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Abstract—Millimeter wave (MMW) holographic imaging 

technology is widely used in plenty of short range applications like 

security and medical diagnosis. When combining with 

multiple-input-multiple-output (MIMO) array, such a technology 

can acquire precise reconstruction with wider field of view and 

higher dynamic range. However, to focus the higher-dimensional 

data set obtained from MIMO architecture, the complicated 

iteration or interpolation employed by the previous 

state-of-the-art focusing techniques prevents the real-time 

operation of such an imaging system under a general computation 

power. It is more economical to increase the operational speed by 

improving the algorithm efficiency. Hence, a novel fast imaging 

algorithm that uses multi-static frequency scaling technique is 

proposed in this paper for achieving real-time 3-D imaging on 1-D 

MIMO scanning system. Only FFT/IFFT and multiplications are 

employed in the algorithm, which can be easily implemented. 

Compared with the previous state-of-the-art techniques, the 

proposed algorithm has the lower computation complexity. 

Practical experiments with self-developed MMW MIMO scanning 

radar prove the accuracy and efficiency of the algorithm. On a 

common laptop without any acceleration technology, the 

proposed algorithm cost less than one tenth of the time required 

by the previous state-of-the-art techniques. 

 
Index Terms—3-D imaging, frequency scaling (FS), 

millimeter-wave (MMW) holographic imaging, multiple-input- 

multiple-output (MIMO), weapon detection. 

I. INTRODUCTION 

ctive millimeter wave (MMW) imaging architectures can 
achieve high resolution in azimuth by applying real 

aperture or synthetic aperture array, and high resolution in 

range by a certain frequency bandwidth. Besides, 

electromagnetic waves in MMW frequency band can also 

provide nice penetration ability, and therefore is vulnerable to 

the operational environment. Based on these characteristics and 

advantages, such a technology has received wide attention in 

recent years and has been employed in so many short-range 

sensing applications, such as free-space surveillance [1]-[3], 
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through-the-wall detection [4], [5], security check [6]-[9], 

medical diagnosis [10], [11], biological detection [12], [13], etc. 

For these occasions, real-time and precise data processing is 

often necessary. 

Recently, multiple-input-multiple-output (MIMO) 

technology is gradually brought into MMW imaging 

applications [14]-[19]. Compared with traditional mono-static 

mode, MIMO technology enjoys various benefits, such as 

wider field of view, higher dynamic range, saving hardware 

cost, etc. To get 3-D reconstruction under a common strip-map 

mode, it is obvious that a 2-D planar aperture is necessary to be 

formed. A 2-D real-aperture MIMO array would certainly be 
the most direct and ideal solution since it would not require any 

moving parts and could, therefore, even operate at video frame 

rates. In MMW frequency band, however, to cover a wide 

detection region, where the sampling with the spacing that 

about one-wavelength is required, the cost and complexity of a 

large 2-D MIMO real-aperture array renders it impractical at 

present time. By contrast, a 1-D linear MIMO array can be 

fabricated at reasonable cost, and also can be scanned quickly 

to gather full-aperture data. This paper studies exactly such a 

MIMO scanning regime. 

Besides the hardware construction, imaging algorithm is also 
very important to the MMW imaging system as it not only 

determines imaging accuracy but also affects, to a great degree, 

the computation speed. So far, various MIMO imaging 

algorithms are studied in many literatures. The most traditional 

and optimum way is the time reversal techniques [8], [20], [21]. 

However, in the face of large-size data and high number of 

voxels, the great number of iteration operations in such 

algorithms will cost a huge amount of computation time even 

on a powerful computation platform. By contrast, the Fourier 

domain focusing techniques are much more preferred. However, 

those planar array based imaging algorithms [22]-[27] cannot 

be applied directly to the scanning regime studied here, as their 
forward wave models are completely different with each other. 

