
High Throughput and Low Power Reed Solomon Decoder for
Ultra Wide Band

A. Kumar; S. Sawitzki
akakumar@natlab.research.philips.com

Abstract

Reed Solomon (RS) codes have been widely used in a variety of communication systems.
Continual demand for ever higher data rates makes it necessary to devise very high-speed
implementations of RS decoders. In this paper, a uniform comparison was drawn for various
algorithms and architectures proposed in the literature, which helped in selecting the appro-
priate architecture for the intended application. Dual-line architecture of modified Berlekamp
Massey algorithm was chosen for the final design. UsingPcCMOS12corelibthe area of the
design is0:22mm

2 and a throughput of 1.6 Gbps. The design dissipates only 17mW of power
in the worst case, including memory, when operating at 1.0 Gbps data rate.

1 Motivation

Reed Solomon (RS) codes have been widely used in a variety of communication systems such as
space communication link, digital subscriber loops and wireless systems, as well as in networking
communications and magnetic and data storage systems. Continual demand for ever higher data
rates and storage capacity makes it necessary to devise very high-speed implementations of RS
decoders. Newer and faster implementations of the decoder are being developed and implemented.
A number of algorithms are available and this often makes it difficult to determine the best choice
due to the number of variables and trade-offs available. Therefore, before making a good choice
for the application a thorough research is needed into the decoders available.

For IEEE 802.15-03 standard proposal (commonly known as UWB) in particular, very high
data rates for transmission are needed. According to the current standard, the data rate for UWB
will be as high as 480 Mbps. Since the standard is also meant for portable devices, power con-
sumption is of the prime concern, and at the same time the silicon area should be kept as low as
possible. As such, a low power and high throughput codec is needed for UWB standard. Reed
Solomon is seen as a promising codec for such a standard.

2 Introduction to Reed Solomon

Reed Solomon codes are perhaps the most commonly used in all forms of transmission and data
storage for forward error correction (FEC). The basic idea of FEC is to add redundancy at the end
of the messages systematically so as to enable the retrieval of messages correctly despite errors
in the received sequences. This eliminates the need of retransmission of messages over a noisy
channel. RS codes are a subset of Bose-Chaudhuri-Hocquenghem (BCH) codes and are linear
block codes. [1] is one of the best references for RS Codes.



An RS(n; k) code implies that the encoder takes ink symbols and addsn� k parity symbols
to make it an symbol code word. Each symbol is at least ofm bits, where2m > n. Conversely,
the longest length of code word for a given bit-sizem, is 2m � 1. For example,RS(255; 239)
code takes in 239 symbols and adds 16 parity symbols to make 255 symbols overall of 8 bits each.
Figure1 shows an example of a systematic RS code word. It is called systematic code word as the
input symbols are left unchanged and only the parity symbols are appended to it.

ParityData

n

k 2t

Figure 1:A typical RS code word

Reed Solomon codes are best for burst errors. If the code is not meant for erasures, the code
can correct errors in up tot symbols where2t = n� k. A symbol has an error if at least one bit is
wrong. Thus,RS(255; 239) can correct errors in up to 8 symbols or 50 continuous bit errors. It is
also interesting to see, that the hardware required is proportional to the error correction capability
of the system and not the actual code word length as such.

When a code word is received at the receiver, it is often not the same as the one transmitted,
since noise in the channel introduces errors in the system. Let us say ifr(x) is the received code
word, we have

r(x) = c(x) + e(x) (1)

wherec(x) is the original codeword ande(x) is the error introduced in the system. The aim of
the decoder is to find the vectore(x) and then subtract it fromr(x) to recover original code word
transmitted. It should be added that there are two aspects of decoding - error detection and error
correction. As mentioned before, the error can only be corrected if there are fewer than or equal
to t errors. However, the Reed Solomon algorithm still allows one to detect if there are more than
t errors. In such cases, the code word is declared asuncorrectable.

The basic decoder structure is shown in Figure2. A detailed explanation on Reed Solomon
decoders can be found in [1] and [2]. Decoder essentially consists of four modules. The first
module computes the syndrome polynomial from the received sequence. This is used to solve a
key equation in the second block, which generates two polynomials for determining the location
and value of these errors in the received code word. The next block of Chien search uses the Error
Locator Polynomial obtained from the second block to compute the error location, while the fourth
block employs Forney algorithm to determine the value of error occurred. The correction block
merely adds the values obtained from the output of the Forney block and the FIFO block. Please
note that in Galois arithmetic, addition and subtraction are equivalent.

