
 

Abstract— Inspired by a discretized formulation resulting from 

volume integral equation and method of moments, we propose an 

electric flux density learning method (EFDLM) using cascaded 

neural networks to solve three-dimensional electromagnetic (EM) 

scattering problems that involve lossless dielectric objects. The 

inputs of the proposed EFDLM consist of the contrast of the 

objects, the projections of incident field and the first-order 

scattered field onto the testing functions, and the output is chosen 

as the normalized electric flux density. Analyses on the 

computational complexity, computation time and memory usage 

of the EFDLM are conducted to fully understand its fundamental 

features. Numerical simulations clearly show that the proposed 

method outperforms black-box learning method, which chooses 

the contrast and incident field as its inputs and the total electric 

field as its output. It is also demonstrated that the EFDLM is able 

to solve the scattering problems of dielectric objects with higher 

contrasts by increasing the number of sub-networks. Further, the 

pros and cons of the proposed learning approach for solving EM 

scattering problems are discussed, where some caveats are 

provided to avoid using learning approaches in a black-box way. 

Index Terms—Electromagnetic field, deep learning, volume 

integral equations 

I. INTRODUCTION 

nalysis of electromagnetic (EM) scattering from 

three-dimensional (3D) dielectric objects has been in great 

demand as a basic necessity of many application areas, such as 

medical imaging, remote sensing, etc. The commonly-used 

numerical methods for this kind of problem include finite 

difference method (FDM) [1], [2], finite element method 

(FEM) [3] and method of moments (MoM) [3], among others.  

Compared to other numerical methods, the MoM avoids 

numerically truncating an infinite domain to a finite domain 

due to its use of appropriate Green’s function. Note that the 

truncation process usually requires sophisticated absorbing 

boundary conditions [4]. To solve the matrix equations 

formulated by the MoM, iterative methods [5]-[7] are 
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commonly used, which have higher computational efficiency 

than direct methods such as Gaussian elimination method. 

Iterative methods could be accelerated using different kinds of 

fast algorithms. Typical fast algorithms include impedance 

matrix localization (IML) [8], complex multipole beam 

approach (CMBA) [9], multilevel matrix decomposition 

algorithm (MLMDA) [10], adaptive cross approximation 

(ACA) algorithm [11], multilevel fast multipole algorithm 

(MLFMA) [12], fast Fourier transform (FFT)-accelerated 

methods [4], [7], [13], etc. For 3D dielectric scatterers, the 

FFT-accelerated methods use uniform grids and are easy to 

implement. To formulate an FFT-accelerated method, integral 

equation has to be converted to its discretized matrix equation 

by choosing appropriate basis functions and testing functions. 

To solve the volume integral equation (VIE) of 3D dielectric 

scatterers for electric field or electric flux density, pulse basis 

functions should be avoided since they will produce fictitious 

charge densities in boundary of cells and lead to inaccurate 

solutions for high contrast objects [14]. To address this issue, 

those basis functions that are able to form continuous electric 

flux density or electric field within homogeneous medium, such 

as volumetric rooftop functions, should be used [6], [7], [15].  

With the development of high-performance computing 

facilities, deep learning (DL) techniques have been intensively 

studied and widely applied to solve EM scattering problems 

[16]. For electrostatic problems, fully-connected neural 

networks and convolutional neural networks (CNNs) are used 

to solve the Poisson’s equations [17]-[20]. For 

two-dimensional (2D) dielectric scattering problem of 

transverse electric (TE) polarization, an improved U-net based 

method is proposed to solve its magnetic field [21]. For 

transverse magnetic (TM) polarization, a generative adversarial 

network is used to calculate the induced current in [22] and 

cascaded neural networks that employ the residual of 

discretized electric field integral equation (EFIE) are used to 

solve for the total electric field in [23], [24]. For modelling 

electrically large objects, the neural networks have been used to 

accelerate MLFMA [25]. To model the scattering of TM 

polarization from 2D conducting objects, combined field 

integral equation (CFIE), combining the EFIE and magnetic 

field integral equation (MFIE), has been solved by use of a 

cascaded neural network [26]. DL techniques have also been 

applied to predict the scattered field of different structures such 

as doubly periodic structures [27], nano-structures [28], [29], 
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dielectric metasurfaces [30]. We find that, to obtain satisfying 

results for scattering problems of dielectric objects, we could 

either use a powerful neural network or provide more 

information about wave physics to a neural network. 