In addition, the phase center based techniques [14], [19] are 

also not discussed here, as the far-field condition will introduce 

significant focusing error when the spacing between transmitter 

and receiver is comparable with target distance. For precise 1-D 

MIMO scanning model, [28] first proposed a range migration 

algorithm (RMA). A novel multi-static Stolt interpolation is 

employed to compensate the range curvature in scanning 

MIMO wave data. Then, a MIMO enhanced algorithm 

(MIMO-EA) was studied in [29], and a SAR-FFT algorithm 

was developed in [30]. In these two algorithms, the focusing for 
scanning MIMO data set is realized successively at each  
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Fig. 1. Short-range sensing based on a 1-D MIMO scanning array. 

frequency point and each transmitter location. Experimental  

results show that accurate 3-D imaging can be realized on 1-D 

MIMO scanning system by using these Fourier domain 

techniques, and their efficiency is much better than the time 

reversal technique. However, without exception, all these three 

algorithms must apply either interpolation or iteration 
operations. The effect of such operations for processing 

higher-dimensional MIMO data set is much more severe than 

mono-static case. In practical application with a common 

computation power, the running time required by these 

algorithms is a little high, and thus there is still a certain 

distance away from real-time operation, unless acceleration or 

parallel computation technology can be used. 

It is more economical to enhance the system operational 

speed by improving algorithm efficiency than by upgrading 

hardware configures. Therefore, this paper is aimed at 

developing a precise imaging algorithm for 1-D MIMO 

scanning based imaging application, by which 3-D holographic 
reconstruction can be obtained in real time even on a common 

computation platform without using any acceleration 

technology. For achieving this purpose, a novel appropriate 

expansion is first given to the coupling phase of the 4-D MIMO 

data set. Then, the range-variable range cell migration (RCM) 

can be separated out and is corrected by a novel multi-static 

frequency scaling (FS) technique. The developed algorithm 

employs only fast Fourier transform (FFT) or inverse FFT 

(IFFT) and multiplication operations. The computation 

complexity of the algorithm is  4

2logO N N , which is lower 

than the previous state-of-the-art algorithms. Besides, for our 

practical measurement geometry with o10  squint, the focusing 

error caused by the phase expansion is lower than 0.02π, which 

has no negative effects on imaging quality. Additionally, the 

proposed algorithm is not limited to the application on evenly 

arranged array, but also suitable for non-uniform or even 

random configuration. Practical measurements prove the nice 
imaging quality acquired by the algorithm, and in the 

meanwhile, the computation time is much less than that 

required by the previous state-of-the-art algorithms. 

The rest of this paper is organized as follows. Section II 

studies the principle of the 3-D inversion by the novel 

MIMO-FS algorithm (MIMO-FSA). Section III discusses the 

implementation details, computation complexity and focusing 

error of the algorithm. Section IV is the validation, where the 

performance of the algorithm is compared with the previous 

state-of-the-art algorithms first by point-target simulation and 

then by the practical measurements on a MMW MIMO 

scanning radar system. Finally, Section V concludes this paper. 

II. MIMO SCANNING IMAGING WITH MIMO-FSA 

This section first derives the forward wave model under 1-D 

MIMO scanning geometry. Based on that, 3-D inversion is then 

formulated by applying the novel MIMO-FSA. 

A. Imaging Model 

Firstly, it is necessary to establish the studied measurement 

geometry and formulate the corresponding wave spectrum, 

which is the basis of the following reconstruction work. 

Consider the short-range imaging geometry given in Fig. 1. The 

target is illuminated by a linear MIMO array, which is arranged 

in the horizontal direction X  and scans along the height 

direction Y . The locations of the transmitter and receiver are 

denoted as  , ,0T Lx y  and  , ,0R Lx y , respectively, while the 

target area is represented by  , ,o x y z . Then, 
T  and 

R  

denote the sensing squints. In order to obtain the 3-D 

reconstruction for the space with a certain depth of field (DOF), 

the transmitted wave field must possess a certain frequency 

bandwidth, and here assume the transmitted wave has the 

amplitude spectrum of  P . Under the first-order Born 

approximation [20], the frequency domain received wave field 

that corresponds to the transceiver pair  , ;T R Lx x y  in Fig. 1 

can be obtained as 
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where  , ,f x y z  denotes the target reflectivity map, 
0k  is the 

wavenumber corresponding to the center frequency, k  is the 

baseband wavenumber,  Tw  and  Rw  denote the azimuth 

weight functions that are brought by the radiation patterns of 

the used transmitter and receiver, respectively, and 
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are the range histories of the transmitter and receiver, 

respectively. Note that the spreading losses due to the 

propagation are taken into consideration in (1) because of the 

short-range sensing nature of the measurement geometry. 

Another thing to note is that in the wave function name, the 

case of letter is used to distinguish the domain that the wave 

belongs to. The uppercase denotes Fourier domain while the 
lowercase means time domain, and the former letter denotes 

azimuth while the latter means range. Such a kind of expression 

will still be used throughout the paper. 