3 Channel Model

Before we proceed to the actual decoder implementation, it is important to look at the channel
model itself. Since UWB (Ultra Wide Band) is not very well explored yet, it is important to
analyse how the channel would behave at the frequency and the data rate under consideration.



Data in Syndrome
Computation

Forney
Algorithm

Chien
Search

Key
Equation

Solver

Correction
Block

FIFO

Data outData in Syndrome
Computation

Forney
Algorithm

Chien
Search

Key
Equation

Solver

Correction
Block

FIFO

Data out

Figure 2:Decoder flow

One of the most common models used for modelling transmission over land mobile channels is
the Gilbert-Elliott model. In this model a channel can be either in a good state or a bad state
depending on the signal-to-noise ratio(SNR)at the receiver. For different states, the probability
of error is different. In [3] , Ahlin presented a way to match the parameters of the GE model to the
land mobile channel, an approach that was generalized in [4] to a Markov model with more than
two states.

G B

b

g

1−g
1−b

Figure 3:The Gilbert-Elliott Channel Model.

Figure3 shows the GE Channel Model. Two states are shown represented byG andB indicat-
ing the good and the bad state respectively. Further, the transition probability from the good state
to the bad state is shown asb and from the bad to the good state asg. The probability for error in
stateG andB is denoted byP (G) andP (B) respectively. A detailed analysis can be found in [5]
and [6].

3.1 Simulation

Following were the parameters set for the simulation of the Ultra Wide Band channel:

� carrier frequency = 4.0 GHz

� information rate = 480 Mbps

Two sets of simulation were run for different threshold reading. The threshold here signifies the
SNR level at which the channel changes states. The first set was with the threshold set to 5dB
lower than the average SNR and the other with 10dB less than the average. Due to the very high
data bit rate involved the transition probability is very small. Therefore, channel transition become
very rare events, and simulations determined the error probabilities for codewords beginning in a
certain state. These were then weighted by the steady state probability of the corresponding state
and added together to obtain the overall probability rate. Two measures, the bit error rate and the



0.0001

0.001

0.01

0.1

12 14 16 18 20 22 24 26

E
rr

or
 R

at
e

SNR

Error Rate v/s SNR

Symbol Error Rate for 5dB
Bit Error Rate for 5dB

Symbol Error Rate for 10dB
Bit Error Rate for 10dB

Figure 4:The symbol error rate and bit error rates for different thresholds.

symbol error rate are computed and plotted. The simulation was run for 10,000 codewords to get a
good estimate for each state. Mathematica software was used to solve the complex mathematical
equations and obtain the channel model parameters for the physical quantities under consideration.

3.2 Simulation Results

As can be seen from the Figure4, the error probabilities decrease with increase in SNR as ex-
pected. The figure shows the symbol and the bit error probabilities observed. As expected the
error rates follow a linear relationship with the increasing SNR on the logarithmic scale. We no-
tice that around 20dB average SNR for both the thresholds, the symbol error rate is about 0.02,
which corresponds to an average of 5 symbol errors in a code word of 255 symbols. From the
results, an error correction capability of 8 is seen as a good choice, as when the SNR is above
20dB, the likelihood of more than 8 errors in a codeword of 255 is very low.

4 Architecture Design Options

Having decided on the codeword, investigation was carried out to determine appropriate algorithm
and architecture. Figure5 shows the various architectures available. Table1 shows the hardware
requirements of computational elements used in various architectures. Estimates have been made
from the figures drawn in the papers when actual counts could not be obtained for any architecture.
It should be noted that this is only the estimate of computational elements and, therefore, additional
hardware will be needed for control overhead. Total latency of the various blocks will determine
the size of FIFO.



Reed
Solomon
Decoder

Key
Equation

Solver

Chien/
Forney

Syndrome
Computation

Euclidean
Algorithm

BerleKamp
Massey

Peterson
Gorenstein

Zierler

Original Modified
Decomposed
Inversion-less

Modified

Reformulated
inversion-less

ParallelSerialDual-line
Decomposed

Serial

Look ahead
architecture

Compute
Half

Syndromes

Parallel Units

Parallel Units

Finite Field
Multiplier

Fully Parallel
Multiplier

Composite
Field

Normal

Multi-mode
configurable

Original

Figure 5:Design Space Exploration



Architecture Blocks Adders Multipliers Muxes Latches Latency Critical Path Delay

Syndrome Computation [7] 2t 1 1 1 2
Total 2t 2t 2t 4t n Mul + Add
Look ahead architecture (x units)2t x x 1 2
Total 2xt 2xt 2t 4t n/x Mul + Add