In this paper, we propose a cascaded neural network, referred 

to as electric flux density learning method (EFDLM) that is 

inspired by iterative solvers of EM scattering problems 

involving 3D lossless dielectric scatterers. To avoid using 

machine learning in a black-box way, we should fully make use 

of insightful domain knowledge on wave scattering, which 

presents well-known mathematical properties (or even 

analytical formulas) that do not need to be learned by training 

with a lot of data. Under the general guidelines of how 

profitably combining DL with the available knowledge on 

underlying physics of wave scattering, we have carefully 

looked into the structure of the iterative solver of discretized 

VIE and proposed the EFDLM. The contributions of this paper 

are fourfold as follows: 

1. The proposed method is based on the discretized VIE 

that uses the volumetric rooftop functions as both 

basis functions and testing functions. Note that the 

normal component of the electric flux density is 

continuous at boundaries of dielectric objects, 

whereas the normal component of the electric field is 

not. Therefore, the discretized VIE is formulated in 

terms of the electric flux density instead of the electric 

field [15]. Since the proposed neural network 

implicitly learns the process of solving the VIE, we 

choose the electric flux density as the output of the 

network. 

2. The projection of the first order scattered field onto the 

testing functions is introduced as an additional input of 

the neural network. Since the first-order scattered field, 

defined in the Born series of the total electric field, 

involves the Green’s function, the input of the 

EFDLM has in certain degree involved wave physics 

inside. 

3. EFDLM consists of several sub-networks that are 

cascaded together, where the residual of the VIE 

corresponding to the output of the previous 

sub-network is calculated and subsequently is chosen 

as the input of the next sub-network. This kind of 

cascade is motivated by the traditional iterative solver 

for scattering problems. The residual helps the next 

sub-network to determine a new searching direction 

and measures how good the output of the previous 

sub-network is. 

4. By conducting the analyses on the computational 

complexity, computation time and memory usage of 

the proposed EFDLM, we discuss the pros and cons of 

the learning approach for solving EM scattering 

problems, where some caveats are provided to avoid 

using learning approach in a black-box way. 

The structure of the paper is as follows. In Section II, the 

formulation of discretized equation of VIE using volumetric 

rooftop functions as both basis functions and testing functions 

is provided. The proposed cascaded neural network for solving 

3D EM scattering problem is also presented. In Section III, the 

comparison between the EFDLM and the black-box method, as 

well as the comparison between EFDLMs using different 

number of sub-networks is provided. In Section IV, the 

conclusions and discussions are given. 

II. FORMULATIONS 

A. Three-Dimensional Scattering Problem 

For 3D scattering problems of dielectric objects, the VIE 

[15] is defined as  

 
2 inc

0

( )
( ) ( ) ( )

( )
k


  

D x
A x E x

x
,  (1) 

where 𝐱 = (𝑥1, 𝑥2, 𝑥3), D is the electric flux density, 𝐄inc is 
the incident electric field, 𝜀  is the permittivity, 𝑘0  is the 

wavenumber of the free space. A is the vector potential that is 

given by: 

 

0

1
( ) ( ') ( ') ( ') '

V
G d


 A x x x x D x x , (2) 

where 𝜀0 is the permittivity of the free space, the normalized 

contrast 
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is related to the well-known contrast 𝜒(𝐱) by 𝛽(𝐱) =
𝜀0

𝜀(𝐱)
𝜒(𝐱), 

and the 3D scalar Green’s function is 
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By applying the testing function 𝛹𝑀,𝑀,𝑃
(𝑝)

 to (1), we obtain 

[5]-[7], [15]: 
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where 𝑝 = 1,2,3 is the index of the three coordinate directions, 

and 𝑀,𝑁, 𝑃 ∈ [1, 𝐿] are the index of grids for the scattering 

domain V with dimension (𝐿 − 1)∆𝑥 × (𝐿 − 1)∆𝑥 × (𝐿 −
1)∆𝑥. The electric flux density, the vector potential and the 

incident field are represented by the volumetric rooftop basis 

functions: 
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where 𝑞 = 1,2,3, and 𝐼, 𝐽, 𝐾 ∈ [1, 𝐿]. After the substitution of 

(6)- (8), (5) become: 
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where 𝛿𝑝,𝑞  equals to 1 when 𝑝 = 𝑞  and 0 otherwise. The 

volumetric rooftop basis function for the first coordinate 

direction is defined as 
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where 𝛬(𝑥; 2∆𝑥)  is a one-dimensional triangle function 

centered at x with support 2∆𝑥, 𝛱(𝑥; ∆𝑥) is a one-dimensional 

pulse function centered at x with support ∆𝑥 , 

{ 𝑥1;𝑀,𝑁,𝑃, 𝑥2;𝑀,𝑁,𝑃 , 𝑥3;𝑀,𝑁,𝑃}  denotes the coordinates of the 

centers of the volumetric grids. The volumetric rooftop basis 

functions for the second and the third coordinate directions are 

defined in a similar way as in (14) [15]. 