To get the ω-K domain spectrum, conduct a 3-D Fourier 

transform (FT) to the wave in (1) and use the principle of 

stationary phase (PSP) to solve the Fourier integral. Then, the  



wave spectrum can be obtained as 
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where 
xTk , 

xRk , 
yk  are the azimuth wavenumbers, and 
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The detailed acquirement of the wave expression in (3) is given 

in APPENDIX A. 

After applying the azimuth frequency relation [22] 

 
x xT xRk k k   (5) 

it is clear that (3) is a simple 3-D FT, and thus the reflectivity 
function can be reconstructed by a 3-D inverse FT (IFT) [28]. 

However, to fulfill this 3-D IFT, a 1-D interpolation over the 

range dimension is necessary to realize the uniform sampling 

on this dimension, which is the well-known Stolt interpolation. 

It can be found that the coefficient of such an interpolation must 

update constantly over all four dimensions during the 

interpolating procedure. Hence, it will give heavy computation 

burden for the 4-D data processing. 

In order to avoid the complicated Stolt interpolation, a novel 

expansion is given to the coupling phase term, i.e., the second 

phase term in (3), as 

  2 2

0 1yz yk k z g g k z     (6) 

where the coefficients are given as 
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where 
TxD , 

RxD  and 
YD  are the range-Doppler (R-D) domain 

cosine functions of the squints, i.e., 
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The details of such an expansion can be found in APPENDIX B. 

In (6), 0g z  denotes the azimuth modulation while the 

first-order term 
1g kz  represents the key RCM. Note that, both  

of these phase terms are range-dependent. 

B. Inversion by MIMO-FSA 

Then, the 3-D inversion is formulated by introducing the 

novel multi-static FS technique. According to the expansion of 

(6), it is obvious that the azimuth modulation can be easily 

compensated by a matched filter in R-D domain, and thus our 

primary mission is to correct the range-dependent RCM term. 

1. Reference function multiplication (RFM) 

Define the ω-K domain RFM function as 
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where 
0z  is the range of the target center. Then, conduct the 

RFM filtering, 
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Such an RFM filtering is to achieve the bulk correction, 

including the bulk azimuth compression (AC), bulk RCM 

correction (RCMC) and bulk second range compression (SRC). 

The residual coupling will be further corrected by the following 
steps. 

2. Introducing residual video phase (RVP) 

This operation is to introduce the RVP term, which is 

necessary for the RCMC by the subsequent multi-static FS 

operation. Define the RVP function with the characteristic of 

linear frequency modulation (LFM) as 

    2expRVPh t jKt   (11) 

where K B df   ( B  and df  denote the width and 

sampling interval of the working frequency band, respectively) 

is the frequency modulation (FM) rate. Then, conduct the R-D 

domain filtering, 

    2 1, ; ; expxT xR y RVPSs k k k t h SS jckt dk    (12) 

According to convolution theorem, the range FT of 
2Ss  can be 

obtained as 
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where   represents the convolution operation. 

3. Multi-static FS 

This operation is to accomplish the key differential RCMC, 

i.e., to correct the first-order term of k  in (13). Define the FS 

function as 
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
. It is clear that 

FSH  also has the 

property of LFM. However, its FM rate, i.e.,  1K   , is a 

function of azimuth frequency. Then, conduct the multi-static 

FS to the wave of (13) and yield 
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The derivation for (15) is given in APPENDIX C. 

4. RVP correction (RVPC) 

Define the RVPC function as 

   21
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and conduct the R-D domain matched filtering, 

    4 3, ; ; expxT xR y RVPCSs k k k t h SS jckt dk    (17) 

According to convolution theorem, the range FT of 
4Ss  can be 

obtained as 
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After this RVPC, the RVP term in (15), i.e., the convolution 

term, is removed. 

5. Inverse FS (IFS) 

Define the IFS function as 
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Then, conduct the ω-K domain filtering, we have 
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6. Differential AC 

In (20), it is clear that after decoupling, k  and 2z  (since k  

is the one-way wavenumber) are now an FT pair, thus z  can be  
reconstructed by a range IFT, 
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Define the differential AC function as 

    0 0, , ; expAC xT xR yh k k k z jg z z      (22) 

and conduct the differential AC in R-D domain and yield 
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So far in (23), the range-dependent azimuth modulation and 

RCM are completely compensated, which means that the range 

and azimuth in the wave data have been decoupled from each 

other. Then, by using the azimuth relation defined in (5), (23) 

represents a 2-D FT relation, and thus the 3-D reflectivity 

function can finally be reconstructed with a 2-D IFT as 
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where W  denotes the wavenumber space. 

