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Abstract—A review of the most recent advances in deep
learning (DL) as applied to electromagnetics (EM), antennas,
and propagation is provided. It is aimed at giving the interested
readers and pratictioners in EM and related applicative fields
some useful insights on the effectiveness and the potentialities
of deep neural networks (DNNs) as computational tools with
an unprecedented computational efficiency. The range of consid-
ered applications includes forward/inverse scattering, direction-
of-arrival (DoA) estimation, radar and remote sensing (RS),
and multi-input/multi-output (MIMO) systems. Appealing DNN-
based solutions concerned with localization, human behavior
monitoring (HBM), and EM compatibility (EMC) are reported,
as well. Some final remarks are drawn along with indications on
future trends according to the authors’ viewpoint.

Index Terms—Deep Learning, Deep Neural Networks, Convo-
lutional Neural Networks, Electromagnetics, Antennas, Propaga-
tion, Scattering, Radar, Remote Sensing.

I. INTRODUCTION

D
EEP learning (DL) is rapidly emerging as a powerful

framework enabling unprecedented time and accuracy

performance for solving complex problems in electromagnet-

ics (EM) [1]-[8]. As a matter of fact, the number of DL-

related publications has been exponentially growing during

the last five years as confirmed by the IEEE-Xplore database

[Fig. 1(a)]. Indeed, DL, machine learning (ML), and artificial

intelligence (AI) are currently listed in the top ten most

popular search keywords. Although the development of EM

techniques based on deep neural networks (DNNs) is at the

beginning, many researches have been recently carried out

in forward/inverse EM scattering [1][2], direction-of-arrival

(DoA) estimation [3], radar and remote sensing (RS) [4], and

multiple-input/multiple-output (MIMO) systems [5]. More-

over, an ever-growing number of papers has been published on

localization [6], human behavior monitoring (HBM) [7], and

EM compatibility (EMC) [8], as well.
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Figure 1. DNN Techniques in EM - Statistics of (a) number of papers vs. year
and (b) percentage distribution vs. ML architecture (based on IEEE-Xplore

database updated to March 2019).

The purpose of this letter is that of reviewing the most recent

advances of DNNs as applied to EM at large. Towards this

end, Section II briefly summarizes the most common DNN

architectures, while Sect. III provides an overview of their

EM applications. Finally, some final remarks are drawn, while

potential future trends are envisaged (Sect. IV).

II. DNN ARCHITECTURE

Analogously to learning-by-examples (LBE) techniques such

as support vector machines (SVMs) and Gaussian Processes

(GPs) [9], DNNs are ML algorithms aimed at learning a non-

linear (NL) function, Φ, starting from a database of T I/O

training pairs D = {[Ωt, Φ (Ωt)] ; t = 1, ..., T }, Ωt being

the t-th (t = 1, ..., T ) K-dimensional input sample (Ωt =
{Ωk,t; k = 1, ..., K}), while Φ (Ωt) is the corresponding Q-

dimensional output (Φ(Ωt) = {Φq (Ωt) ; q = 1, ..., Q}) for

regression problems or one (Q = 1) integer label (i.e.,

Φ ≡ Φ1 (Ωt) ∈ Z) in case of classification [9]. DNNs

are composed by a significantly higher number of layers,

L, and neurons (processing units) than shallow NNs [9] 1

to accurately approximate (Φ̃ ≈ Φ) much less predictable

I/O relationships during the on-line phase [10]-[12]. Although

many deep architectures exist, including auto-encoders (AEs),

feed-forward NNs (FFNNs), and recurrent NNs (RNNs) [12],

more than 75% of surveyed works rely on convolutional NNs

(CNNs or ConvNets) [Fig. 1(b)]. Without loss of generality,

in the simplest case (Fig. 2) the CNN prediction Φ̃ (Ω) for an

input sample Ω can be described as that of a single-layer fully

connected NN (FCNN) [9]

Φ̃q (Ω) = ψ

{
M∑

m=1

N∑

n=1

wq
mnO

(L)
mn

}
; q = 1, ..., Q (1)

where {wq
mn; m = 1, ..., M ; n = 1, ..., N} are the FCNN

weights for the q-th output (q = 1, ..., Q) [11] and ψ { . }

1Commonly, the threshold at which shallow learning ends and DL begins
is L ≥ 10 [10].
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Figure 2. Deep CNNs - Block scheme of a typical CNN network.

