points with
larger depth differences, leading to better results un-
til the improvement in performance plateaus off at b ≈
0.2m. In the lateral case, the performance is basically

(a) (b)

(c)

Fig. 12: Estimation errors of the frontal and lateral

configurations as a function of offset. (a) Translation

direction. (b) Rotation direction. (c) Number of good

matching rays defined as those with cmag > 0.2.

independent of the offset value b, as the two cameras
are always viewing very different parts of the scene,
irrespective of the value of b. Fig. 12(c) plots the re-
lationship between the number of good matching pairs
and b, which also corroborates the preceding conjec-
ture. It also reveals that when the number of matching
points reaches comparable level in both eye configu-
rations, there is then no significant difference in the
performance.

Fig. 13: Estimation results of frontal and lateral

configurations with different scenes.

When we repeat the experiments with different scene
type such as an indoor scene, we obtain very similar re-
sults (Fig. 13). The performance does not depend on
the configuration of the eyes, but more on the number
of good matching points available. In the case of in-
door scene, due to the largely planar surfaces seen in
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such scenes, the number of good matching points in the
frontal eyes may never reach that of the lateral eyes, at
least for the range of practical baselines tested.

From the above, we can conclude that there is no
inherent advantage of having a lateral eye over having
a frontal eye configuration, as far as resolving the bas-
relief ambiguity is concerned, save for the fact that the
lateral eye configuration is always more likely to yield
good parallax measurements.

5.7 Estimation Results under Sideway Gaze

The sideway gaze configuration contains an additional
unknown φ which might introduce new numerical insta-
bility. Here, we perform simulation on the forest scene
as φ varies from -30◦ to 30◦, with other parameters be-
ing: FOV=50◦, b=0.2 m, ε=1, and the noise level is
5%.

(a) (b)

Fig. 14: Estimation results as a function of the

sideway angle.

Fig. 14(a) shows the mean error of the recovered
φ value and Fig. 14(b) depicts the mean error of the
recovered motion parameters over 100 trials. Clearly,
the quasi-parallax framework remains effective when
the sideway angle is within the range of 30◦. The slight
asymmetry of the result is due to the fact that with
different φ, the cameras are observing different parts of
the scene.

5.8 Estimation Results under Convergent

Configuration

The convergent configuration not only introduces an
additional unknown θ, it also results in an incomplete
cancellation of the rotational components in the quasi-
parallax measurements. We perform simulation on the
convergent configuration with θ varying from -30◦ to
30◦, and other parameters same as those in the preced-
ing section.

(a) (b)

Fig. 15: Estimation result as a function of the

convergence angle.

Fig. 15(a) shows the mean error of the recovered
convergence angle θ and Fig. 15(b) depicts the mean
error of the recovered motion directions over 100 trials.
It seems that the quasi-parallax method remains effec-
tive, especially if the total angle between the two Z-axis
2θ is less than 30◦, under which the motion direction
errors remain less than about 10◦. Even as this total
angle 2θ reaches towards the value of 60◦, the error
performance degrades gracefully with errors less than
25◦. Thus, our quasi-parallax method remains a viable
scheme for rapidly estimating heading directions during
locomotion, even if the eyes are moderately convergent
due to fixation, or divergent because the bony orbits
are divergent.

5.9 Sensitivity Analysis

In practice, there might be imperfection in the camera
postures such that they deviate from the canonical con-
figurations modeled in the preceding sections. In this
section, we conduct two experiments to test the sen-
sitivity of our recovery methods when such modeling
errors are present. Referring to Fig. 16, we perturb the
right camera by an angle η so that the binocular setup
deviates from the perfectly parallel case (Fig. 16(a))
and from the symmetrical convergent case (Fig. 16(b)).

(a) (b)

Fig. 16: The right camera perturbed by an angle η

from its (a) frontal, and (b) convergent configurations.
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The other parameters were as follows: FOV=50◦,
b=0.2 m and ε=1. Both indoor and forest scenes were
investigated. We also tested the case of perfect flow
field and when 5% flow noise is added. Fig. 17(a) and
Fig. 17(b) show the mean errors of the recovered trans-
lation direction for the frontal and convergent configu-
rations respectively. On the whole, both the algorithms
for the respective configurations are similarly affected
by the perturbation; they fail to converge when the per-
turbation is more than 4◦. Note that in Fig. 17, the es-
timation result for the case of positive η is better than
that of negative η; this is nothing but the previously
discussed fact that a stronger divergence resulting from
positive η gives rise to better quasi-parallax than the
case of negative η, as the observed scene content be-
tween the two cameras is more different.