III. IMPLEMENTATION, COMPLEXITY AND ERROR 

This section mainly discusses the implementation details, 

computation load and focusing error of the proposed algorithm. 

A. Algorithm Implementation 

According to the inversion process formulated in Section II, 

the focusing steps of the developed MIMO-FSA can be 

obtained as shown in Fig. 2. It can be seen that the algorithm 

needs totally seven FFT/IFFT and six multiplications to realize 

the 3-D reconstruction, no any interpolation or iteration is used. 

When applying the algorithm, there are two things that 
should be noted. First, in order to ensure that the wave data is 

evenly sampled at 
xk  dimension after taking the transform of 

(5), 
xTk  and 

xRk  must have the same sampling interval. Hence, 

the transmit and receive arrays in the applied 1-D MIMO array 

should have the same width. In practical application, if such a 

condition cannot be met, then proper zero-padding should be 

performed prior to the 3-D azimuth FFT operation so that the 

following relation can be satisfied: 

    1 1xT xT xR xRN d N d     (25) 

where 
xTN  and 

xRN  are the number of samples in the transmit 

and receive arrays, and 
xTd  and 

xRd  are the average sampling 

intervals in the transmit and receive arrays, respectively. 

Second, according to the discussion in [29], the equivalent 

aperture of the used MIMO array should satisfy the sampling 

criteria given in [29]. However, it is clear that the equivalent 

aperture can have an arrangement that meets the sampling 

criteria even if the real MIMO array has a sparse transmit or 

receive sub-array. Conducting directly the 3-D azimuth FFT to 

such a sparsely arranged MIMO data set will certainly cause 

aliasing in the final image. To have an accurate imaging result,  
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Fig. 2. Block scheme of MIMO-FSA for 1-D MIMO scanning based 3-D 

imaging. 

proper zero-padding can be carried out for the original data set 

before taking the azimuth FFT. It is clear that this operation 

does not have any side effect for the following focusing 

procedure. In addition, through the zero-padding with an 

appropriate spacing, the proposed algorithm is not limited to 

evenly arranged MIMO array, but can also be applied to other 

non-uniform or even random configurations. 

B. Computation Complexity 

The computation load is measured by the floating-point 

operations (FLOPs). Let xTN , xRN , yN  and sN  represent the 

number of samples (after zero-padding if it is needed) over the  

 
Fig. 3. MIMO array applied in point target simulation. Equivalent aperture 

is evenly arranged with 5-mm interval, which meets sampling criterion. 

TABLE I 

COMPUTATION LOAD OF FOUR ALGORITHMS 

Algorithm FLOPs 

Proposed 

MIMO-FSA 

 

 

5

2

2

5 log

38 5 log

xT xR y s xT xR y s

xT xR y s x y s x y

N N N N N N N N

N N N N N N N N N 
 

RMA 
 

   
2

2

5 log

8 5 log

xT xR y s xT xR y

xT xR y s x y s x y s

N N N N N N N

C N N N N N N N N N N  
 

SAR-FFT 

2

2

5 log 6

5 log

6 6

xR y y xR y Iz

s Tx

xR y Iz y

Tx s xR y Iz s xR y Iz

N N N N N N
N N

N N N N

N N N N N N N N N

 
 
  

 

 

MIMO-EA 
 

 
2

2 2

5 log 18

5 log log

Tx y s Iz xR xR Iz xR

Tx y s xR xR y

N N N N N N N N

N N N N N N



 
 

four dimensions, 1x xT xRN N N    is the azimuth samples 

after taking the azimuth transform of (5), 
TxN  is the number of 

the used transmitting antennas in the MIMO array, and 
IzN  is 

the number of voxels in range direction of the 3-D focused 
image. The computation load of the proposed algorithm and the 

three previous state-of-the-art imaging techniques, i.e., RMA 

[28], SAR-FFT [30] and MIMO-EA [29], are summarized in 

TABLE I. 

