
Energy-Aware Dynamic Reconfiguration of
Communication-Centric Applications for Reliable MPSoCs

Anup Das, Amit Kumar Singh and Akash Kumar
Department of Electrical and Computer Engineering

National University of Singapore
Singapore, 117583

Email: {akdas,eleaks,akash}@nus.edu.sg

Abstract—To accommodate the ever increasing demands of ap-
plications and for the ease of scalability, multiprocessor systems-
on-chip (MPSoCs) are becoming a popular design choice in
current and future technologies with streaming multimedia and
other communication-centric applications constituting a large
fraction of the application space. Mapping and scheduling of
these applications on an MPSoC to minimize energy consumption
while guaranteeing to satisfy the performance requirement is
an NP-hard problem. This is coupled with the run-time vari-
ability associated with MPSoC resource availability due to the
occurrence of faults. The existing studies on fault-tolerance and
energy minimization are either based on static (offline) analysis
which fails to capture application dynamism or do not consider
throughput degradation. This paper proposes an execution trace-
based run-time technique to reconfigure application mapping to
minimize communication energy of an application, simultane-
ously dealing with the occurrence of transient, intermittent and
permanent faults. Experiments conducted with synthetic and real-
life applications modeled using Synchronous Data Flow Graphs
(SDFGs) demonstrate that the proposed technique achieves signif-
icant improvement with respect to the state-of-the-art approaches
in terms of throughput and storage overhead with less than 10%
energy overhead.

I. INTRODUCTION

Streaming multimedia applications such as H.264 decoder,
MP3 encoder etc. constitute a large fraction of the embed-
ded application space for multiprocessor systems [1]. These
applications are characterized by large data exchange among
different tasks. Data communication agnostic mapping of these
applications on a multiprocessor system-on-chip (MPSoC) can
lead to a significant energy consumption on the communication
infrastructure such as networks-on-chip (NoCs), constituting as
high as ≈ 60% of the overall application energy consump-
tion [2]. This has motivated researchers to investigate into
communication-aware application mapping on MPSoCs [3].

Shrinking transistor geometries and aggressive voltage
scaling are negatively impacting the dependability of the pro-
cessing elements (cores, for example) and the communication
backbone of an MPSoC [4]. One of the design objectives in
deep sub-micron technologies is to provide support for tol-
erating multiple faults (transient, intermittent and permanent)
without sacrificing solution quality (measured as throughput
for streaming applications) and respecting the given energy
budget. One of the traditional techniques for fault-tolerance
is redundancy (hardware and/or software) [5]. This involves
using spare processing elements to assume responsibility when
faults occur (hardware redundancy) or executing the same
task multiple times on same or different cores (software
redundancy). However, stringent area and energy budgets are
prohibiting the use of hardware redundancy in modern systems.
Techniques such as task mapping and scheduling are gaining

popularity among research community [6]. Task mapping-
based fault-tolerant techniques involve offline generation of
application mappings for all processor fault-scenarios [6], [7]
or determining the mapping as and when faults occur [8]. The
existing task mapping-based fault-tolerance techniques suffer
from the following limitations.

First of all, the static techniques of [6], [7] fail to capture
the dynamism observed at run-time due to unavailability of
one or more component cores. Such unavailability can be
attributed to resource blockage due to execution of multiple
simultaneous applications or running maintenance jobs. The
static mappings fail to adapt to such changing environment
leading to sub-optimal results both in terms of throughput and
energy consumption. Secondly, the existing static techniques
determine task mapping for every application enabled on
the multiprocessor platform, for every fault-scenario. These
mappings are stored in a table to be looked-up as and when
faults occur. The size of the look-up table grows exponentially
with the number of applications and the level of fault-tolerance.
This is crucial, especially for multimedia MPSoCs where
storage space is limited. Third, the existing static techniques
also suffer from run-time overhead of table look-up to fetch
a mapping of an application for a fault-scenario. The size
of the mapping table needs to be small in order to avoid
the requirement of large memory space. In other words, the
number of faults and/or applications that can be practically
supported for an MPSoC is limited. Finally, the existing run-
time fault-tolerance techniques [8] do not guarantee applica-
tion throughput requirements making them unsuitable (if not
completely in-applicable) for multimedia applications.