The coefficients of the vector potential in (9) can be 

calculated by [15]: 
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In the scattering problem, (9) could also be simplified and 

written as [7]: 

 
opr inc=L d e  , (18) 

where 𝐞inc, 𝐋opr are known and d is unknown. From (6), we 

understand that d represents the coefficients of the normalized 

electric flux density using volumetric rooftop functions as basis 

functions. On the other hand, d could also be regarded as the 

normalized electric flux density at the centers of the basis 

functions. 𝐞inc is the projected incident field onto the testing 

functions and 𝐋opr contains the information about the contrast 

and the Green’s function. To solve the scattering problem, the 

normalized electric flux density d could be calculated using 

FFT-accelerated iterative methods, such as the transpose-free 

quasi-minimal residual-FFT (TFQMR-FFT) method [7]. A key 

step in iterative solver is: 

 
n n-1= +Δd d d , (19) 

where 𝐝n is the result at the nth iteration step and ∆𝐝 can be 

obtained by solving a least square problem in an approximated 

way,  
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where (𝐞inc − 𝐋opr𝐝𝑛−1) is defined to be the residual of 𝐝n−1 

in (18). 

B. EFDLM 

1) Inputs, Output and Loss Function 

The EFDLM consists of cascaded sub-networks, as shown in 

Fig. 1(a). Each sub-network is a variant of CNN, or more 

precisely the U-net. For convenience, we refer to the nth 

sub-network as CNN_n, which is shown in Fig. 1(c). 

Inspired by the formulation in (9) and (18), we propose a 

cascaded neural network to solve for the normalized electric 

flux density. The total electric field could be easily calculated 

from the predicted normalized electric flux density as the ratio 

of electric flux density in (6) to the permittivity. 

It is well-known that the total electric field could be 

represented using the Born series [31] as  

 

t inc inc inc0 0 0

0 0 0

inc0 0 0

0 0 0

( ) ( ( ))

( ( ( )))...,

d d d

d d d

G G G

G G G

     

  

     

  

  
  

  


E E E E

E

  (21) 

where 

 2

0( )( ) ( ) ( ') ( ') 'd
V

G k G d  f x x x f x x   (22) 

For electrically small and low contrast scatterers, the Born 

series is convergent. The second term on the right hand side of 

(21) is the first-order scattered field. Motivated by the Born 

series, the inputs of the first sub-network of the proposed 

EFDLM consist of the contrast 𝛘  in (23), the projection of 

incident field 𝐞inc  in (24) and the projection of first order 

scattered field 𝐄first in (25), which are given as: 

 
, , 0

, ,P

0

M N P

M N

 





  , (23) 

 

3
,( ) ,( ) ( , )

, , , , , , ; , ,

, , 1

inc p inc q p q

M N P I J K M N P I J K

I J K q

e E v


   , (24) 

 
first,( )

, ,

3
p 0,(q) 2 (p,q) (p,q)

M N P I,J,K 0 M,N,P;I,J,K M,N,P;I,J,K

I,J,K q=1

E = A k v - w    ,(25) 

where  

 0,( ) 3 ( ) ,( )

, , ', ', ' ', ', ' ', ', ' ', '. '

', ', '0

1
.q q (q) inc q

I J K I I J J K K I J K I J K I J K

I J K

A x G E 


      (26) 

For lossless and isotropic scatterers, the contrast is a real scalar. 

Therefore, the contrast 𝛘  only needs one input channel. 



 

 
The complex-valued 𝐞inc  and 𝐄first  have three directions and 

each of them needs 6 channels. In total, 13 input channels per 

grid are used for the first sub-network of EFDLM. 

Consequently, the size of input is 𝐿 × 𝐿 × 𝐿 × 13.  

The output of EFDLM is the normalized electric flux density 

d. Since the complex-valued d at each grid needs 6 channels, 

the size of output is equal to 𝐿 × 𝐿 × 𝐿 × 6. The loss function 

of the proposed EFDLM is the mean square error between the 

outputs of the neural network and the normalized electric flux 

density that is calculated by the TFQMR-FFT method. 

2) Cascade of Sub-Networks 

The EFDLM consist of cascaded sub-networks. The way of 

cascade is motivated by the iteration steps of traditional 

iterative solver. From (19) and (20), we see that the next-step 

solution depends on the operator 𝐋opr, the current step solution 

and its residual. Therefore, for the nth sub-network of EFDLM, 

the inputs are chosen as the contrast 𝛘, on which 𝐋opr depends, 

the output of the previous sub-network 𝐝n−1 , as well as its 

residual 𝐑n−1 that is defined as: 
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Hence, the size of input of the subsequent sub-networks is also 

equal to 𝐿 × 𝐿 × 𝐿 × 13. 

