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Abstract—Reconstructing the exact electromagnetic property of 

unknown targets from the measured scattered field is challenging 

due to the intrinsic nonlinearity and ill-posedness. In this paper, a 

new scheme, named the modified contrast scheme (MCS), is 

proposed to tackle nonlinear inverse scattering problems (ISPs). A 

local-wave amplifier coefficient is used to form the modified 

contrast, which is able to alleviate the global nonlinearity in 

original ISPs without decreasing the accuracy of the problem 

formulation. Moreover, the modified contrast is more suitable to 

be the input of the deep learning scheme, due to the unity bound 

of the modified contrast. Numerical results show that MCS with 

the modified contrast input performs well in both two-

dimensional (2D) and three-dimensional (3D) testing examples in 

real time after offline training process, even in high relative 

permittivity cases. Compared with the dominant current scheme, a 

significant improvement is achieved in reconstructing high contrast 

scatterers.  

Index Terms—Inverse scattering problems, modified contrast 

scheme (MCS), deep learning, two-dimensional and three-

dimensional 

I.  INTRODUCTION 

nverse scattering problems (ISPs) aim to retrieve the nature 

of the unknown object in the domain of interest from the 

measured scattering data. The imaging technique based on 

ISPs plays an important role in various areas, such as non-

destructive examination, remote sensing and biomedical 

imaging [1]–[6]. Due to the intrinsic nonlinearity and ill-

posedness of ISPs, the accurate result is hard to be 

reconstructed from noise-contaminated measured data [7]. 

Inverse scattering algorithms can be divided into two 

categories. The first one is non-iterative algorithms with 

regularization method [8]–[12], which are able to obtain a good 

reconstruction result after making some reasonable 

approximation. The drawback of these non-iterative methods is 

that they are applicable only to weak scatterers. The second one 

is iterative algorithms with regularization method [13]–[22]. 

By minimizing the misfit between the calculated and measured 

data in the cost function, better reconstruction results can be 

obtained iteratively. Moreover, the efficiency of inversion 

procedure can be increased by using multi-resolution method 

[23]. However, these algorithms usually take a large amount of 

time in reconstruction procedure.  

In recent years, learning by examples (LBE) techniques have 

been utilized to solve the ISP. The supervised descent method 

is trained in iterative least-square fashion from the training set 

[24]. Along with the progress in the deep learning algorithm, it 

exhibits extraordinary performance in various areas, which 

attracts many researchers’ interest (see [25] and the reference 

therein). The convolution neural network (CNN) can be 

utilized to learn different kinds of relationships between the 

input and the output, like induced current [26] and contrast 

[27]–[29]. CNN could also be used to assist the iterative 

optimization method, which produces satisfactory results of 

two-dimensional (2D) high permittivity objects [30], [31]. 

Moreover, CNN can be extended to solve three-dimensional 

(3D) ISPs, where the input is the estimated contrast obtained 

through Born approximation [32].  

Inspired by [18], a new scheme, named the modified contrast 

scheme (MCS), is proposed to reconstruct both 2D and 3D 

target objects with high contrast. Here, by high contrast, we 

mean that the contrast of scatterer reaches a level so that state-

of-the-art pixel-based inversion algorithms have great 

difficulties to successfully obtain the reconstruction. The 

computational complexity of MCS is at the same level as the 

dominant current scheme (DCS) proposed in [28]. The 

numerical and experimental results show that the proposed 

MCS with the modified contrast input presents a good 

performance in reconstructing both 2D and 3D targets with 

high contrast. The main contributions of this paper are listed as 

follows. Firstly, the proposed scheme performs well when it 

reconstructs the scatterer with high contrast without adding 

extra computation cost. Compared with DCS, the proposed 

MCS with the modified contrast input presents a better 

generalization ability and is able to reconstruct scatterers with 

higher contrast. Secondly, the ambiguous part of the induced 

current (APIC) itself becomes an unknown in MCS, which 

could remedy the error existing in the dominant part of the 

induced current (DPIC), and also reduce the computational cost 

in the APIC generation. Thirdly, after introducing the local-

wave amplifier coefficient, the modified contrast is more 

suitable to be an input of the deep learning scheme due to its 

unity bound, even when the relative permittivity of scatterer 

becomes large. Finally, we have provided 3D inversion data 

using deep learning, which is rare in the literature. Since most 

real-world ISPs are 3D ones, our presented 3D real-time 

inversion results can be chosen as a benchmark for researchers 

in ISP community to compare with. 

The structure of this paper is listed as follows. Section II 

presents the formulation of the forward problem and the 

inverse problem, the implementation of the MCS, the 
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architecture of the deep learning algorithm and the computation 

complexity of the proposed method. Section III shows the 

numerical comparison results between the MCS and DCS. 