Contributions: This paper proposes a trace-based run-time
reconfiguration of application mapping to minimize communi-
cation energy while satisfying throughput requirement for all
processor fault-scenarios. Following are the key contributions.

• Execution trace-based dynamic reconfiguration of ap-
plication mapping for different fault scenarios.

• Communication energy and storage overhead mini-
mization on a given MPSoC.

• Consideration of throughput degradation for
communication-centric multimedia applications.

The proposed technique analyzes the execution trace of
an application modeled as Synchronous Data Fllow Graphs
(SDFGs) [9]. Based on such analysis, a run-time manager
determines the most suitable task remapping which mini-
mizes communication energy while satisfying the application
throughput requirement. Experiments are conducted with syn-
thetic and real-life application SDFGs demonstrate that the
proposed technique achieves significant improvement both in



terms of throughput and storage overhead with less than 10%
energy overhead from a static mapping.

To the best of our knowledge, this is the first work on run-
time resource management for SDFGs, simultaneously dealing
with communication energy, fault-tolerance and throughput.

The rest of this paper is organized as follows. A brief
overview of the related works is presented in Section II. This
is followed by an introduction to SDFGs and the problem
formulation in Section III. The execution-trace driven design
methodology is presented in Section IV. Experimental results
are presented in Section V and finally Section VI concludes
the work with a discussion on future improvements.

II. RELATED WORKS

Task mapping and scheduling has received significant at-
tention among researchers starting from the classical optimiza-
tion metric such as performance and power to the recent ones
such as reliability. Details of the performance and power driven
mapping techniques is beyond the scope of the current paper.
Interested readers are urged to refer to [10]. Some of the key
studies on communication energy and reliability-aware task
mapping are presented here.

The existing communication energy aware fault-tolerant
techniques can be classified into two categories – static
and dynamic. Static task mapping techniques compute task
mapping decisions at design-time for different fault-scenarios.
As faults occur, these mappings are looked up at run-time
to carry out task-migration. A fixed order Band and Band
reconfiguration technique is studied in [11]. Cores of target
architecture are partitioned into two bands. When one or
more cores fail, tasks on these core(s) are migrated to other
functional core(s) determined by the band in which these tasks
belong. The core partitioning strategy is fixed at design-time
and is independent of the application throughput requirement.
Consequently, throughput is not guaranteed by this technique.
A re-execution slot based reconfiguration mechanism is studied
in [12]. Normal and re-execution slots of a task are sched-
uled at design-time using evolutionary algorithm to minimize
certain parameters like throughput degradation. At run-time,
tasks on a faulty core migrate to their re-execution slot on
a different core. However, a limitation of this technique is
that the schedule length can become unbounded for high
fault-tolerant systems. Task remapping technique based on
offline computation and virtual mapping is proposed in [7].
Here, task mapping is performed in two steps – determining
the highest throughput mapping followed by generation of a
virtual mapping to minimize the cost of task migration to
achieve this highest throughput mapping. A limitation of this
technique is that the migration overhead significantly increases
as this is not considered in the initial optimization process.
Moreover, throughput constrained streaming applications do
not benefit from a throughput higher than required and can
increase buffer requirements at output. In [13], the authors
propose to minimize migration overhead while satisfying the
throughput requirement for different fault-scenarios. However,
energy is not considered in this technique. The technique
in [6] jointly minimizes communication energy, migration
overhead and throughput degradation for streaming multimedia
applications modeled using Synchronous Data Flow Graphs
(SDFGs). A limitation of this technique is that scheduling
is not considered and therefore suffers from huge schedule
construction overhead at run-time or schedule storage over-
head from design-time. The limitation of these fault-tolerant
techniques are discussed in Section I.

MC

IDCT

IQ

VLD
2376

2376

11

1

1

1

1

e1 e2

e3e4

actor
edge

initial tokens 1

input token

output tokens

[26018]
[559]

[486]

[10958]
execution-time of 

actor IDCT

Fig. 1. SDFG model of an H.263 decoder.