C. Black-Box Method 

For comparison, we briefly introduce a black-box method of 

using DL. Without considering any physical principles, the 

black-box method directly uses the incident field and the 

contrast to predict the total electric field. The black-box method 

uses a cascaded neural network structure similar to that of 

EFDLM, as shown in Fig. 1(b). In the black-box method, the 

size of input of the first sub-network is equal to 𝐿 × 𝐿 × 𝐿 × 7 

and the size of input of the subsequent sub-networks is equal to 

𝐿 × 𝐿 × 𝐿 × 13. The size of output of the last sub-network is 

equal to 𝐿 × 𝐿 × 𝐿 × 6 . There are three main differences 

between the black-box method and the proposed method. First, 

in the black-box method, the incident field and the contrast are 

used as inputs for the first sub-network without doing any 

projections. Second, the residuals of the outputs of the 

sub-networks are not calculated and they are replaced by the 

incident field. Third, the cascaded neural network of the 

black-box method directly predicts the total electric field 

instead of the normalized electric flux density.  

D. Computational Complexity, Computation Time, and 

Memory Usage 

The computational complexity of the TFQMR-FFT method 

 

Fig. 1 The neural network structure of (a) EFDLM, (b) black-box method, (c) the structure of sub-network.   

TABLE I 

AVERAGE COMPUTATION TIME AND MEMORY USAGE FOR DIFFERENT 

METHODS 

Method 
Contrast  
Range 

Average 

Computation 

Time 

Memory 
Usage 

TFQMR-FFT 

0.5-1.5 0.90s 16.84 MB 

1.5-2.5 1.80 s 23.88 MB 

EFDLM 

(CNN1+CNN2) 
0.5-1.5 0.012 s 

11.39 GB, 

192.07 MB 

EFDLM 

(CNN1+CNN2+CNN3) 
1.5-2.5 0.025 s 

24.42 GB, 

405.44 MB 
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is O(𝑁𝑖𝑡𝑒𝑟𝐿
3log⁡(𝐿3))) , where 𝑁𝑖𝑡𝑒𝑟  is the total number of 

iterations. The computational complexity of the proposed 

EFDLM is dominated by the convolutions and the residual 

calculation. The computational complexity of the convolutional 

layer is 𝑂(𝐿𝑓𝑚
3 𝐾3𝐶𝑖𝑛𝐶𝑜𝑢𝑡) and the that of the residual calculation 

is 𝑂(𝐿3 𝑙𝑜𝑔(𝐿3)). 𝐿𝑓𝑚 is the size of the output feature map of 

the layer in one dimension, 𝐶𝑖𝑛 is the number of input channels 

of the layer, 𝐶𝑜𝑢𝑡 is the number of output channels of the layer, 

K is the kernel size in one dimension.  

Using 1200 samples, the calculated average computation 

time of the TFQMR-FFT method and the EFDLM for one 

sample is shown in Table I. The stop criterion of the 

TFQMR-FFT method is ‖𝐞inc − 𝐋𝐝n‖
2
‖𝐞inc‖

2
⁄ ≤ 10−8 , 

where ‖∙‖2  denotes the 𝐿2  norm. The memory usages of the 

EFDLM and the TFQMR-FFT method are also shown in Table 

I. For the EFDLM, the memory usages are different in the 

training and testing stages. To show the difference, the first 

value in the Table I represents the memory usage of training 

and the second one represents the memory usage of testing. 

Note that the memory usage of training is dependent on the 

batch size and the optimizer. The results in Table I are 

calculated by use of the batch size 32 and the Adam optimizer 

[32]. From Table I, we see that the proposed EFDLM has a 

much faster computational speed than the TFQMR-FFT 

method. However, the EFDLM also requires more memories in 

both training and testing stages than the TFQMR-FFT method. 

III. NUMERICAL RESULTS 

A. Numerical Setup 

In numerical simulations, the operating frequency is 300 

MHz. The size of the scattering domain is 1⁡m × 1⁡m × 1⁡m. 

The training and validation datasets are formed by samples 

composed of 3 to 6 spheres that are allowed to overlap. The 

radii of the spheres are randomly distributed between 0.2 m to 

0.3 m. Three plane wave incidences are used. The first incident 

wave propagates in the x direction with a linear polarization in 

the z direction. The second incident wave propagates in the y 

direction with a linear polarization in the x direction. The third 

incident wave propagates in the z direction with a linear 

polarization in the y direction.  