In TABLE I, the computation load for FFT/IFFT and 

multiplication is well studied in [31]. While for conducting the 

azimuth relation of (5), 
xT xR y sN N N N  complex add operations 

are required. The RMA needs to carry the Stolt interpolation, 

and C  represents the calculation amount of the 1-D 

interpolation operation for each source point. C  is related to 

the used interpolation method and specific implementation. A 

1-D Stolt interpolation is in effect a complicated convolution 

process [31], which requires not only the essential 

multiplication and sum operations, but also other auxiliary 

operations, such as the search for the interpolating location, the 

calculation of coefficient (or through table lookup), etc. By 

contrast, the FFT and multiplications employed in the proposed 

algorithm are much more straightforward, no any auxiliary 

operations are required. 
To compare the complexity of the four algorithms intuitively, 

suppose that all the parameters are in the same order with a 

given number N . Then, the computation complexities of the 

four algorithms listed in TABLE I are  4

2logO N N , 

 4

2logO N C N   ,  5

2logO N N  and  5

2logO N N , 

respectively. It is clear that the proposed algorithm enjoys the 

lowest complexity. Its superiority on computation efficiency 

will be further shown in the following measurements. 



 
Fig. 4. Phase error of MSFSA changed with sensing squint when frequency 

band is from 27 GHz to 33 GHz and target depth is 0.5 m. 

 
                                                           (a) 

 
                                                           (b) 

Fig. 5. Profiles of PSF patterns obtained by four algorithms. (a) Profiles 

along horizontal X  direction. (b) Profiles along vertical Y  direction. 

C. Focusing Error 

It is clear that the focusing error mainly comes from the 

applied phase expansion in (6), therefore, by comparing the two 

sides of (6), the phase error can be easily acquired as 

    2 2

0 1 0yz yPHE k k g g k z z     
 

  (26) 

Such a phase error is related to the bandwidth, sensing squint 

and DOF. Take the following experiment as an example. The 
center frequency is 30 GHz, with the bandwidth of 6 GHz, the 

maximum squint of the applied antenna is about o10 , and the  

target depth is less than 0.5 m. Under such parameters, the 

maximum phase error acquired by (26) is only about 0.02π, 

which is quite acceptable for precise imaging. Furthermore, 

with the same operational band and target depth, the phase error 

changed with sensing squint is plotted in Fig. 4. The maximum 

allowable for accurate imaging, i.e., the corresponding phase  

TABLE II 

PSL AND BEAMWIDTH OF THE PATTERNS IN Fig. 5 (a) 

Algorithm PSL -3-dB beamwidth 

MIMO-FSA -29.25 dB 0.86 cm 

RMA -27.27 dB 0.84 cm 

SAR-FFT -30.59 dB 0.83 cm 

MIMO-EA -31.08 dB 0.82 cm 

 

TABLE III 

PSL AND BEAMWIDTH OF THE PATTERNS IN Fig. 5 (b) 

Algorithm PSL -3-dB beamwidth 

MIMO-FSA -20.74 dB 0.68 cm 

RMA -20.49 dB 0.68 cm 

SAR-FFT -21.69 dB 0.68 cm 

MIMO-EA -22 dB 0.67 cm 

error should be lower than 0.25π [31], is about o27 . Such a 

high squint is sufficient to meet the requirements of most 

short-range imaging applications. 

IV. RESULTS 

Both numerical simulation and practical measurements are 

conducted to evaluate the imaging performance of the proposed 

MIMO-FSA. All the algorithms are realized by MATLAB 

codes at a common laptop that is equipped with a 64-bit 
2.20-GHz Intel Core I7-8750H CPU. No any acceleration or 

parallel technique is used. In addition, considering both 

accuracy and efficiency, a linear interpolator is applied in RMA 

to fulfill the Stolt interpolation. 

A. Point Spread Function (PSF) 

The PSF pattern is a useful tool to measure the focusing 
performance, and thus the PSF pattern is first analyzed by 

conducting numerical simulation with point-like target. In the 

measurement, a 1-cm-diameter metal sphere is illuminated by a 

scanning linear MIMO array with the distance of 0.5 m. The 

width of the MIMO array is 0.4 m, while the interval between 

antennas is 0.2 m and 0.01 m for the transmit and receive array, 

respectively. The configuration of the used MIMO array is 

displayed in Fig. 3. The spacing of the equivalent aperture is 5 

mm, which is sufficient to achieve the accurate focusing 

without any aliasing. The antennas with o20  beamwidth are 

applied in the MIMO array. The transmitted wave field has the 

center frequency of 30 GHz with the 6-GHz bandwidth. Such 

system parameters are almost the same as our following 

practical experiments. The scattered field is computed by the 
simulation tool FEKO. 