Original Euclidean [8]
Divider Block 2t 1 1 3 2
Multiply Block t 2 1 3 3
Total (Estimates) 4t 3t 9t 7t
Actual [10] 4t + 1 3t + 1 11t + 4 14t + 6 4t - 3 ROM + 2�Mul + Add + 2�Mux
Modified Euclidean [8]
Degree Computation Block 2t 2 0 7 7
Polynomial Arithmetic Block 2t 2 4 8 19
Total (Estimates) 8t 8t 30t 52t
Actual [10] 8t 8t 40t + 2 78t + 4 10t + 8 Mul + Add + Mux
Decomposed inversion-less [11] 1 3 1 3t + 1 2t�(t+1) Mul + Add + Mux
Modified BerleKamp Massey
Serial 1 3 4 3t + 2 2t�(2t+2) Mul + Add + Mux
Decomposed inversion-less [12] 2 3 2 5 2t�(t+1) Mul + Add + Mux
Parallel t 3t + 2 t 3t + 1 2t 2�Mul + 2�Add + Mux
Dual-line [13] 2t 4t + 1 2t 4t + 1 3t + 1 Mul + Add
Reformulated inversion-less [14] 3t + 1 6t + 2 3t + 1 6t + 2 2t Mul + Add

Chien/Forney 2t 2t + 2 2t + 2 2t + 10 4 max(Mul + Add, ROM)

Table 1:Summary of hardware utilization of various architectures



4.1 Design Decisions

In order to choose a good architecture for the application, various things have to be taken into
account.

� Gate count: Determines the silicon area to be used for development. A one time production
cost but can be critical if it is too high.

� Latency: Latency is defined as the delay between the received code word and the corre-
sponding decoded code word. The lower the latency, the smaller is the FIFO buffer size
required and therefore, it also determines the silicon area to a large extent.

� Critical path delay: It determines the minimum clock period, i.e. maximum frequency that
the system can be operated at.

Table 1 shows a summary of all the above mentioned parameters. For our intended UWB
application, speed is of prime concern as it has to be able to support data rates as high as 480
Mbps, and perhaps even 1 Gbps in the near future. At the same time, power has to be kept low,
as it is to be used in portable devices as well. This implies that the active hardware at any time
should be kept low. Also, the overall latency and gate count of computational elements should be
low since that would determine the total silicon area of the design.

4.1.1 Key Equation Solver

Reformulated inversion-less and dual line implementation of the modified Berlekamp Massey have
the smallest critical path delay among all the alternatives of the Key Equation Solver. When com-
paring inversion-less and dual-line implementation, dual line is a good compromise in latency and
computational elements needed. The latency is one of the lowest and it has the least critical path
delay of all the architectures summarized. Thus, dual-line implementation of the BM algorithm
was chosen for the key-equation solver. Another benefit of this architecture is that the design is
very regular and hence easy to implement.

4.1.2 RS Code

As we can see from Table1, the hardware requirement for the entire block is a function oft, the
error correction capability, and the latency is a function of bothn andt. Thus, while we want to
have a code with high error correction capability, we can not have a very high value oft as the
hardware needed is proportional to it. The value ofn determines the bit-width of the symbol and
therefore the hardware needed, but only logarithmically. However, one would want to have a value
of n = 2m�1, to derive maximum benefit out of the hardware. The value oft is often chosen to be
a power of 2 in order to maximise the hardware utilised in design. Taking into account the results
of Channel Model SimulationRS(255; 239) is chosen, since it has an error correction capability
of 8.

4.2 Highlights

Table2 shows the various parameters for choosing dual line architecture withn = 255; k = 239

andt = 8. The overall critical path delay is hence Mul + Add.



Architecture Adders Multipliers Muxes Latches Latency

Syndrome Computation 2t 2t 2t 4t n
Dual-line 2t 4t + 1 2t 4t + 1 3t + 1
Chien/Forney 2t 2t + 2 2t + 2 2t + 10 4

Total 6t 8t + 3 6t + 2 10t + 11 3t + n + 5

For Parameters above 48 67 50 91 284

Table 2:Summary of hardware utilization for Dual-line architecture

5 Design Flow

The first step was to develop a C-model for the decoder. ’Gcc’ compiler was used to compile the
code and to check if the code worked correctly. Output of each intermediate stage was compared
with the expected output according to the algorithm with the aid of an example.

Once the algorithm was fully developed and tested in C, VHDL-code was developed. The
VHDL code was structured such so it could be easily synthesized. A wrapper class was written
around it, in order to test it. This VHDL code was compiled and tested using Cadence tools.
’Ncsim’ was used to simulate the system and generate the output stream for the same input tests
as were used for testing C code. The output stream from VHDL and C were then compared.