MCS with different inputs are also investigated in this section. 

Then the extension of MCS to 3D reconstruction is given in 

Section IV. Section V shows the inversion results of 

experiment data by MCS. The conclusion is made in section VI. 

II.  MODIFIED CONTRAST SCHEME FOR 2D ISPS 

For the convenience of understanding and description, a 2D 

transverse magnetic (TM) case is given, where the invariant 

longitude is along the z-direction. As demonstrated in Fig. 1, 

nonmagnetic scatterers are placed in the rectangular domain of 

interest (DOI) 𝐷, where the background is free space. Time-

harmonic dependence as exp(-iωt) is implied. Scatterers are 

illuminated by a number of Ni plane waves with electric fields 

𝐸𝑝
𝑖 , p = 1, 2, …, Ni, from different incident angles. The 

scattered fields for each incidence are measured by Nr receivers 

located at rq, q = 1, 2, …, Nr, along a full circular line outside 

D, referred to as the measurement surface S.  

The proposed MCS adopts the U-Net architecture that will 

be presented in Section II C. Since both training and testing 

stages require to generate fast the input of neural network, we 

only run a few iterations when minimizing the objective 

function, which will be detailed in Section II B. Here, we 

denote one-dimensional vector as 𝑎, and 2D tensor as 𝑎̄̄. 

A.  Forward Problem  

The forward problem can be written into two formulas: 

( ) ( )2( ) ( ) , ,  for t i D

D
E E IG d D  = + r r r r r r r  (1) 

( ) ( )2( ) , ,  for s

D

DE I d SG   = r r r r r r  (2) 

Equation (1) is the field equation. 𝐸𝑡 denotes the total electric 

field. 𝐺2𝐷 is the Green’s function for 2D TM case. The induced 

contrast current (ICC) 𝐼(𝒓)  in D is defined as 𝐼(𝒓) =
𝜒(𝒓)𝐸𝑡(𝒓) with the contrast 𝜒(𝒓) = 𝜀𝑟(𝒓) − 1. Equation (2) is 

the data equation. 𝐸𝑠 denotes the scattering electric field on the 

measurement surface S. As in [18], a modified contrast 𝑅(𝒓) =
𝛽(𝒓)𝜒(𝒓)[𝛽(𝒓)𝜒(𝒓) + 1]−1 is proposed to multiply both sides 

of (1), then the contraction integral equation for inversion 

(CIE-I) can be obtained: 

( ) ( ) ( ) ( ) ( )I R I =r r r r r  
(3) 

( ) ( )2( ) ( ) , ,  for i D

D
dGR E I D   + + 

 r r r r r r r  

where 𝛽 is a local-wave amplifier coefficient that amplifies the 

introduced term 𝑅(𝒓)𝛽(𝒓)𝐼(𝒓). To differentiate this term from 

the global term 𝑅(𝒓) ∫ 𝐺2𝐷
𝐷

(𝒓, 𝒓′)𝐼(𝒓′)𝑑𝒓′ , which means 

multiple scattering via the Green’s function 𝐺2𝐷(𝒓, 𝒓′), this 

newly introduced term is called the local term, since the 

induced current at a position does not depend on another 

position in this term. Compared with (1), where the local term 

is 𝐸𝑖(𝒓)  and the global term is ∫ 𝐺2𝐷
𝐷

(𝒓, 𝒓′)𝐼(𝒓′)𝑑𝒓′ , (3) 

contains more portion of local term controlled by the value of 

𝛽. The larger the value of 𝛽, the stronger the local effect. 

The goal of ISPs is to identify the unknown permittivity of 

scatterers by minimizing the misfit between the measured 

scattering electric field and the calculated one. Since the 

objective function is nonlinear, the minimization problem is 

usually solved by iterative algorithms. Due to the intrinsic 

instability and nonlinearity in ISPs, regularization method is 

used to balance between accuracy and stability of the solution. 

Such an optimization procedure can be formulated as follows: 

( ) ( ) ( )
2

1

,:
iN

s

r p r

p

i

p rMin f L E E T   
=

= − +  (4) 

where L is denoted as the forward problem solver, T is denoted 

as the regularization function, and α is the constant 

regularization coefficient. 

B.  Iteration Procedure in MCS 

Here, the DOI is discretized into M × M subunits to apply 

the method of moment (MOM) with the pulse basis function 

and the delta test function, and the center of each subunit is 

located at rn, n = 1, 2, …, M2. After discretization, the 

discretized form of (2) and (3) is obtained [18]: 

2s D

sE G I=   
(5) 

( ) ( ) ( ) 2diag diag diag i D

DI R I E G I   =   + +
 

 (6) 

where 𝛽 , 𝑅 , 𝐼  and 𝐸̄𝑖  are M2 × 1 vectors, and diag(•) is the 

operator that returns a square diagonal matrix with the elements 

of the vector on the main diagonal. 𝐺̄̄𝐷
2𝐷 is an M2 × M2 matrix 

that maps the ICC to the scattered field in D, and 𝐺̄̄𝑠
2𝐷 is an Nr 

× M2 matrix that maps the ICC to the scattering field on S.  