For comparison, the performance of the neural networks is 

evaluated by the relative error that is defined by: 

2 2

,
L-1 L-1 L-1 3 L-1 L-1 L-1 3

(q) (q) (q)

e predicted;M,N,P; true;M,N,P true;M,N,P

M=1 N=1 P=1 q=1 M=1 N=1 P=1 q=1

R = E - E E  (29) 

where | ∙ |  denotes the absolute value, 𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑;𝑀,𝑁,𝑃
(𝑞)

 is the 

predicted total electric field and 𝐸𝑡𝑟𝑢𝑒;𝑀,𝑁,𝑃
(𝑞)

 is the total electric  

field calculated by the TFQMR-FFT method. For multiple 

testing samples, the relative error is defined as the average of 

individual relative errors. To effectively display numerical 

results, for each test, only the contrast profiles in the y-z, x-z and 

x-y planes are plotted as sub-figures. Among the 3 × 3 

sub-figures, the first, second and third rows are the respective 

plots of y-z, x-z and x-y planes, and the first, second and third 

columns are the respective plots corresponding to the x, y and z 

component of electric field. The 3 × 3 sub-figures on the left 

side of the figures are for the real parts of the results and those 

on the right side are for the imaginary parts. 

B. Implementation Details 

In this paper, all the DL-based methods and iterative method 

are implemented in Python. The computation platform is a 

server with one AMD Ryzen Threadripper 3990X 64-Core 

CPU 2.9 GHz, and one NVIDIA GeForce RTX 3090 GPU. 

The Adam optimizer is used for training. The initial learning 

rate is set to be 10−3 and the batch size is equal to 32. The 

training processes of all the trained neural networks contain 800 

 
Fig. 2 The sphere example with the contrast between 0.5 and 1.5. The contrast 

profiles in (a) y-z plane, (b) x-z plane, (c) x-y plane, (d)-(e) the total electric field 

calculated using the TFQMR-FFT method, (f)-(g) the absolute difference 
between the predicted field using the black-box method and the true value, 

(h)-(i) the absolute difference between the predicted field using the EFDLM 

and the true value. Left and right columns are for the results of real and 

imaginary parts, respectively. 

 
Fig. 3 The histograms of relative errors of the testing samples with contrast 

between 0.5 and 1.5 using (a) the black-box method, (b) the EFDLM with two 

sub-networks.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

epochs. For the proposed EFDLM, the total training time using 

two sub-networks for solving the scattering problems of 

scatterers with contrast between 0.5 and 1.5 is about 50 hours 

and that for scatterers with contrast between 1.5 and 2.5 is about 

96 hours. Note that, to save the GPU memory, a data generator 

has been used in the training process to load training data from 

data files into GPU batch by batch, which leads to much longer 

training time than loading all the training data into GPU at 

once. 

C. Comparison Between EFDLM and the Black-Box Method 

In this section, the EFDLM and the black-box method are 

trained using the same training dataset and their performances 

are compared. In the training and validation datasets, the 

contrast of the spheres is randomly distributed between 0.5 and 

1.5. For this range of contrast, we find that it suffices for the 

EFDLM and the black-box method to use two sub-networks. 

Considering the wavelength of the fields in both free space and 

scatterers, the scattering domain is discretized into 31 × 31 ×
31 grids. The size of the input 𝛘 is 32 × 32 × 32. The size of 

the inputs 𝐞inc , 𝐄first  and 𝐄inc  is 32 × 32 × 32 × 6. The size 

of the output d is 32 × 32 × 32 × 6 . The training and the 

validation datasets contain 3,840 and 960 samples, 

respectively.  

In the first example, the contrasts and the shapes of the 

testing scatterers are both within the training range. The 

incident wave propagates in the y direction with a linear 

polarization in the x direction. The predicted results using the 

EFDLM and the black-box method are shown in Fig. 2. It can 

be observed that the relative error of EFDLM is smaller than the 

relative error of the black-box method. To quantitatively 

compare the performance of both methods, 1200 samples are 

generated. The relative errors of the 1200 samples using both 

methods are calculated and then the average value is shown in 

Table II. The relative error using the EFDLM is equal to 1.84% 

and the relative error using the black-box method is 2.51%. The 

histograms of the relative errors using both methods are also 

plotted in Fig. 3. It is observed from Fig. 3 that, for most of the 

1200 samples, the relative errors of the EFDLM are smaller 

than 2%, which is not the case for the black-box method. 

In the second example, a scatterer that is out of the training 

range is tested to evaluate the networks’ generalization ability. 

The cross-section shape of the scatterer in the x-y plane is an 

“Austria” ring [33], as shown in Fig. 4(c). The “Austria” ring is 

formed by two circles with the radius equal to 0.1 m and a ring 

with the inner radius equal to 0.15 m and the outer radius equal 

to 0.3 m. The width of the scatterer in the z direction is 0.3 m. 