In order to give a quantitative study of the PSF pattern, the 

profiles of the pattern along different directions should be 

provided, which are obtained by the following way. 3-D image 

is first numerically calculated by the algorithm. Then, 

maximum projection is given to the 3-D result to get the 2-D 

azimuth pattern. Finally, another maximum projection is given 

to the 2-D pattern along horizontal X  or vertical Y  direction 

to get the 1-D profiles. Note that the original wave data should 

take a proper zero-padding when using the proposed algorithm, 

as the transmit array has a sparse arrangement. The azimuth  
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Fig. 6. (a) Schematic diagram of applied MIMO scanning mechanism. (b) 

Photograph of applied MIMO scanner, which has two horizontal slide 

guides fixed on a vertical screw rod to realize 1-D MIMO array scanning. 

TABLE IV 

SETTINGS FOR THE MEASUREMENTS 

System parameter Experiment #1 Experiment #2 

Center frequency 30 GHz 30 GHz 

Bandwidth 6 GHz 6 GHz 

Frequency interval 150 MHz 150 MHz 

Tx width 0.4 m 0.8 m 

Tx spacing 0.2 m 0.2 m 

Rx width 0.4 m 0.8 m 

Rx spacing 0.01 m 0.01 m 

Scanning height 0.4 m 2 m 

Scanning interval 0.01 m 0.01 m 

Imaging cube 0.4 m × 0.4 m × 1 m 0.8 m × 2 m × 1 m 

Image voxel 401 × 401 × 101 801 × 2001 × 101 

profiles along horizontal and vertical directions are displayed in 

Fig. 5, where the results by the previous state-of-the-art RMA, 

SAR-FFT and MIMO-EA are also given for comparison. 

Furthermore, the values of the peak sidelobe level (PSL) and 

-3-dB beamwidth of the patterns in Fig. 5 are summarized in 

TABLE II and TABLE III. 

From Fig. 5, TABLE II and TABLE III, it is clear that the 

focusing performance of the proposed algorithm is as good as 

the three previous state-of-the-art algorithms. Compared with 

the optimum MIMO-EA, the proposed MIMO-FSA suffers a 

tiny loss in both sidelobe level and -3-dB resolution. However, 

such a small degradation will not bring any negative effect for 
the imaging with complex targets. 

B. Practical Experiment 

The proposed MIMO-FSA is further verified experimentally 

by a self-developed MMW MIMO scanning system. The block  

 
                                                           (a) 

 
                                                           (b) 

Fig. 7. Applied MIMO arrays for (a) first measurement with sheets pattern 

and (b) second measurement with human body. Two arrays have the same 

topology but only with different sizes. Equivalent apertures of both arrays 

are evenly arranged with 5-mm spacing, which satisfies sampling criterion. 

diagram of such a system and the applied scanner are displayed 

in Fig. 6. In the scanner, two adjacent horizontal slide guides 
with slide blocks are fixed on a mechanical platform, which is 

situated on a vertical screw rod. Two antennas are fixed on the 

sliding blocks to transmit and receive electromagnetic waves at 

any horizontal positions. The screw rod can rotate at a certain 

rate to realize the horizontal platform move along the vertical 

direction. Based on such a mechanism, a MIMO scanning 

geometry that is equivalent to Fig. 1 is realized. In Fig. 6 (b), 

the used antennas are a kind of horn with a 3-dB bandwidth 

from 18 GHz to 40 GHz and a o22  3-dB beamwidth. 

In the applied system, the transmitters are connected with an 

MMW oscillator to transmit waves that have a 6-GHz 
bandwidth on the center frequency of 30 GHz. The received 

signal is mixed with in-phase (0  phase shift) and quadrature 

(90  phase shift) signals coupled from the MMW oscillator, and 

then digitized with the frequency interval of 150 MHz. Such a 

signal is sampled over an X Y  aperture by using the scanner 

to obtain the input frequency domain wave  , ; ;T R LsS x x y k . 

The proposed MIMO-FSA and the three previous 

state-of-the-art algorithms are then applied to reconstruct the 

3-D image one after another. Two sets of experiments with 

different targets are conducted for our validation. The detailed 
settings for both measurements are summarized in TABLE IV. 