Following the convention in [17], the ICC 𝐼 in (5) and (6) 

could be divided into two parts, which are located in two 

orthogonal and complementary subspaces spanned by the 

singular vectors of 𝐺̄̄𝑠
2𝐷. One is DPIC 𝐼𝑑 within large singular 

value subspace, and the other is APIC 𝐼𝑎 within small and null 

singular value subspace. The result of a singular value 

decomposition on 𝐺̄̄𝑠
2𝐷  is that 𝐺̄̄𝑠

2𝐷 = ∑ 𝑢̄𝑛𝜎𝑛𝑣̄𝑛 𝑛

𝐻
, where 𝑢̄𝑛 

denotes the nth left singular vector, 𝜎𝑛 denotes the nth singular 

value, 𝑣̄𝑛  denotes the nth right singular vector and the 

superscript H denotes the Hermitian operator, i.e., complex 

conjugate transpose. Given the orthogonality of the singular 

vectors, the DPIC 𝐼𝑑  can be calculated from first L large 

singular values and is given as  

( )
d

1

,

H

n

n

n

L
s

n

u E
I v

=


=  (7) 

 

Fig. 1. Typical simulation setup of 2D inverse scattering problems. 
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Different from utilizing FFT-TSOM to generate the APIC 𝐼𝑎 

mentioned in [18], we choose the APIC 𝐼𝑎  itself as the 

unknown. The advantages of such a modification are listed as 

follows. The first one has to do with the appropriate input 

generation for the neural network. For this purpose, we 

implement only two iterations to minimize the objective 

function. In this situation, we prefer using APIC itself instead 

of only low-frequency Fourier bases as adopted in FFT-TSOM. 

Another advantage is that it will cost less time in the iteration 

procedure of MCS, due to the omission of the APIC generation 

procedure in FFT-TSOM. After replacing 𝐼 in (5) and (6) by 𝐼𝑑 

and 𝐼𝑎, a cost function for 𝐼𝑝̅
𝑎 for pth incidence and 𝑅 can be 

obtained: 

( )
2

1 2
2

1

, , , ,
i

Ni

a

N p pa a a

p
p

i

A I B
f I I I R

E=


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



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where  

( ) ( ) ( ) 2diag diag diag D

DA R G  = −  +
 

  

(9) 

( ) ( ) ( ) 2diag diag diagd d d

p

i

p D pp p

DB I R I G I E  =  −   +  +
 

 

As mentioned in [18], the reconstructed contrast by the 

noniterative back-propagation (BP) method is reliable when 

scatterers in D are weak. However, when scatterers become 

stronger, the BP result is far from the true contrast, even 

misleading. To avoid such an influence, the homogeneous 

background medium is set to be the initial guess of the scatterer 

profile. The Polak-Ribière conjugate gradient method [16] is 

used to update the APIC 𝐼𝑎  and the modified contrast 𝑅 

alternatively.  

Since the purpose of minimizing the objective function (8) 

is to generate the input of the neural network, we need to only 

run a few iterations so that it is time-saving in both training and 

testing stages. The implementation is listed as follows: 

Step 1: 𝑛 = 0: Choose the background medium as the initial  

guess of 𝑅0; 𝐼𝑝̅,0
𝑎 = 0; the search direction 𝜌̄𝑝,0 = 0. 

Step 2: 𝑛 = 1. 

Step 2.1: Update 𝐼𝑝̅,𝑛
𝑎 : Calculate gradient 

,
  a

p
p n I

g f=

evaluated at 𝐼𝑝̅,𝑛−1
𝑎  and 𝑅𝑛−1 and written as 
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−
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dp,n is defined by 𝐼𝑝̅,𝑛
𝑎 = 𝐼𝑝̅,𝑛−1

𝑎 + 𝑑𝑝,𝑛𝜌̄𝑝,𝑛  and the 

minimizer is 𝑑𝑝,𝑛 = Num/Den, where the numerator 

and denominator are 

              ( ), ,
,

H
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Num g= −    

              

2 2
2

, ,

2 2

,

D

p n p ns
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(11) 

respectively. 