is a NL activation function such as the rectified linear unit

(ReLU) function, ψ {χ} = max (0, χ). Moreover, O
(L)
mn is

the (m, n)-th (m = 1, ...,M ; n = 1, ..., N ) entry of the

(M ×N) matrix O(L), which is the 2D output (feature map)

of the last (l = L) CNN layer. The feature map is the result

of a nested sequence of convolution, C(l) { . }, and pooling,

P(l) { . }, operations carried out by the corresponding CNN

layers on the input to the first (l = 1) one, I(1), of dimension

(M ′ ×N ′) > (M ×N) whose (m′, n′)-th entry is given by

I
(1)
m′n′ = Ωn′+(m′

−1)×N ′ :

O(L) = P(L)
{
C(L−1)

[
P(L−2)

(
... C(1)

{
I(1)

}
...
)]}

. (2)

With reference to the input and the output of the l-th (l =
1, ..., L) layer, I(l) and O(l) (O(l) = I(l+1)), the result of the

l-th convolution layer, O(l)
, C(l)

{
I(l)

}
, is equal to

O(l)
mn = ψ

{
F∑

u=1

F∑

v=1

K(l)
uvI

(l)
(m−u−1)(n−v−1)

}
(3)

where K(l) =
{
K

(l)
uv; u = 1, ..., F ; v = 1, ..., F

}
de-

notes the l-th trainable convolution filter of dimen-

sions (F × F ). The entries of the convolution filters,{
K

(l)
uv; u = 1, ..., F ; v = 1, ..., F

}
, as well as the weights

of the FCNN, {wq
mn; m = 1, ..., M ; n = 1, ..., N}, are de-

termined during the off-line training phase by minimizing a

suitable loss function that quantifies the mismatch between

the t-th (t = 1, ..., T ) function/output value, Φ (Ωt), and the

corresponding estimated value, Φ̃ (Ωt), computed according

to (1) [11]. As for the pooling layers, the l-th output, O(l)
,

P(l)
{
I(l)

}
, is typically defined as the maximum over a set

of neighboring input entries

O(l)
mn = max

i, j=0, ..., P−1

{
I
(l)
[(m−1)×s+i][(n−1)×s+j]

}
(4)

P being the pooling size and s the stride determining the

interval between neighboring pooling windows. It is worth

observing that the purpose of convolution and pooling layers

is to extract low-dimension/highly-informative features able

to accurately model the underlying I/O relationship, Φ. As

a matter of fact, the main advantage of CNNs over con-

ventional NNs is their capability of “feature learning” with

translational/rotational invariance directly from training data,

provided that the input exhibits some local correlation as in

natural images [13]. On the other hand, RNNs are suitable to

model time series data, in which each sample is assumed to

be dependent on the previous one, especially when coupled

with memory [13].

III. APPLICATIONS

EM SCATTERING: (a) FORWARD SCATTERING (FS) - Finite

element method (FEM) [14], method of moments (MoM)

[15], and finite difference time domain (FDTD) [16] are

popular computational tools for solving forward EM problems

formulated in terms of differential and/or integral equations

to be discretized in matrix systems, which are generally

characterized by millions of unknowns when dealing with real

scenarios/applications. This implies non-negligible computa-

tional issues because of the high complexity of the numerical

problems at hand [14]. Therefore, solving forward EM prob-

lems in real-time is still very challenging and DNNs are rapidly

emerging as a promising candidate to dramatically speed up

standard EM FS solvers [1][17]-[21]. Two novel strategies

based on deep RNNs and CNNs have been recently proposed

to efficiently solve FDTD problems [17]. Moreover, a real-

time EM Poisson’s equations solver based on DL has been

introduced in [18] to predict the distribution of the potential

of the electrostatic field in 3D domains. Towards this end,

a CNN has been trained to learn the NL relation between

the source-location/permittivity-distribution and the potential.

Numerical experiments have shown prediction errors smaller

than 3% despite the significant reduction of the computation

time with respect to a standard full-wave (FW) approach [18].