The contrast of the scatterer is 0.8. This scatterer can be 

regarded as four cylinders and is consequently different from 

the scatterers’ shapes in the training dataset. The incident wave 

propagates in the z direction with a linear polarization in the y 

direction. The predicted results are plotted in Fig. 4. The 

relative errors are 1.66% and 2.68% for the EFDLM and the 

 
Fig. 4 The “Austria” ring example with the contrast 0.8. The meaning of 

subfigures (a)-(i) is the same as those of Fig. 2. 

 

 
Fig. 5 The sphere example with the contrast 1.7. The meaning of subfigures 

(a)-(i) is the same as those of Fig. 2. 
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black-box method, respectively, which shows the advantage of 

the former over the latter. 

In the third example, a sphere scatterer with radius equal to 

0.2 m and contrast equal to 1.7 is chosen. The contrast of the 

scatterer is out of the training range. The incident wave 

propagates in the x direction with a linear polarization in the z 

direction. It can be seen from Fig. 5 that the proposed method 

can generate satisfying results that are more accurate than the 

black-box method. The relative errors of the proposed method 

and the black-box method are 1.75% and 2.35%, respectively.  

 

D. Comparison of EFDLM Using Different Number of 

Sub-Networks for Higher Contrast Scatterers 

In this section, the performances of EFDLM using two 

sub-networks and three sub-networks are compared for the 

cases of higher contrast scatterers. In the training and validation 

datasets, the contrast of spheres is randomly distributed 

between 1.5 and 2.5. A finer discretization is needed and the 

scattering domain is discretized into 35 × 35 × 35 grids. The  

size of the input 𝛘 is 36 × 36 × 36. The sizes of the inputs 𝐞inc, 

𝐄𝐢nc and 𝐄first are all equal to 36 × 36 × 36 × 6. The size of  

the output d is 36 × 36 × 36 × 6 . The training and the 

validation datasets contain 5,760 and 1,440 samples, 

respectively. 

In the first example, the contrasts and the shapes of scatterers 

are within the training range. The incident wave propagates in 

the y direction with a linear polarization in the x direction. The 

predicted results for the scatterer that is shown in Fig. 6(a)-(c) 

are plotted in Fig. 6(f)-(i). It is apparent that the EFDLM using 

three sub-networks has better predicted results than the 

EFDLM using two sub-networks. The relative errors of 1200 

test samples are calculated. The average relative errors using 

two sub-networks and three sub-networks are 3.34% and 2.67%, 

respectively, as shown in Table III. As the EFLDM with three 

sub-networks is deeper with more tunable parameters, it is 

reasonable that it has better performance than the neural 

network with two sub-networks. The histograms of relative 

 
Fig. 6 The sphere example with the contrast between 1.5 and 2.5. The contrast 

profiles in (a) y-z plane, (b) x-z plane, (c) x-y plane, (d)-(e) the total electric field 

calculated using the TFQMR-FFT method, (f)-(g) the absolute difference 
between the predicted field using the EFDLM with two sub-networks and the 

true value, (h)-(i) the absolute difference between the predicted field using the 

EFDLM with three sub-networks and the true value. 

 

 
Fig. 7 The histograms of relative errors of the testing samples with contrast 

between 1.5 and 2.5 using the proposed EFDLM with (a) two sub-networks and 

(b) three sub-networks. 

 
Fig. 8 The “Austria” ring example with the contrast 1.8. The meaning of 

subfigures (a)-(i) is the same as those of Fig. 6. 
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errors using different number of sub-networks are plotted in 

Fig. 7. 

In the second example, the “Austria” ring that is reported in 

Section III C is adopted as a test example, except that the 

contrast is changed to 1.8. Note that the shape of the scatterer is 

different from the training dataset, whereas the value of the 

contrast is in the range of the training dataset. The predictions 

using both EFDLM with three sub-networks and two 

sub-networks are plotted in Fig. 8. The relative errors using the 

EFDLM with three and two sub-networks are 2.46% and 3.77%, 

respectively. The performances of EFDLM are similar for both 

the 1200 spheres samples and this “Austria” ring.  

In the third example, the testing scatterer has the same shape 

and incidence as the third example in Section III C, but the 

contrast is 2.7 that is out of the training range. The predicted 

results are plotted in Fig. 9. The relative errors of the EFDLM 

with three sub-networks and two sub-networks are equal to 

2.00% and 3.15%, respectively. Although the contrast of the 

scatterer is out of the training range, the performance of the 

proposed EFLDM is still satisfying and the performance is 

better when three sub-networks are used. 