Step 2.2: Update 𝑅𝑛 : Update (8) with the updated 

APIC 𝐼𝑝̅
𝑎 . Then the function becomes quadratic in 

terms of 𝑅𝑛 for the mth cell and the solution is  

( )
2

, ,,

1 1

( ) ( ) ( ) ( ) / ( )
i iN N

n p n p np n

p p

R m m m I m m  


= =

   
 =      

   
 

 (12) 

in which 𝜓
𝑝,𝑛

= 𝑑𝑖𝑎𝑔(𝛽) ⋅ 𝐼𝑝,𝑛 + 𝐺̄̄𝐷
2𝐷 ⋅ 𝐼𝑝,𝑛 + 𝐸̄𝑝

𝑖 , 

and * denotes the conjugate operation. 

Step 3: 𝑛 = 2. 

Step 3.1: Update 𝐼𝑝̅,𝑛
𝑎 : Re-execute Step 2.1 with the 

updated 𝑅𝑛. 

Step 3.2: Update 𝑅𝑛 : Update (8) with the updated 

APIC 𝐼𝑝̅
𝑎. We then calculate the 𝑅𝑝,𝑛 for mth cell of 

pth incidence as the minimizer of (8) and the solution 

is 

( )
2

, , ,,( ) ( ) ( ) ( ) / ( )p n p n p np nR m m m I m m  
  =  
    .

 (13) 

For the convenience of implementation, the value of 𝛽(𝑚) 

is chosen to be a constant 𝛽0 for all subunits. The influence of 

the global nonlinearity 𝐺̄̄𝐷
2𝐷 ⋅ 𝐼𝑎 can be suppressed by choosing 

a large value 𝛽0.  

It is important to discuss the motivation of using modified 

contrast scheme. Firstly, compared with the DCS model 

mentioned in [28], the nonlinearity of the problem caused by 

multiple scattering can be alleviated without sacrificing the 

accuracy of the physical model. A large value of 𝛽 gives more 

weight to local terms, i.e., the multiple scattering term is 

depressed, and consequently, the inversion for a large value 𝛽 

is close in spirit to Born approximation that is a well-known 

linear inversion model. For more details, please refer to [18]. 

Secondly, the value range of the modified contrast function R 

is between 0 and 1 if 𝛽0  has a positive real part and a 

nonpositive imaginary part, and such a unity bound would 

facilitate the learning process of the neural network, which 

makes it more suitable to be the input of the neural network. 

C.  U-Net Deep Learning Architecture in MCS 

Here, the U-Net deep learning architecture adopted in [33] 

is selected as the backbone of the learning scheme in MCS. As 

illustrated in Fig. 2, the U-Net architecture can be divided into 

two branches, the extracting branch and expanding branch. The 

extracting branch consists of the convolution block (3×3 

convolution kernels with 1×1 convolution stride, batch 

normalization and rectified linear unit) and the down-sampling 

model (2×2 max-pooling unit). The expanding branch consists 

of the convolution block and the up-sampling model (2×2
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transposed convolution kernels with 2×2 convolution stride). 

Moreover, the result of the convolution model in the extracting 

branch is concatenated with the result of the up-sampling 

model in the expanding branch to improve the reconstruction 

speed in the expanding branch. The mean square error (MSE) 

[34] is selected as the cost function, and ADAM is chosen as 

the optimizer [35].  

As for the deep learning process, there are two options for 

the input and the output of each channel of the U-Net deep 

learning architecture. One is the contrast 𝜒̄̄𝑝 = 𝑡𝑒𝑛 {𝜒𝑝} that is 

further derived from the modified contrast in (13), and the 

exact contrast is the label of the U-Net, where ten{•} denotes 

an operation that obtains an M × M matrix by reshaping an M2 

× 1 vector. The other one is the new modified contrast 𝑅̄̄𝑝 =

𝑡𝑒𝑛{𝑅̅𝑝 } with a new constant value 𝛽0, where 𝑅̅𝑝  is obtained 

from the definition 𝑅̅𝑝(𝑚) = 𝛽0𝜒̅𝑝(𝑚)[𝛽0𝜒̅𝑝(𝑚) + 1]−1, and 

the corresponding exact modified contrast is set as the label of 

the U-Net. The new constant value 𝛽0 for the input generation 

provides us a freedom to control the performance of the U-Net. 

The MCS with the contrast input and output is referred to as 

MCSC, and the MCS with the new modified contrast input and 

output is referred to as MCSM. There are two main differences 

between the inputs of MCSC and MCSM. The first one is the 

physical meaning. The other one is the value range of the input. 

The differences are summarized in Table I. For comparison, the 

MCSC and MCSM inputs of the high contrast profile are 

shown in Fig. 3. 