Similarly, faithful computations of the EM field scattered by

2D inhomogeneous circular objects have been obtained by

training a CNN with finite-element boundary integral (FEBI)

FW simulations [19]. Deep FFNNs have been also success-

fully exploited in estimating the EM interferences radiated by

extra-high speed electronic devices and systems to enable the

computationally-efficient design of printed circuit boards with

reduced emissions [20]. Furthermore, a FFNN architecture

has been adopted in [21] for determining the magnetic flux

in unbalanced induction motors. Finally, a DL approach has

proven to give almost real-time performance, ∆t ≈ 1 [sec], in

computing the waveforms generated by a ground penetrating

radar (GPR) in a 3D subsurface scenario [1]. It is worth

pointing out that DNNs for FS are in the very early stages

of development, clearly representing a promising solution

to accelerate computations of traditional solvers. However,

significant efforts are still needed to investigate the correlation

between DNNs operations and EM algorithms in order to

develop much faster and yet accurate forward solvers.

(b) INVERSE SCATTERING (IS) - Inverse scattering problems

(ISPs) are aimed at retrieving qualitative (i.e., location and

shape) and quantitative (i.e., material composition) informa-

tion on unknown targets from non-invasive measurements

of the scattered field [22]. The first attempts to solve ISPs

with shallow NNs have been concerned with the parametric

inversion of the scatterers (i.e., positions, geometries, and

homogeneous dielectric properties) [23][24]. Although the

application of DNNs to ISPs is at an early stage, they are

rapidly gaining attention thanks to their efficiency to manage

a more versatile pixel-based representation of the unknown

distributions of the ISP [2][25]-[32]. In this framework, three

CNN-based approaches have been proposed in [2]. While
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the direct inversion scheme (DIS), devoted to estimate the

permittivity profile starting from scattered field measurements,

yielded non-optimal results, the other two approaches, both

based on the CNN-processing of low-quality/low-pass guesses

generated by non-iterative algorithms, successfully performed

thanks to the effectiveness of CNNs in restoring missing details

and removing artifacts in degraded images. More specifically,

the dominant current scheme (DCS) approach [22] turned out

to be more competitive than relying on the back-propagation

(BP), carefully retrieving complex-shape targets in just ∆t ≤ 1
[sec] [2]. It is worth noticing that BP has been also adopted in

[25] to give pre-processed inputs/reconstructions to the CNN.

On the other hand, the connection between conventional iter-

ative IS algorithms and DNNs has been profitably investigated

in [26] to develop the “deepNIS” inversion method, which

is based on three-cascaded CNNs that process a complex-

valued input (i.e., a BP-generated image) to determine a super-

resolution guess of the dielectric distribution of the investi-

gation domain [26]. Alternatively, a significant reduction of

the CPU-time required by gradient-like deterministic retrieval

techniques has been yielded by training a DNN to learn descent

directions [27][28]. On the other hand, two reconstruction

algorithms based on an AE and a FCNN, respectively, [29]

outperformed traditional algorithms in terms of both accuracy

and processing time (e.g., ∆t = 0.03 [sec] for the FCNN

solution [29]). Moving to biomedical imaging applications of

the IS, DNNs are common tools within the image processing

community to perform classification and segmentation as, for

example, for the detection of melanoma and lymph node [30].

More recently, the “Deep D-Bar” approach [31] and a DCS-

based technique [32] have been proposed for the real-time

(e.g., ∆t < 8 [ms]) electrical impedance tomography (EIT) of

the chest. According to authors’ vision, DL could provide a

way to incorporate more versatile prior information to mitigate

the ill-posedness which would be hard to express in a rigorous

mathematical formulation [27].