From the preceding finding, it is evident that if sig-
nificant eye convergence can take place during locomo-
tion, there is a need to extend the basic model in Section
3, and instead use the extensions discussed in Section
4. While the convergent model is itself also sensitive to
deviation from symmetry, we expect such asymmetry
to be much less prevalent and its range of deviation to
be small. Thus, under most cases, the extended mod-
els presented in this paper should be adequate for most
practical situations.

(a) (b)

Fig. 17: Estimation errors of the translation direction

as a function of the perturbation angle η, for (a)

frontal, and (b) convergent configurations. For each

case, both indoor and forest scenes, as well as noisy

(5% standard deviation) and noiseless flows are

investigated.

6 Experiments on Real Scenes

In our experiment on real data, we mounted a frontally
parallel pair of synchronized cameras on a mobile plat-
form, with the offset b being about 0.1m. We use two
Dragonfly cameras from Point Grey Research with 50◦

FOV each. The frame rate is 30 frames per second and
the image size is 640×480 pixels. Since no ground truth

is available to evaluate our ego-motion estimation result
directly, we compare our results against those obtained
by inputting the four images involved to the Bundler
software (Snavely et al., 2008) which is based on BA.
We also color-code the dense depth maps that are re-
constructed based on the motion parameters estimated
by QP and by Bundler respectively, from which we can
make some observation about the accuracy of the esti-
mated motion parameters. Various indoor and outdoor
scenes are tested and the results are shown below.

The first column of Fig. 18 is the original image of
the scene; the second column depicts the confidence lev-
els of the flow (the red, green and blue pixels represent
the top three confidence levels respectively), and the
third column depicts the 100% dense depth map recon-
structed from QP, displayed as chroma-depth images
with warm colors representing near depths and vice
versa. In order to compensate for the effect of noise
in real images, we regard those pixels with negative
depths or very large positive depths as incorrect, and
instead fill in the depth values from neighboring areas
using a procedure similar to image quilting used in tex-
ture synthesis (Alexei and William, 2001). From visual
inspection, it can be seen that the recovered depth is
in good qualitative agreement with the actual scene. In
particular, scene (a) is a quite textureless case and yet
we can recover a reasonably good dense depth map.

We tabulate in Table 2 the difference in motion es-
timates recovered by the QP approach and the Bundler
approach. As can be seen, the difference is small. Roughly
speaking, indoor scenes (scenes a and b) exhibit greater
differences in the recovered motion estimates. It is not
clear, however, which approach yields a better results
under this kind of scenes. The QP approach suffers from
a lack of high-quality parallax measurement in this kind
of scenes with many planar structures, whereas for the
Bundler approach, the effective FOV is small due to the
lack of distinctive features. To shed some light on this
issue, for each approach, we reconstruct depths from
the estimated motion parameters using the flow equa-
tions. It is known that the recovered depths near the
estimated focus of expansion (FOE) are very sensitive
to the accuracy of the motion estimation (Cheong et
al., 1998). In particular, the reconstructed depths in
the image region between the true and the estimated
FOE are likely to have negative values. Hence we can
use the amount of negative depths as a rough gauge
for the accuracy of the motion estimates. In Table 2,
we list in the last two columns the number of negative
depths recovered from QP and Bundler respectively. In
the case of scene (a), the negative depth region is clearly
larger for the Bundler approach, indicating that its mo-
tion recovery contains a larger error. For other scenes,
we obtain comparable statistics from both approaches.
Thus, at 50◦ FOV, there is generally no difference in
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Table 2: Difference in the motion parameters and the number of pixels with negative recovered depth recovered

by QP and by Bundler .

Translation Rotation Rotation #negative #negative
Scene direction(◦) direction(◦) magnitude(%) depth(QP) depth(Bundler)

a 2.193 1.228 4.1 43 62
b 3.427 1.371 4.7 42 47
c 1.432 0.826 2.0 38 34
d 1.493 0.846 2.2 41 36
e 1.329 0.788 1.7 37 43
f 1.745 0.963 2.6 41 38

performance between the two approaches, corroborat-
ing the results obtained in Fig. 11.

Next, we compare the performance of QP and Bundler
under the difficult scenario of small FOV (25◦) and
scenes depicting man-made environment. Here, the dif-
ference in performance between the two approaches is
much more pronounced. From Fig. 19, we can clearly
see the difference in extent of the negative depth re-
gions (the black regions overlaid on the chroma depth
maps)1. Thus, we can conclude that QP is better able
to resolve the bas-relief ambiguity compared to conven-
tional BA-based approach.

Lastly, we report on the amount of computations in-
curred by the two algorithms. Computation times are
reported for a Dual-Core 2.5 GHz Intel processor exe-
cuting C++ codes. Excluding the preprocessing steps
(flow estimation for QP and SIFT feature detection for
Bundler) and the depth reconstruction step, the average
processing times on 640×480 images are 1.300 sec for
QP and 6.713 sec for Bundler. If we run the algorithms
on larger images (2400×1800), the corresponding pro-
cessing times are 2.337 sec for QP and 11.597 sec for
Bundler.