IV. CONCLUSIONS AND DISCUSSIONS 

In this paper, a learning method based on the discretized VIE 

is proposed to solve the scattering problems of 3D dielectric 

objects. The proposed EFDLM implicitly learns the process of 

solving the VIE by iterative solvers. The proposed EFDLM 

predicts the normalized electric flux density, and then the total 

electric field can be easily obtained. The proposed EFDLM 

makes use of the knowledge on wave physics by introducing 

the residual calculation and the projection of the first-order 

scattered field into the neural network. Based on numerical 

simulation results, together with the analyses on the 

computational complexity, computation time and memory 

usage, we provide our opinions on following three items, which 

could be useful for researchers to solve computational 

electromagnetics (CEM) problems via learning approaches. 

First, we observe that the EFDLM outperforms the 

black-box method, no matter testing scatterers are in or out of 

the range of training dataset. The advantage of the proposed 

EFDLM benefits from the residual calculations of the 

sub-networks’ outputs and the projection of the first-order 

scattered field. The residual helps the next sub-network to 

determine a new searching direction and also measures how 

good the output of the previous sub-network is. The projection 

of the first-order scattered field contains the information about 

the Green’s function. Note that, although the proposed EFDLM 

requires convolutions with the Dyadic Green's function, the 

matrix-vector product could be calculated using the FFT 

method, which reduces the computational complexity from 

O(𝐿6) to O(𝐿3log⁡(𝐿3)). 
Second, we discuss the pros and cons of general learning 

approach for solving EM scattering problems involving 

dielectric scatterers, compared with traditional non-learning 

solvers. 

1. The mapping functions of neural networks are nonlinear 

since the output, no matter it is the total electric field or 

the electric flux density, nonlinearly depends on the 

variable contrast that is a part of the input. In 

comparison, traditional non-learning solvers deal with a 

linear relationship between the total electric field and the 

incident field for each given scatterer. 

2. The mathematical analysis on traditional non-learning 

solvers, such as accuracy and convergence rate, have 

been well established. In comparison, the structures of 

 
Fig. 9 The sphere example with the contrast 2.7. The meaning of subfigures 

(a)-(i) is the same as those of Fig. 6. 

 
TABLE II 

THE RELATIVE ERRORS FOR BLACK-BOX METHOD AND EFDLM WITH 2 

SUB-NETWORKS THAT ARE TRAINED USING TRAINING SAMPLES WITH 

CONTRAST BETWEEN 0.5 AND 1.5 

 Black-box 
EFDLM 

(2 sub-networks) 

1200 Spheres Samples 

(𝜒 ∈ [0.5, 1.5]) 
2.51% 1.84% 

3D “Austria” Ring 

(𝜒 = 0.8) 
2.68% 1.66% 

Sphere 

(𝜒 = 1.7) 
2.35% 1.75% 

 
TABLE III 

THE RELATIVE ERRORS FOR EFDLMS WITH 2 SUB-NETWORKS AND 3 

SUB-NETWORKS THAT ARE TRAINED USING TRAINING SAMPLES WITH 

CONTRAST BETWEEN 1.5 AND 2.5 

 
EFDLM 

(2 sub-networks) 

EFDLM 

(3 sub-networks) 

1200 Spheres Samples 

(𝜒 ∈ [1.5, 2.5]) 
3.34% 2.67% 

3D “Austria” Ring 

(𝜒 = 1.8) 
3.77% 2.46% 

Sphere 

(𝜒 = 2.7) 
3.15% 2.00% 
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neural networks, such as the number of layers and the 

number of neurons per layer, are decided empirically. 

3. The adaptability of learning approaches is weak to some 

extent. For example, if a chosen network is found to be 

always underfitting during the training process, then we 

need to improve the network’s representation ability by 

increasing the number of layers and/or the number of 

neurons per layer. Then, the new network has to be 

retrained, not being able to use the training results of the 

previous network. In comparison, if a traditional 

iterative solver does not converge after a certain number 

of iterations, then we may simply wait for a few more 

iterations to reach desired accuracy. 

4. Learning approaches have to survive the important 

challenge of generalization, i.e. when a test case is out of 

the training range, whereas traditional non-learning 

solvers do not. 

5. Trained neural networks have much faster 

computational speed, however at the cost of more 

memory, compared to traditional non-learning solvers. 

6. Considering the abovementioned points, learning 

approaches do not present self-evident advantages if 

only a small number of scattering problems are solved. 

Instead, if a larger number of small or medium-scale 

scattering problems are to be solved, then learning 

approaches exhibit their advantages, for example, in 

inverse scattering problems and inverse designs. 

