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Dominant-Current Deep Learning Scheme for
Electrical Impedance Tomography

Zhun Wei, Dong Liu, and Xudong Chen

Abstract—Objective: Deep learning has recently been applied
to electrical impedance tomography (EIT) imaging. Nevertheless,
there are still many challenges that this approach has to
face, e.g., targets with sharp corners or edges cannot be well
recovered when using circular inclusion training data. This
paper proposes an iterative-based inversion method and a
convolutional neural network (CNN)-based inversion method
to recover some challenging inclusions such as triangular,
rectangular, or lung shapes, where the CNN-based method uses
only random circle or ellipse training data. Methods: First,
the iterative method, i.e., bases-expansion subspace optimization
method (BE-SOM), is proposed based on a concept of induced
contrast current (ICC) with total variation regularization.
Second, the theoretical analysis of BE-SOM and the physical
concepts introduced there motivate us to propose a dominant-
current deep learning scheme (DC-DLS) for EIT imaging, in
which dominant parts of ICC are utilized to generate multi-
channel inputs of CNN. Results: The proposed methods are
tested with both numerical and experimental data, where
several realistic phantoms including simulated pneumothorax
and pleural effusion pathologies are also considered. Conclusions
and Significance: Significant performance improvements of the
proposed methods are shown in reconstructing targets with sharp
corners or edges. It is also demonstrated that the proposed
methods are capable of fast, stable, and high-quality EIT imaging,
which is promising in providing quantitative images for potential
clinical applications.

Index Terms—Electrical impedance tomography, induced con-
trast current, subspace optimization method, deep learning.

I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) is a non-
invasive technique to visualize living tissues of the

body for biomedical imaging applications [1]–[5]. In EIT,
by attaching conducting surface electrodes around the body
and applying small alternating currents, the voltages on the
electrodes are recorded and used to reconstruct conductivities
of tissues or organs in the body. EIT is clinically useful in chest
imaging to monitor lung functions since the conductivities
of lung tissues are much lower than those of other soft
tissues within the thorax, where it has been validated in
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Fig. 1. A typical schematic of EIT problem with a two dimensional domain,
where a total number of Nr electrodes are attached on the boundary ∂Ω. The
dash line denotes the boundary of domain of interest (DOI) D, within which
all materials that are different from the background materials, referred to as
inclusions, are located.

obtaining information of pathologies [6], [7], such as pleural
effusion and pneumothorax. Although EIT is a powerful
and promising technology for its radiation-free, low-cost and
portable properties, reconstructing electrical properties from
EIT is a challenging inverse problem due to its nonlinear and
highly ill-posed properties and sensitivities to measurement
noise and modeling errors [3], [8], [9].

Iterative optimization methods are typically used to solve
EIT problem with regularizations, such as total variation
based algorithms [9], [10], boundary element-based methods
[11], variationally constrained numerical methods [12], and
subspace-based optimization methods (SOM) [13], [14]. Be-
sides iterative methods, some non-iterative methods have also
been proposed, such as the factorization method [15], [16],
the Calderóns method [17], [18], and the D-bar algorithm
[19]–[21]. Typically, iterative methods with regularizations
perform well in the quality of reconstruction but they usually
suffer from heavy computational costs and sensitivities to
measurement noise and modeling errors [22], [23]. On
contrary, non-iterative methods are usually faster than iterative
methods but the image qualities are limited. Further, the
spatial resolutions of the reconstructed images for both
iterative and non-iterative methods are severely limited by
the ill-posedness and nonlinearity of EIT problem, which
hinders the clinical applicability. To improve the spatial
resolution of reconstructed image, one commonly used method
is to incorporate spatial a priori information of organ
boundaries into algorithms [20]. Recently, deep learning has
attracted intensive attention for providing promising results
for image classification [24]–[26], object detection [27], and
segmentation [28], [29]. Neural networks with regression
features have also provided impressive results on inverse
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problems, such as signal denoising [30], deconvolution [31],
interpolation [32], and solving ill-posed linear inversion
problems [33].

In the first part of this work, a bases-expansion subspace
optimization method (BE-SOM) is presented based on a
concept of induced contrast current (ICC), where a forward
solver with the method of moment (MOM) [34] is proposed
for EIT problem under the gap model [35]. A bases-expansion
strategy with total variation is also incorporated in BE-SOM to
increase the robustness and convergence of the method. In the
second part of this work, based on the theoretical analysis and
physical concepts presented in BE-SOM, a dominant-current
deep learning scheme (DC-DLS) is proposed for EIT imaging,
where dominant parts of induced contrast current (ICC) are
utilized to generate multi-channel inputs of convolutional
neural network (CNN).