D.  Computational Complexity 

For the MCS, the computational complexity is 

𝑂(𝑁𝑖𝑀
2 𝑙𝑜𝑔 𝑀2)  when computing 𝐺̄̄𝐷

2𝐷 ⋅ 𝐼  in (10) via FFT 

algorithm. In order to get the DPIC 𝐼𝑑 in (7), a thin SVD is 

implemented on 𝐺̄̄𝑠
2𝐷  and the computational complexity is 

𝑂(𝑁𝑟
2𝑀2). Compared with DCS, the computational cost of the 

APIC 𝐼𝑎 generation is avoided. 

For the U-Net model, the major computational complexity is 

the convolution unit. For example, if the map size and 

convolution kernel size are 𝑀𝑧  ×  𝑀𝑧  and 𝐾𝑧 × 𝐾𝑧 

respectively, the number of input feature maps and output 

 
feature maps are 𝑃𝑖 and 𝑃𝑜 respectively, then the computational 

complexity of the convolution is 𝑂(𝑃𝑖𝑃𝑜𝑀𝑧
2𝐾𝑧

2). For the first 

convolution block of U-Net in this paper, the value of 𝑃𝑖 is the 

number of incidences 𝑁𝑖, the map size 𝑀𝑧 is the discretization 

value M and 𝐾𝑧 is 3 for the 3×3 convolution kernel. Such a 

computation can be accelerated by using GPU. 

III.  2D NUMERICAL RESULTS 

In order to quantitatively evaluate the reconstruction 

performance of the proposed MCS in the inverse scattering 

problem, the difference between the target scatterer and the 

output of the U-Net is defined as the relative error (Re), 

formulated as follows:  

                      
2

2

2
1

1 ( ) ( )

( )

tr
M

e

r

m m
R

M m

 

=

 
− =

 
 

            

 

(14) 

where 𝜀
𝑡𝑟

 is the true relative permittivity distribution of the 

scatterer, 𝜀 is the reconstructed result of the MCS, and 𝑀2 is 

the total discretization number in DOI. 

In the setup of the simulation, the size of DOI is 2 × 2 m2. 

For the forward problem, the synthetic scattered fields are 

calculated by the MoM with M = 100. To avoid the inverse 

crime, a 64 × 64 discretization of D is implemented in the 

inverse problem. There are 16 incident plane waves and 32 line 

receivers evenly placed on the circle of radius 4λ centered at 

the coordinate origin, where λ is the wavelength in free space. 

The operating frequency is 400 MHz. Additive white Gaussian 

noise with a level of 5% has been added to the synthetic 

scattered electric field.  

 

Fig. 2. U-Net architecture. 

TABLE I 

DIFFERENCES BETWEEN THE INPUTS OF MCSC AND MCSM 

 MCSC MCSM 

Input Type Contrast 𝜒̿ Modified Contrast 𝑅̿ 

Value Range 
Can be either more than 

one or less than one 
Always less than one 

 

 

Fig. 3. The high contrast circular scatterer profile. (a) Ground truth. (b) MCSC 

input. (c) MCSM input. 
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TABLE II 

AVERAGE Re OF DIFFERENT METHODS 

 DCS MCSM MCSC 

Example 1: 

Weak circular cylinder 
3.59% 3.63% 3.80% 

Example 2: 

Strong circular cylinder 
23.92% 18.54% 21.9% 

Example 3: 

MNIST 
12.32% 11.91% 13.0% 

 

For MCS, L is selected to be 15 following the standard 

mentioned in [28], and a large constant value 𝛽0 = 6 is used in 

the MCS iteration procedure to obtain the modified contrast 

and consequently the contrast. The MCSC uses the so-obtained 

contrast as the input to predict the contrast as the output. In 

MCSM, U-Net chooses a new modified contrast as the input 

and output, where the new modified contrast is calculated from 

a small value of 𝛽0 = 0.5, which is motivated by the gradually 

decreasing 𝛽 adopted in [18]. To be specific, MCSM first runs 

two iterations that are presented in Section II.B with a large 

value of 𝛽0 to generate the input of the U-Net, which contains 

low spatial-frequency component of the scatterer. Next, the U-

Net aims to recover the high spatial-frequency component, and 

thus a small value of 𝛽0  is needed in order to include the 

multiple scattering effect. 

In the training process, Python 3.7 is used to implement the 

U-Net architecture. 500 epochs are executed on NVIDIA RTX 

2060 GPU (6 GB), where each epoch costs approximately 15 

seconds. In each epoch, 1900 training samples are used to train 

the U-Net, and 100 samples are used to validate the training 

performance. In the testing process, 20 new examples are 

selected to test the reconstruction ability of the U-Net, and each 

reconstruction result can be obtained within one second. For 

practical cases, the time cost for the training process can be 

further reduced by utilizing more powerful GPUs or parallel 

calculation. In Sections III A-B, neural networks deal with in-

range cases, where test cases are within the range of training 

set. In Sections III C, the comparison between the MCSC and 

MCSM is discussed. To test the generalization ability, out-of-

range cases are tested in Section III D. 