Dynamic approaches monitor system status and decide to
migrate tasks at run-time. A fault-aware resource management
is proposed in [14] to deal with the occurrence of transient,
intermittent and permanent faults. The remapping decisions
are taken at run-time to minimize data communication while
avoiding the faulty and other stressed processors. An inte-
ger linear programming based task remapping technique is
proposed in [8] to remap tasks while minimizing communi-
cation energy. A common limitation of these approaches is
that throughput is not guaranteed. Further these techniques
are based on directed acyclic graphs and therefore require
significant modification (if not completely in applicable) for
multimedia applications represented as cyclic graphs.

III. PROBLEM FORMULATION

This section provides a brief overview of the application &
MPSoC platform model and challenges involved for dynamic
fault-tolerance.

A. Application & MPSoC Platform Model

The streaming multimedia applications with timing con-
straints are considered as communication-centric applications
and are modeled as Synchronous Dataflow Graphs (SDFGs)
[9]. Fig. 1 shows an SDFG model of H.263 decoder. The nodes
(VLD, IQ, IDCT & MC) and edges (e1, e2, e3 & e4) model
tasks and dependencies, respectively. The nodes are referred
to as actors that communicate with tokens sent from one actor
to another through the edges. Each actor has its attributes
execution time and memory requirement when mapped on
a tile. Each edge has following attributes: size of a token,
memory needed on the tile when connected actors are allocated
to the same tile, memory needed in source and destination
tiles when connected actors are allocated to different tiles and
respective bandwidth requirements between the tiles. An actor
fires (executes) when there are sufficient input tokens on all of
its input edges and sufficient buffer space on all of its output
connections. In each firing, the actor consumes a fixed amount
of tokens from the input edges and produces a fixed amount of
tokens on the output edges. These token amounts are referred
to as rates. An edge may contain initial tokens.

Throughput of an application is determined as the inverse
of the long term period that is calculated as the average
time needed for one iteration of the application. An iteration
is defined as the minimum non-zero execution such that
the original state of the SDFG is obtained. Period for the
example H.263 decoder is equal to the summation of Ex-
ecTime(VLD), 2376×ExecTime(IQ), 2376×ExecTime(IDCT)
and ExecTime(MC), where ExecTime is the execution time of
respective actors. This period does not include network and
memory access delays. It should be noted that actors iq and
idct have to execute 2376 times in one iteration and the number
of executions is referred to as repetition vector of the actor.
The rate 2376 is pertaining to the used video frames that have
a resolution of 348 by 288 pixels.



NI

M
P

Tile 1

I/O

Interconnect

NI

M
P

Tile 2

NI

M
P

Tile 3

NI

M
P

Tile 4

Fig. 2. Example MPSoC platform.

The MPSoC platform used in this work is a tile-based
architecture as shown in Fig. 2. The example platform contains
four tiles, which are connected by an interconnection network
in order to facilitate communication amongst the tiles. Each
tile consists of a processor (P), a local memory (M, size in bits)
and a network interface (NI) to connect with the interconnect.
The interconnection network provides end-to-end connections
between the tiles. However, the latencies of connections can
be modeled according to different network-on-chips (NoCs).

B. Dynamic Fault-tolerance

Achieving fault-tolerance at run-time due to failure of a
tile executing some actors involves exploration of new actors
to tiles allocations (mappings). Since several mapping options
are feasible, designers need to perform exploration with some
optimization objectives such as throughput and energy, in order
to prune the possible vast design space (mapping options). A
similar process needs to be adopted when a fault occurs in
one or more additional tiles. The detection of faults and their
cure is of paramount importance for many real-time systems,
where a fault may lead to catastrophic consequences.

A majority of existing works perform fault-aware analysis
at design-time to explore mapping solutions that can be used to
cure faults incurred at run-time. The exploration is performed
for all possible failure scenarios while aiming to optimize
for some performance metrics. At run-time, actors are simply
remapped using the compile-time decisions. The exploration
involves finding different mappings and their provided perfor-
mance figures, such as throughput and energy consumption.
For each mapping, actors are bound to tiles and edges to mem-
ory inside tiles or to connections in the platform. The binding
is considered valid if memory imposed, allocated input/output
connections and allocated incoming/outgoing bandwidth are
less than or equal to the maximum available on each tile. The
exploration process considers only the valid bindings. These
exploration methodologies require large memory space to store
the mappings to cater for all the possible fault scenarios, such
as 1-tile fault, 2-tiles fault, etc.