Recently, there are also some works which have applied
deep learning to EIT imaging, such as [21]. Compared
to the work in [21], the advantages of the proposed DC-
DLS are threefold: Firstly, different from previous literatures,
we start the training from a concept of ICC. Instead of
imitating shapes of training data, DC-DLS trains and learns the
mathematical relationship between ground-truth conductivities
and the conductivities that are obtained from the dominant part
of ICC, which describes the EIT physics within the domain
of interest (DOI) in the natural pixel bases. Thus, DC-DLS is
able to reconstruct complex inclusions, such as triangular and
lung targets, when the network is trained with only random
circle or ellipse inclusion data. Secondly, instead of using
original U-net architecture in [29], skip connections and batch
normalization are further added to the U-net structure, where
skip connections are used to mitigate the vanishing gradient
problem [33], [36] and batch normalization (BN) is used
to alleviate the internal covariate shift during training [37].
Thirdly, we have also introduced a multiple-channel scheme
(MCS) in DC-DLS to modify U-net, which enlarges the data
set and increases robustness by data augmentations in DC-DLS
[38].

It is worth introducing the notations used throughout the
paper. We use X and X to denote the matrix and vector
of the discretized parameter X , respectively. Furthermore,
the superscripts ∗, T , and H denote the complex conjugate,
transpose, and conjugate transpose of a matrix or vector,
respectively. Finally, we use || · ||F to denote Frobenius norm.

II. FORWARD SOLVER

In this paper, as depicted in Fig. 1, we consider a typical
two-dimensional chest-shaped domain Ω, where the boundary
of domain Ω can be obtained from optical cameras in practice.
Actually, domain Ω can be of arbitrary shape, and we choose
the one in Fig. 1 as an example to present our method. Some
inclusions with conductivity of σ(r) are embedded in a DOI D
interior to domain Ω, where the background is some material
with the conductivity of σ0(r). There are a total number of Nr

electrodes attached on the boundary ∂Ω which are labeled as
e1, e2, ..., eNr

in Fig. 1, where a total number of Ni excitations
of current are injected from the electrodes.

The Neumann boundary value problem in EIT can be
described as the following equations under gap model [35]:

∇ · [σ(r)∇µ] = 0 r ∈ Ω, (1)

σ0(r)
∂µ

∂ν
= Jq/|eq| r ∈ eq, q = 1, 2, ..., Nr, (2)

σ0(r)
∂µ

∂ν
= 0 r ∈ ∂Ω

⋂
r /∈ eq, q = 1, 2, ..., Nr, (3)

where µ is the electrical potential in domain Ω and ν is the
outer normal direction on the boundary ∂Ω. Jq and |eq| are
the current injected into the qth electrode and the length of the
qth electrode, respectively. Further, conservation of charge is

included with
Nr∑
q=1

Jq = 0, and a condition on the voltages

to specify the ground or zero potential is also defined as
Nr∑
q=1

∫
eq
µds = 0.

Since the partial differential equation (1) can further be
formulated as ∇ · {[σ0(r) + σ(r)− σ0(r)]∇µ} = 0, it is easy
to obtain

∇ · [σ0(r)∇µ] = −ρin (4)

with the contrast source ρin = ∇·{[σ(r)−σ0(r)]∇µ}, where
µ in (4) can be understood as the potential produced by the
contrast source ρin in the background media. It is noted that
the proposed forward solver applies to background media with
arbitrary inhomogeneous materials with conductivity σ0(r).
For sake of simplicity, we choose a homogeneous background
σ0 for the purpose of ease in presenting our model and its
physical insight in this paper.

To solve (4), the Green’s function G(r, r′) in background
medium is defined and it satisfies the following differential
equations [39]:

∇ · [σ0∇G(r, r′)] = −δ(r − r′), (5)

σ0
∂G

∂ν
= − 1

|Lt|
r ∈ eq, q = 1, 2, ..., Nr, (6)

σ0
∂G

∂ν
= 0 r ∈ ∂Ω

⋂
r /∈ eq, q = 1, 2, ..., Nr, (7)

where δ(r − r′) and |Lt| are the Dirac delta function and the
total length of all electrodes, respectively. Here, r and r′ are
the field point and source point in domain Ω, respectively.

With Green’s Theorem [39], it is easy to obtain the solution
of Poisson equation (4) as:

µ = µ0(r)+

∫
Ω

−∇′G(r, r′) · {[σ(r′)− σ0]∇′µ(r′)}dr′, (8)

where µ0(r) is the voltage when there is no inclusion presented
in the domain Ω. Noting that the contrast σ(r′)−σ0 is nonzero
only for r′ ∈ DOI D, we change the integral domain from Ω to
D. Taking gradient on both side of (8), we have the following
self-consistent equation:

Et = E0(r) +

∫
D

−∇{∇′G(r, r′) · [(σ(r′)− σ0)Et(r′)]}dr′

(9)
where electric field Et = −∇µ and E0 = −∇µ0.
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To solve (9), we use the method of moment (MOM) with the
pulse basis function and the delta testing function to discretize
the DOI into M subunits [34], and the centers of subunits are
located at r1, r2, . . . , rM . The total electric field at the center
of subunits E

t

p(rm) can be expressed as

E
t

p(rm) = E
0

p(rm) +

M∑
n=1

GD(rm, rn) · ξn · E
t

p(rn), (10)

where p represents the pth injection of current with p = 1, 2,
. . . , Ni, and E

0

p(rm) is the electric field in the background.
According to (8), the polarization tensor ξn is defined as

ξn = An[σ(rn)− σ0]I2, (11)

where I2 and An are two-dimensional identity matrix and the
area of the nth subunit, respectively. Note that the polarization
tensor defined in (11) is different from that used in small
scatterers [40], [41]. The Green’s function GD(rm, rn) is
characterized as GD(r, r′) · d = −∇[∇′G(r, r′) · d] for
an arbitrary dipole d. Due to the irregular boundary shape,
GD(rm, rn) does not have analytical solution, which is
computed with numerical software and saved as a library.