7 Conclusions

It is a commonplace that binocular overlap in the two
eyes is utilized by the visual system as a form of stereo-
scopic depth cues. Yet empirical observation of the nat-
ural world gives us no warrant for supposing that stere-
opsis exists widely in vertebrates, still less birds. Given
this lack of empirical evidence for stereopsis, and if we
think it unlikely that nature will ignore the binocular
overlap, it should then be possible for the binocular
overlap to be exploited in some other way. In this pa-
per, we showed that the arrangement of two frontally
placed eyes — whose optical axes may or may not be
parallel — can be leveraged for quasi-parallax instead of

1 The geometry of the negative depth areas has been al-
gebraically characterized by the Cremona transformation in
terms of the errors in the estimated camera motion parame-
ters (Cheong and Ng, 1999).

binocular disparities and we have demonstrated its fea-
sibility over both synthetic and real data. Indeed, quasi-
parallax, with the better disambiguation of translation
and rotation over two frames, and the rapid processing
that it entails, seems to us a more realizable and use-
ful alternative during locomotion. It is more realizable
because it involves mere matching of visual rays that
are (approximately) parallel in directions, without the
heavy optimization needed for solving the correspon-
dence problem, and simple linear algebra for solving
the 3D motion parameters. It is useful because it re-
solves the traditional difficulties associated with using
parallax in a single image. It is particularly useful for
locomotion because it provides a reasonably accurate
translation and rotation estimates within a reasonable
range of convergence angle θ and sideway gaze angle φ,
and doing so in a real-time manner without deliberate
processing. We feel that such a solution is not less useful
because it exploits a particular eye topography and its
general validity cannot be established for all θ and φ.
To crave for a generally valid solution for all tasks may
be a deep intellectual need but to allow such a need
to dictate the design of a visual system that can move
about in the real world is a symptom of an equally deep
scientific fallacy.

8 Appendix

Solving the Motion Parameters for Sideway Configura-

tion

To solve the motion parameters and the sideway angle
φ, we use the following scheme which is highly similar to
that of Section 3.3. First, we note that by collecting all
equations (14) from N matching points, we can write
the system of equations in the following form:

A3x3 = b cosφ(B3x4) + b sinφ(B4x5) (23)

Here, x3=(U, V,W )T .
Step 1: We ignore the RHS of (23) at first, and

obtain the initial translation estimate υ̂ up to a scalar
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 18: Results of six real image sequences with

moderate FOV (50◦). For each sequence, the left

image depicts the scene, the middle those matching

points with the top three confidence levels, and the

right the dense depth map reconstructed from QP.

factor s by solving the homogeneous system A3x3=0.
Step 2: Given υ̂, we now turn to equation (15) to
solve for the rotation parameters and the sideway an-
gle φ. Substituting the initial translation estimation
υ̂=(sU, sV, sW )T into (15) and ignoring the higher or-

(a)

(b)

(c)

Fig. 19: Depth reconstruction results under small FOV

of 25◦. The second column is the result from Bundler

and the third column from QP. The black pixel

represents point whose recovered depth is negative.

der terms in the rotational parameters such as αβ and
βγ, we gather all measurements to obtain:

M4 · (α, β, γ,
b cosφ

s
β,
b cosφ

s
γ,
b sinφ

s
α,
b sinφ

s
β)T

= M4 · φ1 = d1

(24)

We can solve the above linear system, obtaining an
initial estimate for the rotation ω̂0=(α̂0, β̂0, γ̂0)T in the
first three components of φ1.

Then we refine the rotation estimate by reinstating
the higher order terms in (15) (by using ω̂0) and solving
the resulting linear system of equations. This process is
repeated until a stable rotation estimate ω̂=(α̂, β̂, γ̂)T

is obtained. Numerical tests in the experimental sec-
tion again show that the estimate always converges to
a stable solution within five iterations.

Step 3: We substitute the current rotation estimate
(α̂, β̂, γ̂)T back into the RHS of (23) and form a new
system of equations:

(A3,−B3x4,−B4x5) · (x3, b cosφ, b sinφ)
T

= Ã3 · x̃3 = 0
(25)

We solve the homogeneous system (25) for an up-
dated translation estimate υ̂. The value of φ is also
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recovered from the relationship between the estimate
for b cosφ and b sinφ. Given the current translation es-
timate υ̂, we repeat the procedure in step 2 to obtain
an updated rotation estimate ω̂. If the current motion
estimate differs from that of the previous iteration by
less than 0.1%, stop. Otherwise, repeat step 3 until the
solution is stable.
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