A.  Circular Cylinder Dataset 

Here, circular cylinder samples randomly generated by 

MATLAB are used as the training profile. Due to the size 

limitation of DOI, the radius of random cylinders is between 

0.15 and 0.4 m, and the number is between 1 and 3. The relative 

permittivity is also limited in a range to better compare the 

results in the same level of nonlinearity.  

In Example 1, weak cylinders are chosen as the training 

samples and testing samples, the relative permittivity of which 

is between 1.5 and 2.0. As shown in Fig. 4, MCSM presents 

good reconstruction ability in weak scatterers as well as DCS, 

which are close to true profiles. The average Re of 20 examples 

is listed in Table II. The value of average Re demonstrates that 

the reconstruction performance of these two schemes is at the 

same level when being applied in weak scatterers. 

In Example 2, stronger cylinders are used to train and test 

 
the U-Net, the relative permittivity of which is in the range 

from 3.5 to 4.0. According to Fig. 5(b), a large distortion exists 

in reconstruction results of DCS. The boundary of two 

scatterers is not reconstructed well in Test Profile#2 of DCS, 

and a large discrepancy appears in the reconstructed Test 

Profile#3 of DCS, which indicates the limitation of the DCS. It 

can be observed from Fig. 5(c), MCSM could still reconstruct 

the scatterer with satisfactory results. The relative error Re of 

Example 2 is given in Table II. MCSM exhibits better 

performance than DCS when the relative permittivity of 

scatterers increases. There are two reasons for the better 

performance of MCSM for high contrast scatterers. The first is 

that MCSM utilizes APIC to a greater extent in the process of 

generating the input of neural network. Different from DCS, 

where APIC is approximated by low-frequency components, 

MCSM considers all frequency components. Moreover, a large 

value of 𝛽0  used in generating the input of U-Net could 

suppress the global-wave behaviors and consequently reduce 

the nonlinearity caused by the stronger scatterers. Therefore, a 

good estimation of the contrast distribution can be obtained in 

limited iterative steps. The second reason is that the U-Net 

deals with a less nonlinear relationship between the input and 

output of MCSM than the counterpart of DCS, which in fact 

can be mathematically traced back to [18]. 

B.  MNIST Dataset 

The widely used dataset MNIST are also used as training and 

testing samples, denoted as Example 3 [36]. The digit is 

selected to represent scatterers with random relative 

 

Fig. 4. Example 1: Reconstruction results of weak circular scatterer profiles. 

(a) Ground truth. (b) DCS results. (c) MCSM results. (d) MCSC results. 
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permittivity ranging from 2.5 to 3.0. Reconstructed digit 

profiles are illustrated in Fig. 6. Fig. 6 shows that both DCS 

and MCSM could generate satisfactory results, but some 

distortion appears in DCS results. The relative error Re of 

Example 3 is given in Table II. 

C.  MCS performance with different inputs 

To investigate the influence of the input on the U-Net 

architecture performance, reconstruction results by MCSC are 

also given in Examples 1-3. From the comparison between Fig. 

4(c) and 4(d), the influence of the input is weak when scatterers 

in D is weak. With the relative permittivity of scatterers in D 

increasing, the input influence becomes more significant. As 

demonstrated in Fig. 5(c) and 5(d), some artifacts appear in the 

reconstruction Profile#2 via MCSC, while MCSM still offers a 

satisfactory reconstruction result. The average Re of 20 

examples is listed in Table II. Compared with MCSC, the 

modified contrast is more suitable to be the input of the U-Net 

architecture. The reason is that the value of the modified 

contrast is still less than one even when the relative permittivity 

of scatterers becomes stronger. 

D.  Generalization Ability 

To further test the generalization ability of the MCSM, 

several profiles are used to test the network performance 

trained by Example 1. Such testing profiles are very different 

from training samples, which never appears in the training 

dataset. In Fig. 7(a), an Austria profile with 𝜀𝑟=1.5 is used. The 

discrepancy between the reconstructed Austria via MCSM and 

true Austria profile is small. Although the gap between the ring 

and cylinders is unclear in the MCSM result, the relative error 

Re is just 7.02%. For Fig. 7(b), circular cylinders within the 

range from 2.0 to 2.5 are utilized, which are higher than the 

range of training samples. MCSM could provide a satisfactory 

result while DCS presents a distorted one. To further verify the 

generalization ability of MCSM, MNIST within the range from 

2.0 to 2.5 are selected, the shape and relative permittivity of 

which are both new to the trained network. As shown in Fig. 