If we define the ICC J(rn) in the nth subunit as

J(rn) = ξn · E
t

p(rn), (12)

and write (10) in a vectorized version as:

E
t

p = E
0

p +GD · Jp, (13)

then the vectorized version of (13) is written as

Jp = ξ · [E0

p +GD · Jp], (14)

where Jp is a 2M -dimensional vector

Jp = [Jx
p (r1), Jx

p (r2), ..., Jx
p (rM ), Jy

p (r1), Jy
p (r2), ..., Jy

p (rM )]T

(15)
Here, Jx

p (rM ) and Jy
p (rM ) are x and y component of ICC

at rM for the pth injection of current, respectively. GD is a
2M × 2M matrix [Gxx, Gxy;Gyx, Gyy], in which each sub-
matrix is of size M × M . Gxx(m,n) and Gxy(m,n) are
computed as the x component of electric field at rm due to a
unit x-oriented and y-oriented dipole placed at rn, respectively.
Gyx and Gyy are evaluated in a similar way. The polarization
tensor ξ is a 2M×2M diagonal matrix with the 2M diagonal
elements being [ξ1, ξ2, ..., ξm, ..., ξM , ξ1, ξ2, ..., ξM ], where ξm
is calculated by

ξm = Am[σ(rm)− σ0] (16)

and Am is the area of the mth subunit.
According to (8), the differential voltage on the boundary

V (r∂Ω) = µ− µ0 can be formulated as

V (r∂Ω) =

∫
D

−∇′G(r∂Ω, r
′) · {[σ(r′)− σ0]∇′µ(r′)}dr′,

(17)

where r∂Ω is the position at the boundary ∂Ω. Following the
same discretization method in (10), the differential voltage V p

at the boundary for pth injection is calculated as

V p = G∂ · Jp, (18)

where G∂(r∂Ω, r
′) is characterized as G∂(r∂Ω, r

′) =

∇′G(r∂Ω, r
′) and G∂ is a Nr × 2M matrix [G

x

∂ , G
y

∂ ].
G

x

∂(q, n) and G
y

∂(q, n) are calculated as the potential on the
boundary node rq due to a unit x-oriented and y-oriented
dipole placed at rn, respectively. Here, rq denotes the central
position of the qth electrode.

In the forward solver, (14) describes the electromagnetic
interactions in domain Ω and is usually referred to as the
state equation. Equation (18) describes the voltage collected
on electrodes produced by the ICC and is referred to as the
data equation. In the following section, both BE-SOM and
DC-DLS are proposed based on state and data equations.

In this paper, COMSOL Multiphysics software (2D AC/DC
module) has been used to verify the proposed forward solver,
where various tests show that numerical results calculated by
the proposed forward model agree well with the simulation
results in COMSOL. It is noted that, for complex-valued
admittivities γ or three-dimensional (3D) problems, the
proposed framework in this paper still works. For example,
to solve complex-valued admittivities, one only needs to
replace all the conductivities by complex-valued admittivities
γ(r) = σ(r)+iωε(r) with ω and ε(r) being angular frequency
and permittivity, respectively.

III. INVERSION METHODS

A. Bases-Expansion Subspace Optimization Method

In the inverse problem, the conductivity inside the DOI
will be reconstructed and consequently inclusions can be
identified. It is important to highlight that the parameter
to be reconstructed in the proposed inversion model is the
contrast σ(r)− σ0(r). It is also stressed that the background
conductivity σ0(r) is not required to be accurate, since the
contrast σ(r) − σ0(r) automatically offsets it for the simple
reason that

σ(r) = σ0(r) + [σ(r)− σ0(r)]. (19)

It is noted that the proposed approach not only allows to
reconstruct the contrast, i.e., conductivity change in general
difference EIT when the measurement data before the change
is available, but also offers a chance to estimate the absolute
conductivity distribution when only the data after the change
is available (σ0(r) is not known). Specifically, it is done by
simulating the data with a conductivity distribution σ0(r), and
then compensating σ0(r) to σ(r), as shown in (19).

If a singular value decomposition (SVD) is conducted on
G∂ , one can obtain G∂ =

∑
m umσmν

H
m with G∂ · νm =

σmum, σ1 ≥ σ2 ... ≥ σ2M ≥ 0, where the superscript
H denotes conjugate transpose of a matrix or vector. By
considering orthogonality of the singular vectors, the major
part of ICC J

+

p spanned by the first L dominant singular values
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can be uniquely calculated from the data equation (18) with
[13], [42]

J
+

p =

L∑
j=1

µH
j · V p

σj
νj , (20)

where µH
j denotes the conjugate transpose of the singular

vector µj . Since the first L singular values are larger than the
remaining ones, the major part of ICC calculated from (20) are
more stable when the measured potential V p is contaminated
with noises. Nevertheless, J

+

p has missed some information
contained in the minor part of ICC J

−
p which is spanned by

the other 2M −L singular vectors, and the actual ICC should
be Jp = J

+

p + J
−
p .