The MIMO arrays applied in the two measurements are shown 

in Fig. 7, which has exactly the same topology as the one  

employed in the former simulation. So, it is necessary to take a 

zero-padding before using the proposed algorithm. Here, the 

spacing of the zero-padding is 1 cm for the transmit array, i.e., 

the 
Tx -dimension in the 4-D MIMO data set. 

The first target under test is a kind of sheets pattern. The 

photographs of the real object and measurement scenario are 

displayed in Fig. 8. The pattern is made by a group of narrow 

copper sheets with different gaps that from 3 mm to 10 mm. 

Such a pattern is a useful tool to measure the imaging resolution 

along both the array direction and the scanning direction. The 

3-D holographic reconstructions by the four algorithms are 

shown in Fig. 9. All four algorithms give accurate 

reconstructions for the real pattern. To have a deeper sight for 

their resolving ability, the profiles of the reconstructed patterns  



  
                        (a)                                                       (b) 

Fig. 8. (a) Sheets pattern made by a set of copper sheets with the gaps from 

3 mm to 10 mm. (b) Measurement scenario for the pattern. The pattern is 

50-cm away from the scanning aperture. 

are further provided in Fig. 10. The 3-dB gaps in Fig. 10 

indicate that all four algorithms reach a resolution better than 8 

mm in both the horizontal and vertical directions. Such 
performances basically agree with the simulated PSF patterns 

shown in Fig. 5. 

The second target is a real person, who carries a plastic 

handgun on his left-hand-side waist. Such a human target is 

common in the short-range application like security check and 

it contains a certain DOF, which is sufficient to test the imaging 

accuracy at various distances. The measurement situation is 

shown in Fig. 10. In order to cover the full body of the person, 

the vertical scanning range is 2 m for this measurement. The 

reconstructed 3-D images for the full body are displayed in    

Fig. 12, and the place of the handgun is further zoomed in for a 

clear view. In Fig. 12, all four algorithms give accurate 
reconstruction for the human target. The fine parts, like the 

hands, face, and handgun, are all clearly reconstructed. 

Furthermore, it is clear that the proposed MIMO-FSA 

completely reaches the same imaging accuracy as the three 

previous state-of-the-art algorithms. 

The computation time for these two groups of experiments 

are summarized in TABLE V. Since the data size for covering 

the full person is much larger than for the sheets pattern, the 

processing for the second experiment certainly costs more time. 

For both measurements, the proposed MIMO-FSA costs the 

least computation time. Due to the large number of iteration 
applied in SAR-FFT and MIMO-EA, much more time is 

required for their focusing procedure. While for RMA that 

needs to conduct Stolt interpolation, it costs the most time for 

the human reconstruction since a huge number of auxiliary 

operations are taken with the complicated interpolation. Note 

that, all these results are obtained only based on a common 

laptop without using any acceleration or parallel computation 

technology. 

V. CONCLUSION 

In this paper, a precise and efficient imaging algorithm is 

proposed for MMW 3-D holographic imaging based on 1-D 

MIMO scanning array. A novel expansion is carried out to the 

coupling phase of the 4-D MIMO data set. Based on such an 

expansion, a fast imaging algorithm that employs the novel 

multi-static FS technique is proposed for achieving the  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9. Holographic reconstruction of sheets pattern shown in Fig. 8. (a) 

Reconstruction by proposed MIMO-FSA. (b) Reconstruction by RMA. (c) 

Reconstruction by SAR-FFT. (d) Reconstruction by MIMO-EA. All 

results are displayed under -20-dB level. 

real-time imaging on 1-D MIMO scanning system. Only FFTs 

and multiplications are employed in the algorithm, and no any 

complicated interpolation or iteration is used. The computation 

complexity of the proposed algorithm is  4

2logO N N , which 

is lower than the previous state-of-the-art algorithms. For 

validating the superiority of the algorithm, a 1-D MIMO 
scanning based MMW imaging system is developed. The phase 

error by using the algorithm is only 0.02π. Besides, the  



 
                                                           (a) 

 
                                                           (b) 

Fig. 10. Profiles of reconstructed patterns in Fig. 9. (a) Profiles of 

reconstructed vertical sheets. (b) Profiles of reconstructed horizontal 

sheets. The 3-dB gaps indicate the minimum resolved interval of 8 mm for 

both horizontal and vertical directions. 

maximum allowable sensing squint under the same system 

setup is about o27 , which is sufficient for most short-range 

imaging applications. With different targets, the imaging 

quality of the proposed algorithm, including the resolving 

ability and dynamic range, is demonstrated to reach completely 

the same level as the previous state-of-the-art algorithms. 