Third, we find that it is difficult and computationally 

expensive for end-to-end learning techniques to train neural 

networks especially when dealing with the scattering problems 

of high contrast and/or electrically large size objects. Neural 

networks accept input such as the contrast and the incident field 

from one end, and produces output such as the total electric 

filed or the electric flux density at the other end. End-to-end 

learning optimizes the network weights by considering the 

inputs and outputs directly as a whole. On the one hand, for 

high-contrast or multiscale scattering problems, neural 

networks may not be able to work properly as VIE based FFT 

methods converge slowly or not converge. In this case, the 

preconditioners [34] or domain decomposition method [35] 

may need to be used together with neural works to solve the 

scattering problems. On the other hand, more memory, training 

data, and training time are required for neural networks to solve 

scattering problems with higher contrast. Our numerical 

simulations show that while 2-sub-network EFDLM works 

well for scatterers with contrast between 0.5 and 1.5, its 

performance decreases for scatterers with contrast between 1.5 

and 2.5. For the range between 1.5 and 2.5, 3-sub-network 

EFDLM has to be adopted to achieve desired accuracy at the 

cost of significantly increased memory. For a computational 

domain of 1⁡𝜆⁡ × 1⁡𝜆⁡ × 1⁡𝜆 , the memory for the training of 

3-sub-network EFDLM is as large as 24.42 GB that is shown in 

Table 1. If the contrasts of scatterers are further increased or the 

electrical size of the scattering domain is enlarged, then it is 

apparent that much more memory is required and it may need 

parallel computations using multiple GPUs. The reasons why 

higher contrast requires more memory, training data and 

training time are summarized as follows: 

1. Neural networks in fact describe the mathematical 

relationship that maps the input to the output. When 

contrast is increased, a finer discretization of the 

scattering domain will be needed since the wavelength 

inside scatterers is shrunk. Thus, the sizes of both input 

and output are increased. In addition, the output of 

network, i.e., total electric field or electric flux density, 

spatially oscillates faster in scatterer than in background 

air. Since scatterers can be distributed in any grids 

within the computational domain, the multi-scale spatial 

distribution of total electric field or electric flux density 

is hardly to be sparse due to the randomness of 

scatterers. To conclude, the sizes of both input and 

output are increased, which are basically not sparse, for 

increased contrast, and consequently the mapping 

between them is more complex and requires neural 

networks with stronger representation ability by using 

more layers and/or neurons. 

2. Consider a scatterer with the range of contrast 

[𝜒𝑚𝑖𝑛 , 𝜒𝑚𝑎𝑥], it is important to note that the range of 

contrast of the input of neural network is not 

[𝜒𝑚𝑖𝑛 , 𝜒𝑚𝑎𝑥 ], since the input consists of discretized 

grids occupied by not only scattterers but also air. Thus, 

the range of the contrast of the input of neural network 

is[0, 𝜒𝑚𝑎𝑥]. From the viewpoint of function fitting, a 

function with a wider range is usually more difficult to 

be approximated by other functions. For example, a 

Taylor expansion with linear or quadratic terms might 

approximate a function well if the range of variables is 

small, whereas more terms are needed if the range of 

variables is increased. To conclude, a scatterer with a 

large value of contrast leads to a larger range of contrast 

of the input of network, which makes the mapping 

between the input and the output more complex and 

requires neural networks with stronger representation 

ability. 

3. Considering the abovementioned two points, if the 

contrast of scatterer is increased, end-to-end neural 

networks that are adopted to solve the scattering 

problem in principle describe a mapping where more 

output elements collectively depend on more input 

elements that span wider contrast ranges. Thus, neural 

networks should be deep enough to approximately 

represent the rather complex mapping. In addition, 

sufficient training data are required to capture the main 

feature of the abovementioned mapping. Note that the 

ground truth of such a mapping is the physical law of 

wave scattering, represented by (18). It is apparent that 

higher contrast requires more memory, training data, 

and training time. 

To conclude, compared to traditional non-learning solvers, 

learning approaches exhibit their advantages mainly for the 

cases where a large number of small or medium-scale scattering 

problems are to be solved, for example, inverse scattering 

problems and inverse designs. For scatterers with high 

contrasts, it is difficult and computationally expensive for 

end-to-end learning techniques to learn the mapping that 

describes the physical law of scattering. Instead, a more 

feasible way of solving scattering problems with high contrast 

is to apply traditional non-learning method as the main solver, 

which is assisted by neural networks that learn some operators 

of traditional solvers, such as the gradient and the translation 
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procedure of MLFMA. This topic will be our next-step research 

work, i.e., developing hybrid algorithms that adopt the 

state-of-the-art methods in CEM as the main solver and deploy 

neural networks to learn some of their operators. Another future 

research topic is to test the performance of neural networks for 

lossy dielectric scatterers. 
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