To avoid heavy computational cost associated with full SVD
of G∂ adopted in SOM [13], we only need to calculate the
first L singular vectors by a thin-SVD to represent the major
part of ICC and at the same time the minor part of ICC J

−
p

is spanned by Fourier bases F .
In BE-SOM, we divide the optimization processes into S

stages, where only the first Mk Fourier bases are used to
represent J

−
p at the kth stage with k = 1, 2, ..., S. The number

of Fourier bases Mk are gradually increased from a small value
to 2M , and the result that is obtained from the kth stage is
treated as the initial guess in the (k+ 1)th stage. Specifically,
the induced contrast current can be written in the form of

Jp = J
+

p + FMk
· αp, (21)

where αp is an Mk-dimensional vector to be reconstructed
at each stage. Since the proposed model uses the SOM and
the gradual expansion of Fourier bases, which is referred to
as the BE-SOM, its speed of convergence is significantly
increased due to the reduction of unknowns at the early stage
of optimizations.

With (21), the residual of data equation (18) is formulated
as

∆d
p = ||G∂ · J

+

p +G∂ · FMk
· αp − V p||2 (22)

and residual of state equation (14) becomes

∆s
p = ||A · αp −Bp||2, (23)

in which A = FMk
−ξ ·(GD ·FMk

), and Bp = ξ ·(E0

p +GD ·
J

+

p )− J+

p . The normalized data-related objective function fd
is defined as

fd(α1, α2, ..., αNi
, ξ) =

Ni∑
p=1

(∆d
p/|V p|2 + ∆s

p/|J
+

p |2). (24)

In BE-SOM, total variation (TV) is also added to regularize
the solution with the objective function:

f0(α1, α2, ..., αNi , ξ) = fd(α1, α2, ..., αNi , ξ) + βfTV (ξ),
(25)

where β > 0 is the weighting parameter, and

fTV (ξ) =

P−1∑
a,b=1

√
|ξa+1,b − ξa,b|2 + |ξa,b+1 − ξa,b|2 + η2

+

P−1∑
a=1

√
|ξa+1,P − ξa,P |2 + η2 (26)

+

P−1∑
b=1

√
|ξP,b+1 − ξP,b|2 + η2

is a discretized approximation of the TV [43]. Before
calculating the TV objective function (26), the polarization
tensor ξ is reshaped to P ×P pixels by padding margins with
zero, where ξa,b denotes the (a, b)th pixel of the reshaped
ξ. η > 0 is a small parameter to ensure that fTV (ξ) is
differentiable.

In minimizing the objective function (25), we alternatively
update the coefficients αp and the polarization tensor ξ
with conjugate gradient (CG) method. The implementation
procedures are as follows:

• Step 1) Initial step (n = 0 and k = 1): Initialize ξ = 0,
αp,0 = 0, and ρp,0 = 0. (To increase the convergence
speed, ξ can also be initialized as ξ = ξb with ξb being
the results of back propagation [42], [44].)

• Step 2) n=n+1. Update αp,n: αp,n = αp,n−1 + dp,nρp,n,
where ρp,n is the Polak-Ribière-Polyak (PRP) conjugate
gradient [45] of objective function (25) with respect to
αp,n and dp,n is the search length. It is noted that the
objective function (25) is quadratic in terms of parameter
dp,n, and an optimal dp,n can be easily obtained [42].

• Step 3) Update ξn (h = 1):

– Step 3.1) Initialize ξn as ξn,0: For the mth subunit,
update the induced contrast current (Jp,n)m and the
total electric filed (E

t

p,n)m following (21) and (13),
respectively. Then objective function (24) becomes
quadratic in terms of (ξn)m, and the solution is given
by [13]:

(ξn,0)
m

= [

Ni∑
p=1

(E
t

p,n)∗m

||J+

p ||
·
(Jp,n)m

||J+

p ||
]/[

Ni∑
p=1

|
(E

t

p,n)m

||J+

p ||
|2]

(27)
– Step 3.2) Updated ξn,h with ξn,h = ξn,h−1 + dhρh,

where ρh is the PRP conjugate gradient of objective
function (25) with respect to ξn,h and dh is the
search length.

– Step 3.3) Let h = h+1. If the termination condition
(h > 20 in this paper) is satisfied, stop iteration and
go to step 4). Otherwise, go to step 3.2).

• Step 4) If the termination condition, such as n reaching
the maximum iterations, is satisfied, stop iteration and go
to step 5). Otherwise, go to step 2).

• Step 5) If k = S, stop iteration. Otherwise, let k = k+1,
n = 0, and go to step 2).
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Fig. 2. The U-net architecture for the proposed DC-DLS. The details of U-net can be found in [29], [33]. An example of inputs and labels in training is also
depicted on top of neural network.

B. Dominant-Current Deep Learning Scheme

The BE-SOM presented in Section III-A is an iterative re-
construction method. Many components of BE-SOM motivate
us to propose a CNN model, namely DC-DLS, to reconstruct
conductivity with a much faster speed. The proposed DC-DLS
consists of three steps.