However, on a common laptop without using any acceleration 
technology, the proposed algorithm requires less than one tenth 

of the time as required by the previous state-of-the-art 

algorithms. The excellent imaging quality and computation 

speed indicate that real-time operation for 1-D MIMO scanning 

system can be realized by using the proposed algorithm even 

with a moderate computational device. 
 

 

 

 

 

 

  
                       (a)                                                       (b) 

Fig. 11. Measurement with a human body. (a) A plastic handgun is carried 

on his left hand side waist. (b) Measurement scenario. The person is about 

50 cm away from the scanning aperture when being tested. 

TABLE V 

TIME REQUIRED BY FOUR ALGORITHMS 

Algorithm Experiment #1 Experiment #2 

MIMO-FSA 0.5 s 5.3 s 

RMA 5.1 s 98.8 s 

SAR-FFT 10.0 s 94.1 s 

MIMO-EA 9.8 s 92.6 s 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



 
                            (a)                                                        (b)                                                         (c)                                                        (d) 

 
                      (e)                                                         (f)                                                        (g)                                                         (h)  

 
                             (i)                                                         (j)                                                         (k)                                                         (l)  

Fig. 12. Holographic reconstructions for the man shown in Fig. 10. (a) 3-D image by MIMO-FSA. (b) 3-D image by RMA. (c) 3-D image by SAR-FFT. (d) 

3-D image by MIMO-EA. (e) Front view of (a). (f) Front view of (b). (g) Front view of (c). (h) Front view of (d). (i) Zoomed-in view of handgun in (e). (j) 

Zoomed-in view of handgun in (f). (k) Zoomed-in view of handgun in (g). (l) Zoomed-in view of handgun in (h). All results are displayed under the same 

dynamic level of -20 dB. Front views are obtained by maximum projection of 3-D image onto X-Y plane. 

 

 



APPENDIX A 

ACQUIREMENT OF THE WAVENUMBER DOMAIN SPECTRUM IN (3) WITH PSP 

For the frequency domain wave sS  in (1), a 2-D FT is first conducted over the 
Tx  and 

Rx  dimensions. Use PSP to solve the 

Fourier integral and yield 
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where 
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Then, conduct a FT to 
x yS s S  over the 

Ly  dimension. Also use PSP to solve the Fourier integral and yield 

 

 

   

   

   

   

2 2 2 2 2 22 2 2 2 2 2

0 0

2 2

0 0

, ; ;

, ; ; exp

2 3
exp , ,

2 4

, ,

  

xT xR L

x y xT xR L y L L

V

xT yz y xR yz y

T R

yz y yz yxT yz y xR yz y

xT

SS k k y k

S s S k k y k jk y dy

dxdydz j f x y z P k

k k z k z k k z k z
w w

k k k kk k k k k k k k k k

z k k k k k

 

 

 
  

 

   
   
               


   
 





  
  

1 4
2 2 2 2

2 2  exp

xR yz y

xT xR y yz y

k k k

j k k x k y k k z

  
 

      
 

  (31) 

and the stationary point is given as 
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APPENDIX B 

EXPANSION OF THE COUPLING PHASE TERM IN (3) 

The coupling phase in (3) has the form as 
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where the R-D domain squint functions 
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Expanding the inner two square root terms of (33) in a power series of k , and keeping terms up to k , then the phase becomes 
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where the coefficient 
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and the R-D domain squint function 
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The higher order terms missing from (35) can be ignored when 
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In the similar way, when 
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the square root term of (35) can also be expanded in a power series of k , then retain terms up to k , thus we have 
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where the R-D domain coefficients are 
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Note that, such an expansion retains all the terms no higher than the linear order of k  from the original phase of (33). 

 

 

 

 



APPENDIX C 

DEMONSTRATION FOR (15) 

The demonstration for (15) is as follows 
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  (42) 

Let   , then the function of (42) can be updated to 
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  (43) 

As   is independent of the range variable k , there is d d    , and thus we have 
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  (44) 

When   is equal to 
2 Tx Rx Y

Tx Rx

D D D

D D
, obviously (44) can be updated to 
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This is exactly the same as the expression in (15). 

Q.E.D. 
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