7(c), the shape and position of MNIST profile can still be 

reconstructed well by MCSM, even though the nonlinearity of 

the scatterer increases. To quantify discrepancy in 

reconstructed profiles, all Re of MCSM results are calculated 

and given in Table III. It can be observed that MCSM 

outperforms DCS in terms of generalization ability. 

IV.  3D NUMERICAL RESULTS 

In 3D setup, the size of DOI is 1 × 1 × 1 m3. For the forward 

problem, the synthetic scattered fields are calculated by the 

MoM using a 32 × 32 × 32 discretization. To avoid the inverse 

crime, a 16 × 16 × 16 mesh of DOI is used in the inverse 

problem. There are 60 linearly-polarized transmitters and 

receivers evenly placed on three circles of radius 3 m centered 

at the coordinate origin, which are in x-y, y-z and x-z planes. 

In each circle, there are 20 linearly-polarized transmitters and 

receivers that are uniformly distributed on the circle. The 

 

Fig. 5. Example 2: Reconstruction results of strong circular scatterer profiles. 

(a) Ground truth. (b) DCS results. (c) MCSM results. (d) MCSC results. 

 

Fig. 6. Example 3: Reconstruction results of MNIST profiles. (a) Ground truth. 

(b) DCS results. (c) MCSM. (d) MCSC. 



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 7 

 
TABLE III 

Re OF RECONSTRUCTED PROFILES SHOWN IN FIG. 7 

 DCS MCSM 

Austria 8.13% 7.02% 

Cylinder 19.82% 13.64% 

MNIST 17.71% 9.14% 

 

 
polarization of transmitters in the y-z plane is x-polarized, and 

those in the x-z and x-y planes are in the y- and z- polarized, 

respectively. The operating frequency is 300MHz. White 

Gaussian noise with a level of 5% is added to the synthetic 

scattered electric field. Here, L is selected to be 40. The setup 

for the numerical test is demonstrated in Fig. 8. 

Here, 3D U-Net is used as the backbone of the deep learning 

algorithm for 3D ISPs [37]. The basic structure of 3D U-Net is 

similar to the 2D U-Net mentioned in Section II, like the layer 

number and the kernel number in each layer. In 3D U-Net, 3D 

convolution kernel (3×3×3), 3D max-pooling unit (2×2×2) and 

3D transposed convolution kernel (2×2×2) are used. The 

sample number in 3D U-Net is the same as that stated in the 2D 

 
U-Net training process. The MSE is still selected as the cost 

function for training, and ADAM is chosen as the optimizer. 

A.  3D Inhomogeneous Cubic Scatterers 

To examine MCSM’s ability to reconstruct 3D 

inhomogeneous objects, random 3D cubic scatterers with the 

relative permittivity range between 1.5 and 2.0 are firstly 

selected as the training sample. The edge length of random 

cubes is between 0.2 and 0.3 m, and the number is between 1 

and 3. Only the sectional view of the reconstructed target by 

MCSM is presented in Fig. 9, due to the lack of DCS 

information in 3D sample reconstruction. It can be seen from 

Fig. 9(b) that cubic scatterers with different relative 

permittivity can be reconstructed by the proposed MCSM. 

Although the scatterer number increases in test profile #2, the 

boundary of each cubic scatterer is still reconstructed well, 

which indicates that the MCSM is able to reconstruct 3D 

inhomogeneous targets. The average Re of 20 testing examples 

is only 9.86%. 

B.  3D Homogeneous MNIST Scatterers 

To test MCSM’s ability to reconstruct 3D object with high 

relative permittivity, random 3D MNIST is selected as the 

training sample. 3D MNIST is obtained by stretching the 2D 

MNIST sketch along z-axis. Then the obtained 3D MNIST is 

rotated by random degrees around an axis passing through the 

origin of coordinate. For better understanding, the generation 

procedure is illustrated in Fig. 10. The relative permittivity 

range of 3D MNIST model is set between 3.5 and 4.0. 

According to Fig. 11(b), although there is a discrepancy 

existing in the relative permittivity value of the MCSM 

reconstruction results, the shape and position of the target are 

reconstructed well, which indicates MCSM is still able to 

 

Fig. 7. Generalization ability. (a) Austria. (b) Cylinder. (c) MNIST. 

 

Unknown

x
y

z

 

Fig. 8. Simulation setup for 3D ISPs, where the red cube is the DOI. 

 

 

Fig. 9. Sectional view of 3D test cubic profiles. (a) Exact permittivity 

distribution. (b) Reconstructed permittivity distribution in the DOI. First row, 

from left to right, shows cross sections of the scatterer with section index p = 

1 to 4; second row from left to right, shows cross sections of the scatterer with 

p = 5 to 8; and so forth. The x-axis and y-axis refer to the indexes of m and n, 

respectively. 
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reconstruct 3D target with high contrast. The average Re of 20 

testing examples is 20.84%. 