DIRECTION-OF-ARRIVAL (DoA) ESTIMATION - DoA estima-

tion is an attractive field of research with many applications

including communications, radar, and astronomy. Many efforts

have been recently devoted to develop innovative methods

with high angular resolution and robustness to the noise able

to deal with limited data from few/single snapshots [33], as

well. In such a framework, DNNs are key-solutions because of

their intrinsic efficiency in learning very complex propagation

models from the available training data [3][34]-[36]. For

instance, a new DL framework for DoA estimation has been

presented in [3]. More in detail, a multitask AE has been

used to filter and to decompose the input signal into spatial

sub-regions successively processed by a series of classifiers

to detect the presence of signals along with (or close to)

predefined grid directions. Numerical results have assessed

the enhancement of the DoA performance as well as the

improvement of the generalization capabilities in comparison

with the commonly adopted MUltiple SIgnal Classification

(MUSIC) [3]. In [35], super-resolution DoA estimation and

signal detection have been addressed with DNNs by leveraging

on the powerful recognition and representation abilities of DLs

in the presence of real-time and continuous changes of the EM

channel conditions. Dealing with very high-frequency (VHF)

radars under strong multi-path and complex terrains [36], an

AE-based method has proved to work better than MUSIC in

handling spatially-adjacent coherent sources.

RADAR AND REMOTE SENSING (RS) - Scattering and speckle

are big issues in air-/space-borne synthetic aperture radar

(SAR) imagery and the development of robust and reliable

techniques is mandatory for the interpretation and understand-

ing of the produced images. DNNs are natural candidates

for performing accurate automatic target recognitions (ATRs)

[4][37][38]. In [4], a CNN has been implemented for high-

accuracy image classification to avoid overfitting when small

training databases are at hand. Similarly, a generative DNN has

been trained in [37] to learn a hierarchical representation of the

features of SAR targets. On the other hand, polarimetric SAR

(PolSAR) image classification has been addressed with a deep

CNN incorporating expert knowledge on the interpretation

the scattering mechanisms and polarimetric feature mining

[38]. Moreover, a novel CNN inversion method for rough

surface estimation has been discussed in [39] by proposing

the generation of synthetic training samples as solutions of an

ISP, then letting the CNN learn the NL relationship between

inverted images and predicted surface descriptors. Moreover,

DNNs have been used for microwave RS of vegetated terrains

in [40] where a ML scheme has been invoked to faithfully

predict the polarimetric bistatic scattering cross section of

a finite dielectric cylinder modelling a corn canopy in C-

Band. Starting from the idea that every medium has a unique

radar signature when illuminated by an EM probing wave, the

“radar-Siamese” NN (R-SiameseNet) has been developed to

automatically extract robust features for an accurate material

classification [41]. DL is also rapidly emerging in GPR signal

processing and imaging [1][42] for buried object classification

[43], material identification [44], and landmine detection [45].

COGNITIVE RADIO (CR) AND MIMO SYSTEMS - The smart

and efficient use and allocation of (limited) radio resources

is nowadays a pillar feature in view of the ever-growing

proliferation of wireless systems and services and the im-

minent deployment of fifth-generation (5G) communications

[46][47]. Indeed, there is an urgent need of systems able

to sense the surrounding EM environment and reconfigure

the radiating system (Tx/Rx) for guaranteeing reliable and

high-rate communications. Dealing with MIMO systems for

increasing the spectral/spatial efficiency as well as the sys-

tem throughput, as required in cognitive radio (CR) systems

[46][47], DNNs have been widely involved to reach a good

coverage and the capacity optimization in massive MIMO (M-

MIMO) [5]. To perform channel estimation in millimeter-wave

(mmWave) MIMO, a DNN-based approach has been presented

in [48] by interpreting the channel matrix as a 2D image on

which a denoising CNN (DnCNN) has been applied to achieve

remarkable performance with a limited number of RF chains at

the receiver, as well. On the other hand, DL has been recently

proposed to mitigate the inter-cell interferences in 5G M-

MIMO systems [49] for an efficient pilot signal allocation with
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performance close to the theoretical upper-bound (≈ 99.38%)

in only ∆t = 0.92 [ms]. Finally, fast beamforming techniques

based on DNNs have been recently applied to down-link

transmissions in MIMO [50] and mmWave communications

[51] for both in line-of-sight (LOS) and non-LOS scenarios.

OTHER EM-RELATED APPLICATIONS - DNNs have been

also recently applied to other EM-related research fields.