When this output was found to be matched for various input test cases, synthesis experiments
were started. Ambit from Cadence was used to analyse the hardware usage and frequency of
operation after various optimisation settings.

The design flow needed for verification of synthesized design and power estimation has been
explained in Figure6. As shown in the figure the core VHDL modules were optimised and synthe-
sized usingambit. The synthesized model was written out into a verilog netlist usingambit itself.
Once the netlist was obtained, it was compiled usingncvloginto the work library together with the
technology library. The library used was for the same technology as the one used for synthesis.
As can be seen, the wrapper modules were actually written in VHDL, while the compiled core
was from the verilog. Thus, to allow interaction between the two, the top interface of the work
library, was extracted into a VHDL file and then compiled into the work library. This was done
usingncshellandncvhdl respectively. This being done, the wrapper modules were compiled into
the work library.

From this point onwards, two approaches were used.Ncelaband ncsim were used purely
for simulating the synthesized design, anddncelabanddncsimwere used to obtain power esti-
mate, which were essentially the same tools, but included theDIESELroutines for estimating the
power dissipated in the design.Dieselis an internal tool developed within Philips which estimates
the power for the simulated design, and hence the accuracy of the results depends on the input
provided.

6 Results

This section covers the results of various synthesis experiments conducted. Resource utilization,
timing analysis and the power consumption were used as benchmarking parameters.



Verilog Netlist
Generate

Verilog Netlist
of Design

Optimize and
Synthesize

Verilog Netlist of
CMOS12/18 libraryVHDL Core

VHDL Wrapper

work library
Compile into

Import top interface

to VHDL

work library
Compile into

VHDL Wrapper

Work Library

work library
Compile into

Elaborate and
Simulate

1

2

5

4

3

6

7

3a 3b

ncshell

ambit

ambit

ncvlog

ncvhdl

ncvhdl

dncelab/
dncsim

Figure 6:Design flow for design verification and estimation of power

6.1 Area Analysis

Ambit was run with the librariesPcCMOS12coreliband PcCMOS18corelib. The silicon area
required was analysed for various timing constraints. A comparison for area of the decoder is
shown in Table3. This table shows the area requirement when the constraint was set to 5 ns,
which can support 200 MHz frequency, i.e. 1.6 Gbps. The total number of design cells used,
including the memory, were 12,768 and 12,613 forPcCMOS18coreliband PcCMOS12corelib
respectively.

Module Area(�m2)
Module CMOS12 CMOS18

Chien 7663:343 15675:392

FIFO 83183:278 148684:807

Forney 21608:247 52936:705

Genelp eep 89602:009 186404:866

Gensyndromes 17828:014 34754:560

top view 219913:131 438472:713

Table 3:Resource utilization for the decoder in CMOS12

6.2 Power Analysis

The power estimates provided in this section are for design operation at 125 MHz, which translates
to data rate of 1Gbps.



6.2.1 Variation With Number of Errors

Figure7 shows the variation of power with the number of errors found in the codeword forPcC-
MOS12corelib. As can be seen from the graph obtained, the power dissipated for the FIFO and
syndrome computation block is independent of the number of errors as expected. For the block
that computes the ELP (Error Locator Polynomial) and EEP (Error Evaluator Polynomial), it is
clearly seen that the power dissipated increases linearly with the number of errors. The Chien
search block also shows a linear increase in the power dissipated.

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8

P
ow

er
 D

is
si

pa
te

d 
(µ

W
)

Number of Errors

Power Dissipation versus number of errors in codeword

Forney
FIFO

Elp-Eep
Syndrome

Chien

Figure 7:Graph showing variation of power dissipated with number of errors for different mod-
ules.

The behaviour of Forney evaluator is a bit different from the other modules. We see that the
power dissipated for the codeword with an even number of errors is not significantly larger to the
one with the previous number of errors. The reason lies in the fact that the degree of EEP for
codeword with one error is often the same as the one with two errors, and so on and so forth.
However, as a general rule, there is still an increase in the power dissipation, because of some
computation that is done for each error found.

6.2.2 Distribution of Power in Different Modules

Figure8 shows a distribution of power when there are maximum number of errors correctable in
the received code word, while Figure9 shows the distribution when the code word is received
intact. As can be seen, in the case of no errors, bulk of the power is consumed in computing
syndromes, apart from the memory. In the event of maximum errors detected, the Forney block
consumes the maximum power.