In the first step of DC-DLS, we turn our attention from
directly computing conductivity to obtaining a dominant
component of ICC, which is utilized to generate inputs of
CNN. The dominant current have two features. The first one is
that it contains most of the important features of the unknown
objects, and the second is that it was found to be robust to
measurement noise, such as Gaussian noises [38].

As mentioned just after (20), J
+

p contains the most
important information of ICC, but it has missed some
information contained in J−p . To compensate the missing
information J

−
p , we introduce the concept of dominant current

J
d

p, which consists of the major part of ICC J
+

p and a low-
frequency current J

l

p with

J
d

p = J
+

p + J
l

p, (28)

where the superscript d and l denotes dominant and low-
frequency, respectively. The current J

l

p is represented by

J
l

p = F
l

M1
· αl

p, (29)

where F
l

M1
and αl

p are low-frequency matrix in the first stage
of (21) and its corresponding coefficients, respectively. The
motivation of constructing J

d

p in (28) is that studies have
shown that deep architecture properties of CNNs, namely their
strong learning capability and high representational capacity,
are well suited to image restoration from degraded inputs [46].
Thus, it is a good choice to exclude the high frequency part
of ICC, which is easily contaminated by noises, and let CNNs
to restore this part by training.

The second step of DC-DLS is to obtain the value of αl
p. In

this paper, αl
p is obtained from the first stage (k = 1) of BE-

SOM. Due to the significantly reduced number of unknowns
at the first stage of BE-SOM, the convergence rate is very

fast and αl
p can be obtained in a few seconds for typical EIT

problems.
Then, the final step is to calculate the polarization tensor

ξ
d

p of DC-DLS based on J
d

p. Specifically, according to (10),
the total electrical field E

t,d

p in DC-DLS for the pth incidence
can be updated as

E
t,d

p = E
0

p +GD · J
d

p. (30)

Then, based on the definition

J
d

p = ξ
d

p · E
t,d

p , (31)

the mth element of the contrast ξ
d

p for the pth incidence is
obtained with

(ξ
d

p)m =
(J

d

p)m · (E
t,d

p )∗m

||(Et,d

p )m||2
. (32)

In the learning process of DC-DLS, the conductivity

obtained from the polarization tensor ξ
d

p in (32) is assigned
into different input-channels of CNN, and each corresponding
output-channel is the true conductivity of the domain D.
Consequently, there are Ni pairs of input- and output-channels
of DC-DLS corresponding to a total number of Ni current
injections.

It is seen in the derivations of DC-DLS that, the dominant
part J

d

p of ICC contains most of the information from the
data equation (18) and it is used to generate the input of CNN
following (32). Since both input and output of the proposed
neural network are data that are within the DOI D, DC-DLS

Fig. 3. Illustration of random-ellipse dataset, which consists of four randomly
distributed ellipses.
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TABLE I
RELATIVE ERRORS Re FOR THE NUMERICAL EXAMPLES.

Re Phantom 1 Phantom 2 Phantom 3 Pneumothorax Pleural Effusion
BE-SOM 0.118 0.16 0.14 0.15 0.15

DC-DLS (Input) 0.15 0.196 0.18 0.21 0.18
DC-DLS (Output) 0.09 0.087 0.098 0.12 0.14

Fig. 4. Reconstructions of “heart and lung” phantoms: BE-SOM and DC-
DLS are used to reconstruct conductivity distributions from collected voltages
with 0.5% Gaussian noises (SNR=46 dB) presented. The “Input” column
corresponds to the input images of the first channel in DC-DLS.

mainly trains and learns the EIT physics within DOI, i.e., the
state equation (14). Further, by utilizing the known dominant
parts of ICC as inputs, DC-DLS decreases the nonlinearity of
the state equation and makes it easier for CNN in the learning
process.

C. U-net Convolutional Neural Network

1) Architecture: In this work, U-net architecture, originally
designed for segmentation [29] is used to implement the pro-
posed DC-DLS. As presented in Fig. 2, the U-net architecture
consists of a contracting path (left side) and an expansive
path (right side). The contracting path consists of repeated
application of 3 × 3 convolutions, batch normalization, and
rectified linear unit (ReLU), which is followed by a 2×2 max
pooling operation. The expansive path is similar to contracting
path, but the max pooling in contracting path is replaced by a
3×3 up convolution in expansive path. In expansive path, there
are also two concatenations with the correspondingly cropped
feature maps from the contracting path. We choose the well-
suited U-net architecture and modify the structure to solve the
nonlinear EIT imaging problems:
• The downsampling in U-net significantly increase the

receptive field of a unit in neural network, which is
important for inverse problems in EIT since a large field
of view over the input image can significantly improve
the prediction at each pixel of the output image [47].

• A skip connection is inserted from the input of the neural
network to its output layer in the U-net architecture used

in the manuscript. This approach is particular well suited
to the proposed DC-DLS since the inputs and outputs
share similar important features. Specifically, the skip
connection enforces the network learning the difference
between the inputs and outputs, which avoids learning
abundant part already contained in the inputs. In addition,
this skip connection also mitigates the vanishing gradient
problem during training [33], [36].