For instance, it is worth mentioning indoor [6][52][53] and

outdoor [54] localization. In [52], channel state information

CSI phase measurements have been processed to estimate

the location of a mobile device, while the angle of arrival

(AoA) and the average CSI amplitudes have been used for

indoor localization just using available 5 GHz WiFi networks

(i.e., without extra/ad-hoc infrastructures) with deep AEs [6]

and CNNs [53]. Moreover, an innovative AE-based “channel

charting” strategy has been proposed to learn the mapping

between the CSI signals, acquired at a single base-station, and

the relative user/transmitter locations. Another topical appli-

cation of DL concerns human behavior monitoring for remote

health supervision, athletic training, and contactless control of

devices [7][55][56][57]. As for hand gesture recognition, ro-

bust outcomes have been yielded by CNNs processing micro-

Doppler signatures/spectrograms [56] or the input impedance

variations in monopole antennas [57]. On the other hand,

the spectrograms derived from the EM interactions around

the human neck due to the creeping waves produced by two

on-body antennas working at 2.45 [GHz] have been used to

train a CNN for monitoring and classifying different head-

and mouth-related motions [55]. Similarly, the classification of

human activities from the measurements of the transmission

and the reflection coefficient at the terminals of on-body

antennas has been performed with a CNN-classifier giving

an accuracy higher than 97% [7]. Finally, pioneering works

have explored the applicability of DNNs to the automatic

identification of RF rogue and/or unknown transmitters from

received waveforms [58], to the high-speed channel modeling

[59], and to EMC analyses [8].

IV. FINAL REMARKS AND FUTURE TRENDS

An overview of the most recent advances in DNNs as applied

to EM has been presented by reviewing the literature on

the topic. Addressed applications mainly represent the first

attempts to extend/improve the capabilities of canonical ML

techniques already exploited in such contexts [9]. According to

the authors’ vision, DL will soon become a dominant paradigm

in solving high-complexity real problems at the basis of several

key EM applications/scenarios. Of course significant efforts

are still necessary to address paramount unsolved challenges

such as (i) the reduction of the computational burden and of the

amount of training data for the off-line phase, (ii) the study of

reinforcement learning strategies that dynamically self-adapt

to the continuously-changing working conditions [11], and (iii)

the exploitation of the available information on the underlying

EM physics and of non-ML strategies to improve the DNN

performance by optimally choosing inputs/outputs as well as

the loss training function. The use of unsupervised methods

[11] to better mimic the human/animal learning should be

further investigated. As for the local minima occurring in the

loss function, evolutionary optimization [60] could represent

an effective solution for a more robust tuning of DNNs

parameters. However, recent works have shown that for large

networks the majority of local minima are almost equivalent

in terms of cost function, suggesting that selecting one sub-

optimal solution could be sufficient in many practical contexts

[13]. One main disadvantage of DNNs is the very high number

of parameters and hyper-parameters to set. However, much

more complex EM problems could in principle be modeled

thanks to the larger number of degrees of freedom with

respect to conventional NNs [9][13]. On the other hand, to

the authors’ best knowledge, differently from classification

DNNs for regression still don’t have obvious advantages

over traditional solvers in terms of achievable accuracy [61].

As for innovative applications, DL will clearly be a key-

asset in addressing the analysis/synthesis of complex antenna

systems comprising a large number of degrees-of-freedom

(e.g., reflectarrays [62][63]). More in general, DNNs will

be an interesting solution in applicative fields requiring self-

learning form experiences, including wireless sensor networks

(WSNs) and decision support systems (DSSs) [64]. As for the

adaptability of general DNNs/CNNs/RNNs on EM applications,

innovative complex-valued architectures should be studied to

properly deal with complex quantities (e.g., field patterns, scat-

tering/transmission coefficients, etc. [65]). On the other hand,

understanding the correlation between DNNs computations

and forward/inverse solvers, as well as properly modifying

them to better fit the addressed problems, will enable a more

effective exploitation of DL in EM without just regarding it

as a powerful but unknown “black-box”. Many questions are

still open and are here reported for a readers’ further thinking

and reading: which part of the problem can be solved through

DNNs in a better way? What aspects of DNN are better? Are

DNN-based approaches more robust? Are accuracy/efficiency

metrics enough to evaluate and justify such methods? What are

the relationship and possible gap with traditional methods?.
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