C.  3D Generalization Ability 

In order to investigate the 3D generalization ability of the 

proposed MCSM, 3D MNIST objects that have different 

relative-permittivity ranges from the training range are utilized 

for testing. The selected relative-permittivity ranges of testing 

samples are from 3.0 to 3.5 and from 4.1 to 4.5, respectively. 

The former testing range is lower than the training range (from 

3.5 to 4.0), whereas the latter is higher. The amount of testing 

samples for each relative-permittivity range is 20. The 

sectional view of reconstructed 3D MNIST profiles are 

presented in Fig. 12 and Fig. 13, respectively. The output of 

MCSM still performs well when tested by out-of-range 3D 

samples, indicating that the proposed MCSM could be a good 

candidate for fast 3D reconstruction. The respective average Re 

are 20.45% for profiles within the range between 3.0 to 3.5 and 

23.78% for profiles within the range between 4.1 to 4.5. 

 

 

V.  EXPERIMENTAL RESULTS 

The measured data of ‘Diel’ and ‘Two Diel’ profiles in [38] 

are used to validate the proposed MCSM performance. The 

radius of the cylindrical object is equal to 0.015 m and the 

relative permittivity is 3±0.3. The transmitter is rotated with a 

step of 10° from 0° to 350°, and the receiver is rotated with a 

step of 5° to receive the scattered field for each incidence. For 

each incidence, the minimum angle between the transmitter 

and the receiver is of 60°. The cylinder in ‘Diel’ profile is 

centered at (0 m, 0.03 m), and cylinders in ‘Two Diel’ profile 

are located at (0 m, 0.045 m) and (-0.012 m, -0.045 m). The 

operating frequency is 3 GHz. The size of DOI is 0.15×0.15 

m2. L is chosen to be 7, since the 7th singular value is about 50% 

 

Fig. 10. The 3D MNIST generation procedure. 

 

Fig. 11. Sectional view of 3D test MNIST profiles. (a) Exact permittivity 

distribution. (b) Reconstructed permittivity distribution in the DOI. The index 

of sections can be found in the caption of Fig. 9.   

 

Fig. 12. Sectional view of reconstructed 3D MINIST with the relative 

permittivity range between 3.0 and 3.5. (a) Exact permittivity distribution. (b) 

Reconstructed permittivity distribution in the DOI. The index of sections can 

be found in the caption of Fig. 9.   

 

Fig. 13. Sectional view of reconstructed 3D MINIST with the relative 

permittivity range between 4.1 and 4.5. (a) Exact permittivity distribution. (b) 

Reconstructed permittivity distribution in the DOI. The index of sections can 

be found in the caption of Fig. 9. 
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of the maximum singular value [28]. Experimental profiles are 

tested by the network trained by 1,000 random cylinder 

samples with the range of relative permittivity (2.7-3.3). Re of 

‘Diel’ profile is 10.68% via DCS and 10.12% via MCSM. Re 

of ‘Two Diel’ profile is 16.10% via DCS and 14.01% via 

MCSM. Typical reconstructed results for experimental data are 

shown in Fig. 14. 

VI.  CONCLUSION 

In this paper, an improved scheme, named MCS, is proposed 

to tackle nonlinear ISPs. Under the MCS scheme, both 2D and 

3D real-time reconstruction results are provided via the trained 

U-Net learning architecture.  

When reconstructing high-contrast scatterers, MCS 

outperforms DCS by applying the new CIE-I inversion model to 

generate the input for the U-Net, where the local-wave term is 

amplified to suppress the multiple scattering and thus the 

nonlinearity of the problem is reduced. Moreover, the APIC 

itself becomes the unknown in MCS. In this way, the 

computational cost of the APIC generation is avoided, and the 

existing error in the DPIC is remedied. 

Although the U-Net adopted in MCS is an existing neural 

network architecture, we have proposed for the first time two 

input-output pairs in this paper, i.e., the MCSC and MCSM 

schemes. Compared with MCSC, MCSM performs better in 

both numerical and experimental examples with high contrast 

scatterers. Due to the good generalization ability of MCSM, it 

seems promising to apply MCSM in various testing situations. 

One reason for the better performance of MCSM is that the range 

of the modified contrast is always between 0 and 1, which makes 

it more suitable to be the input of the U-Net. When MCSM is 

used to reconstruct scatterers with high relative permittivity, this 

intrinsic property greatly reduces the training difficulty.  

Finally, we have provided 3D inversion data using deep 

learning, which is rare in literature. Since most real-world ISPs 

are 3D ones [39], our presented 3D real-time inversion results 

can be chosen as a benchmark for researchers in ISP community 

to compare with. 
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