Forney:38%

FIFO:31%

Elp−Eep:9%

Syndrome:16%

Chien:6%

Figure 8:Power consumed by various blocks
when 8 errors are found

Forney:1%

FIFO:64%

Elp−Eep:< 1%

Syndrome:33%

Chien:< 1%

Figure 9:Power consumed by various blocks
when no errors are found

7 Benchmarking

Please note that for all the designsRS(255; 239) code has been used for benchmarking. The de-
sign using modified Euclidean Algorithm is very hardware intensive. The design proposed in [7]
uses roughly 115K gates for0:13�m CMOS techology operating at 6 Gbps excluding memory.
The proposed design only uses 12K cells including memory in both0:12�m and0:18�m tech-
nology. The results are better even when they are normalised for throughput and technology. The
latency of the design is only 284 cycles when compared to 355 cycles in [7].

In terms of power, a design was proposed by Chang in [9] for low power. In that design,
62mW of power is used in the best case, including memory, using0:25�m CMOS technology,
and 100mW are consumed in the worst case. In our design, only 17mW of power is used in the
worst case using0:12�m technology. The area of the chip proposed in [9] using0:25�m CMOS
technology is5mm2, while the area of the proposed design is0:22mm2 with 0:12�m technology.

8 Conclusions

A uniform comparison was drawn for various algorithms that have been proposed in literature.
This helped in selecting the appropriate architecture for the intended application. Modified Berle-
kamp Massey algorithm was chosen for the VHDL implementation. Dual line architecture was
used, which is as fast as serial and has low latency as that of a parallel approach.

The decoder implemented is capable of running at 200 MHz in ASIC implementation, which
translates to 1.6Gbps and requires only about 12K design cells and an area of0:22mm2 with
CMOS12 technology. The system has a latency of only 284 cycles for RS(255,239) code. The
power dissipated in the worst case is 17mW including the memory block when operating at 1Gbps
data rate.



References

[1] S. B. Wicker and V. K. Bhargava;Reed Solomon Codes and Their Applications, Piscat-
away, NJ: IEEE Press, 1994.

[2] Richard E. Blahut;Theory and Practice of Error Control Codes, Addison-Wesley, 1983.

[3] L. Ahlin; Coding methods for the mobile radio channelNordic Seminar on Digital Land
Mobile Communications, 1985.

[4] H. S. Wang and N. Moayeri;Finite-state Markov channel - A useful model for radio
communication channelsIEEE Transaction on Vehicular Technology, 1995.

[5] L. Wilhemsson and L. B. Milstein;On the effect of imperfect interleaving for the Gilbert-
Elliott channelIEEE Transactions on Communications, 1999.

[6] G. Sharma, A. Dholakia, and A. Hassan;Simulation of error trapping decoders on a
fading channelIEEE Transaction on Vehicular Technology, 1996.

[7] Hanho Lee;High-speed VLSI architecture for parallel Reed-Solomon decoderIEEE
transactions on VLSI Systems 2003.

[8] H. Lee, M. L. Yu, and L. Song;VLSI design of Reed-Solomon decoder architectures
IEEE International Symposium on Circuits and Systems 2000.

[9] H. C. Chang, C. C. Lin and C. Y. Lee;A low-power Reed-Solomon decoder for STM-16
optical communicationsIEEE Asia-Pacific Conference on ASIC 2002

[10] H. Lee; An area-efficient Euclidean algorithm block for Reed-Solomon decoderIEEE
Computer Society Annual Symposium on VLSI, 2003

[11] H. C. Chang and C. Y. Lee;An area-efficient architecture for Reed-Solomon decoder us-
ing the inversion less decomposed Euclidean algorithmIEEE International Symposium
on Circuits and Systems 2001.

[12] H. C. Chang and C. B. Shung;A (208,192;8) Reed-Solomon decoder for DVD applica-
tion IEEE International Conference on Communications, 1998.

[13] H. J. Kang and I. C. Park;A high-speed and low-latency Reed-Solomon decoder based
on a dual-line structureIEEE International Conference on Acoustics, Speech, and Signal
Processing, 2002

[14] D. V. Sarwate and N. R. Shanbhag;High-speed architectures for Reed-Solomon de-
coders, IEEE transactions on VLSI Systems 2001.


	Motivation
	Introduction to Reed Solomon
	Channel Model
	Simulation
	Simulation Results

	Architecture Design Options
	Design Decisions
	Key Equation Solver
	RS Code

	Highlights

	Design Flow
	Results
	Area Analysis
	Power Analysis
	Variation With Number of Errors
	Distribution of Power in Different Modules


	Benchmarking
	Conclusions