• Batch Normalization (BN) is used to alleviate the
internal covariate shift, i.e., the change in the distribution
of network activations due to the change in network
parameters during training [37].

• We have applied a multiple-channel scheme (MCS) in
DC-DLS. The MCS adopted in DC-DLS enlarges the data
set by utilizing the information from all current injections
and increases the robustness by taking average of all
outputs in different channels.

• We have also incorporated different physical information
into the inputs of the proposed DC-DLS. For example,
the inputs of the DC-DLS are computed from a kind
of induced contrast current, rather than the measured
voltage. Namely, the input also provides a warm start
to the CNN instead of directly using the measured
voltage. This choice avoids the otherwise unnecessary
computational effort of CNN spent on learning the
physical mechanism (i.e., G∂ in (18)).

2) Training: In this work, we propose a training strategy to
reconstruct “heart and lung” phantoms in EIT with random-
ellipse dataset (RED). As depicted in Fig. 3, RED consists of
four random distributed ellipses with random conductivities
and sizes, which are marked as E1, E2, E3, and E4,
respectively. The four ellipses are allowed to interlap with each
other, and the conductivity in the latter ellipse will replace
the one generated early, i.e., if E3 interlaps with E1, the
conductivity of E3 will replace the conductivity of E1 in the
interlapping region. In Fig. 3, E1 and E2 are allowed to rotate
with random angles in [−30◦, 30◦] and the conductivities of
them are randomly chosen in the same range, which are used
to model lungs. The detailed values of conductivity will be
introduced in Section IV. In RED, E3 is used to model heart,
and E4 is used to model possible deformations and pathologies
in lung, thus it only presents in the interlapping region of
E4 with E1 or E2. The details of training parameters, such
as the ranges of radii and conductivities, will be introduced
in Section IV. It is noted that RED is highly adaptive and
not limited in training “heart and lung” phantoms since both
the number of random ellipses and parameter ranges can be
changed according to practical applications.

The cost function used for training in DC-DLS is Euclidean
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Fig. 5. Reconstructions of Phantom 1 with different noise levels: Left, middle,
and right columns correspond to 0.2% (SNR=54 dB), 2% (SNR=34 dB), and
10% (SNR=20 dB) Gaussian noises, respectively.

loss. MatConvNet toolbox [48] is used to implement the
proposed CNN scheme. The hyperparameters for the network
in training in DC-DLS are as follows: learning rate decreasing
logarithmically from 10−6 to 10−8; momentum equals 0.99;
weight decay equals to 10−6. We empirically applied an “early
stopping” strategy to mitigate the effect brought by overfitting.
Specifically, we empirically stop the training at a position
where validation loss shows apparent divergence with training
loss. Adding more data in training will also help in dealing
with overfitting issues if more powerful hardware is available

3) Testing: In this work, profiles of numerical tests consist
of three “heart and lung” phantoms and 40 synthetic tests from
RED. The profiles of the three phantoms with random conduc-
tivities are presented in Fig. 4. In the tests with experimental
data, we test BE-SOM and the trained network in DC-DLS on
conductive and resistive targets with various shapes measured
by the KIT4 (Kuopio Impedance Tomography) EIT system
[49].

IV. NUMERICAL RESULTS

A. Implementation Details

In this section, as presented in Fig. 1, we study recon-
structions from simulated voltages collected on chest-shaped
domain with perimeter 106.4 cm. Nr = 32 electrodes with the
width of we = 2.5 cm are attached on the boundary ∂Ω, and
the background is saline with the conductivity σ0 = 0.424
S/m. We consider a commonly used trigonometric current
patterns (TCPs) which sinusoidal patterns are applied on all
electrodes and the resulting voltages are measured on all
electrodes. Specifically, Ni = 16 current patterns are applied
with the formulae for TCPs are

J2t−1
q = J0 cos(tθq) (33)

Fig. 6. Trajectories of relative errors in reconstructing Phantom 1 as a function
of SNR.

and
J2t
q = J0 sin(tθq), (34)

with θq = 2πq/Nr, J0 = 0.125 mA/cm, q=1, 2, . . . , Nr, and
t = 1, 2, . . . , Ni/2.

In this section, we consider an ellipse-shaped DOI D with
long radius 18 cm and short radius 12 cm centered at the
central point of the chest. In discretization, the DOI is divided
into M = 1739 subunits, each with dimensions 0.625 cm ×
0.625 cm. The measured voltage is computed by MOM with a
different mesh to avoid inverse crime, and recorded as a matrix
R with the size of Nr ·Ni. In the training process, noiseless
voltages are used, whereas for all the numerical tests, additive
white Gaussian noise n is added to the measured voltages. The
noise level is quantified by Nl = (||n||F /||R||F ) with || · ||F
denoting Frobenius norm, and the signal to noise ratio (SNR)
in dB is consequently calculated as SNR = 20 log10 (1/Nl).

In order to quantitatively evaluate the performance of
different schemes, a relative error Re is also defined as

Re = ||σt − σr||F /||σ
t||F , (35)

where σt and σr are true and reconstructed conductivity pro-
files, respectively. It is noted that, in the reconstruction process,
we have added the constraint that values of conductivity are
positive, which is an obvious physical fact. For the empirical
parameters L in BE-SOM and DC-DLS, a successive range
of integer L (8 ≤ L ≤ 25 in this paper), instead of a single
one, works for a reconstruction problem. In this paper, we use
L = 15 following the suggestions in the previous literature
[13]. For BE-SOM, S = 3 stages with M1 = 10 × 10,
M2 = 20 × 20, and M3 = 39 × 39 are applied throughout
this section. For all examples in this section, the weighting
parameters of total variation (β) are chosen as 0, 0.01, and
0.01 for the three stages, respectively. Specifically, β = 0 is
chosen at the first stage so that objective function fd in (25) is
reduced fast when the results are not accurate at the beginning
of optimizations, and β = 0.01 is chosen for the other stages
empirically to make sure that the objective function fd and
fTV in (25) are in the same order of magnitude. A maximum
iterations of 150 are set for each stage unless there are no
apparent changes in the objective function (differential value
between two consecutive objective function in iterations is
smaller than 10−3). According to our observations, around
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Fig. 7. Reconstructions of pneumothorax and pleural effusion pathologies in
“heart and lung” phantoms, where 0.5% Gaussian noises (SNR=46 dB) are
presented in the collected voltages.

50 iterations are sufficient for the first two stages since the
number of unknowns is much smaller than that in the last
stages.

In all the tests, the RED is synthetically generated compris-
ing 800 images consisting of random ellipses with random
conductivities. Among the 800 profiles, 760 of them are used
to train CNNs with the proposed DC-DLS, and 40 images
are used to test the trained CNN. The parameters in the RED
for numerical sections are set as follows: The vertical and
horizontal radii for both E1 and E2 are randomly chosen
in the ranges 6-10 cm and 4-7 cm, respectively, where the
conductivities are randomly chosen between 0.1 S/m and 0.3
S/m. Both the vertical and horizontal radii for E3 and E4 are
randomly chosen in the range 2-6 cm, where the conductivities
of E3 are randomly chosen between 0.6 S/m and 1 S/m.
The conductivities of E4 are randomly chosen between 0
S/m and 1 S/m to model possible pathologies on lungs (E1
and E2), where the conductivities of 30% numbers of E4 in
RED are made as background conductivity to model possible
deformations on lungs. It is noted that, before inputting into
CNN, the conductivity distributions obtained from (32) are
reshaped to P×P pixels by padding margins with background
conductivity σ0, where P = 64 is used in all the numerical
tests.

To fairly compare the time consumed in each example, for
all reconstructions, we use personal computer with CPU (3.4
GHz Intel Core i7 Processor and 16 GB RAM). For a training
with 40 epoches in DC-DLS, it takes about 2.1 hours, which
varies slightly for different examples. It is noted that, since
each operation of CNN is simple and local, both the training
and test processes are ideal for GPU-based parallelization.
Consequently, the time spent on DC-DLS can be further
reduced by GPU calculation.

B. Examples of Reconstructions

In the first example, three different “heart and lung” phan-
toms are considered, where the ground truth of conductivity
distributions are presented in the first column of Fig. 4. The
conductivities are randomly chosen from the ranges introduced
in the previous section. In Fig. 4, reconstructed results
from the proposed BE-SOM and DC-DLS are presented,
where 0.5% Gaussian noises (SNR=46 dB) are added in the

Fig. 8. Reconstructions of conductive and resistive targets measured on the
KIT4 (Kuopio Impedance Tomography) EIT system. The white objects are
made of solid plastic and are resistive, and the hollow circular objects are
conductive metal rings [49].

collected voltages. Here, all images are shown in DICOM
orientation in which the left lung is on the viewer’s right
[20]. It is found from Fig. 4 that both BE-SOM and DC-
DLS can distinguish some small but important features in
the three phantoms, such as the curves at the connection
part of lung and heart in phantom 1, the relative small size
of left lung in Phantom 2, and the rotation of lungs in
Phantom 3. Despite the fact that these small features can
hardly simultaneously included in the four random-ellipses
training data, DC-DLS still shows satisfying results for all
these small features. Further, compared with BE-SOM, it is
seen that the reconstructed images of DC-DLS have much
shaper boundaries, and the reason is that the large number
of training data offers strong constraints for CNN scheme.
To quantitatively compare the results, relative errors Re are
computed and shown in Table I. It suggests that DC-DLS
quantitatively outperforms BE-SOM for all the three Phantom
tests in terms of reconstructed image qualities.

To validate the robustness of the proposed method to
noises, reconstructions are also conducted on Phantom 1 from
voltages contaminated by Gaussian noises with different noise
levels. As presented in Fig. 5, it is seen that both the proposed
methods are robust to noises, and the profiles of Phantom 1 are
reconstructed even with 2% (SNR=34 dB) noises presented.
It can also be found from Fig. 5 that, with a very large noise
level (SNR=20 dB), some discrepancies are shown on results
from the proposed methods. To further quantitatively evaluate
the effects of noise contaminations on the proposed methods,
the relative of errors varying with different noise levels are
also presented in Fig. 6.

In the second example, we consider two phantoms with
different pathologies including pneumothorax and pleural
effusion depicted in Fig. 7, where pneumothorax and pleu-
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ral effusion show regions with apparent lower and higher
conductivities than those of healthy lungs, respectively. To
better evaluate the proposed method, we have intensionally put
those pathologies in different portions of lungs for different
phantoms. It is seen from Fig. 7 that, both pneumothorax
and pleural effusions are clearly visible in the reconstructions
for the proposed BE-SOM and DC-DLS. To quantitatively
compare the reconstructed results, the relative errors are also
computed and compared in Table I, where smaller relative
errors are observed for DC-DLS in all the tests.

V. TESTS WITH EXPERIMENTAL DATA

To further validate the proposed methods, tests with
BE-SOM and DC-DLS have also been conducted with
experimental data collected on the four scenarios shown in
Fig. 8. The experiments were conducted using a tank of
circular cylinder shape with the radius of Rt = 14 cm.
Sixteen rectangular electrodes (height 7 cm, width 2.5 cm)
were attached equidistantly on the inner surface of the tank.
The tank was filled with saline with the measured conductivity
of 0.03 S/m, and Ni = 16 adjacent current injections were
applied with an amplitude of 2 mA [49]. Conductive and
resistive targets were presented in the tank and voltages were
measured on the KIT4 (Kuopio Impedance Tomography) EIT
system.

In the reconstructions, we consider a circular DOI D with
a radius of 0.95Rt centered at the central point of saline tank.
In discretization, the DOI is divided into M = 1696 subunits
with dimensions 0.571 cm × 0.571 cm. In the training of
DC-DLS, we use only random circular data. Specifically, one
to three circular inclusions are simulated with random radii
varying from 1 cm to 6 cm and the circular inclusions are
allowed to interlap with each other to model possible complex
inclusions. Following the settings in [21], the conductivities
values are assigned in two ranges ([0.05, 0.12] S/m and
[0.005, 0.015] S/m) to model “conductive” and “resistive”,
respectively. Before being used as the inputs of CNN, the
conductivity distributions obtained from (32) are reshaped
to P × P pixels with P = 52 by padding margins with
background conductivity σ0 =0.03 S/m. For BE-SOM, S = 3
stages with M1 = 10×10, M2 = 20×20, and M3 = 46×46
are applied in all scenarios. The weighting parameters of total
variation (β) for all scenarios are chosen as 0, 10, and 10
for the three stages, respectively, where we we follow the
criterion introduced in Section IV-A. Namely, at the beginning
of optimizations, β = 0 is chosen to make sure the objective
function fd in (25) is reduced fast when the results are not
accurate, and β = 10 is chosen for the other stages empirically
to make sure that the objective function fd and fTV in (25)
are in the same order of magnitude. All other parameters are
the same as those in numerical section.

In Fig. 8, we present the reconstructed results from the
measured voltages with BE-SOM and DC-DLS. In each
scenario, the time spent on reconstruction for BE-SOM and
DC-DLS are 61 s and 8 s, respectively. It is found that
both the proposed methods obtain satisfying results even for
some challenging inclusions, such as triangular and rectangular

shapes. Although the network is trained with only circular
inclusions, the proposed DC-DLS is able to reconstruct
triangular and rectangular inclusions, which highly improves
the applicable ranges of the deep learning on EIT imaging.

VI. CONCLUSION

In this work, we proposed an iterative-based inversion
method and a CNN-based inversion method for EIT ap-
plications. The proposed iterative-based inversion method,
namely the bases-expansion subspace optimization method
(BE-SOM), introduces the concept of induced contrast current
(ICC) in EIT problem. These concepts are essential for us to
apply a method of moment (MOM) under the gap model.
Reconstructions are conducted on chest-shaped domain for
several realistic phantoms including pneumothorax and pleural
effusion pathologies. The theoretical analysis of BE-SOM
and the physical concepts introduced there motivate us to
propose a deep learning scheme (DC-DLS). By utilizing
the dominant parts of ICC, DC-DLS trains and learns the
mathematical relationship between ground-truth conductivities
and the conductivities that are obtained from the dominant part
of ICC in the natural pixel bases, which describes the EIT
physics within the domain of interest. It was demonstrated that
the proposed DC-DLS significantly improves the applicable
ranges of deep learning on EIT imaging. Reconstructed results
from both numerical and experimental data also show that both
DC-DLS and BE-SOM are capable of fast, high-quality and
stable imaging in EIT.

It is important to stress that the proposed approach not only
allows to reconstruct the contrast, i.e., conductivity change
in general difference EIT when the measurement data before
the change is available, but also offers a chance to estimate
the absolute conductivity distribution. Finally, we mention in
passing that although the presentation of this work is given in
a 2D context, an extension of the proposed frameworks to 3D
is straightforward, where similar extensions have been verified
in inverse scattering problems [50].

In addition, more advanced CNN architectures may yield
better results with the proposed ICC framework, such as
adversarial learning. The performance may also be improved
by incorporating spatial a priori information into the training
process. To sum up, the proposed method is promising in pro-
viding quantitative images for potential clinical applications,
such as monitoring health condition of lungs.
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