Further, the exploration process is time consuming when a
large number of mappings needs to be evaluated by employing
simulative evaluations. The number of mappings increases
exponentially with the number of actors and used platform
tiles. For example, while executing 14 actors on 14 tiles, a
total of 190,899,321 mapping options need to be evaluated
exhaustively to cater for fault-tolerance in case any number
of tiles from 1 to 13 becomes faulty. The complete evaluation
will take almost 220 days if we assume 100 milliseconds (ms)
for simulating (evaluating) one mapping. Even pruning the
exploration space with existing analysis strategies does not lead
to acceptable evaluation time for complex applications.

To cater for a fault scenario at run-time, performing the
exploration by employing simulative evaluations may lead
to missed timing deadlines. Therefore, analytical estimations
need to be employed to get fast results. However, the accuracy
of the estimations with respect to the simulations needs to

Application Model Platform Model

Current Mapping 

Simulate Mapping
(to capture execution traces of 

mapped actors and edges)
Application Execution

Updated Traces

Analyze Traces
(to estimate throughput and energy 
of mappings using one less tiles)

Se
le

ct
 m

ax
im

um
 

th
ro

ug
hp

ut
/e

ne
rg

y
m

ap
pi

ng

A tile faulty ?

Yes

No

Fig. 3. Proposed dynamic fault-tolerant reconfiguration approach.

be validated. In contrast to existing approaches, our approach
performs faster exploration for a run-time fault scenario by
analyzing the execution traces of actors and edges of the
application executing on a fixed number of tiles. Further,
our approach jointly optimizes for the throughput and energy
consumption unlike most of the existing approaches.

IV. PROPOSED DYNAMIC FAULT-TOLERANT

RECONFIGURATION METHODOLOGY

This section describes the proposed dynamic fault-
tolerance approach. In contrast to conventional existing DSE
methodologies, the proposed methodology differs in following
aspects: 1) performs run-time analytical analysis on execution
traces to get faster results for different fault scenarios, 2)
allows executions and execution trace update (by employing
simulations) in parallel to facilitate faster and accurate analysis
for next possible fault scenarios, 3) requires small storage, and
4) jointly optimizes throughput and energy consumption.

An overview of the proposed dynamic fault-tolerant re-
configuration is presented in Fig. 3. The flow starts with a
mapping (current mapping) to execute the application actors on
the platform resources. The platform is configured based on the
current mapping to execute the application. Initially, the current
mapping allocates n actors of the application onto n processor
tiles such that each tile contains exactly one actor and the
edges are mapped onto connections. Such allocations enable to
exploit all the parallelism present in the application. This kind
of initial mapping assumes that at least n tiles are available in
the platform. However, in case of lower number of tiles than
the actors, the initial mapping can be computed by employing
state-of-the-art run-time mapping approaches [3] [15]. Then,
in parallel, the application is executed based on the current
mapping (configuration) and the mapping is simulated (Simu-
late Mapping) to capture execution traces of actors and edges.
The simulation process computes throughput of the mapping as
well. The captured execution traces are stored in a database by
deleting the earlier present traces (Update Traces) to avoid the
needs for large storage. Updated traces are analyzed to estimate
throughput and energy consumption of the mappings using one
lower number of tiles in case a tile becomes faulty during the
application execution. Out of all the evaluated mappings, the
mapping having maximum throughput/energy ratio is selected
as the current mapping to execute the application towards
achieving the fault-tolerance. Selection of such a mapping
optimizes jointly the throughput and energy consumption.



260180

Time

1 Period

VLDTile 1

IQ IQ IQ IQ
e1 e1

e2

e1 e1

e2 e2 e2

IDCT

e3

IDCT

e3

IDCT

e3

IDCT

e3

MC
e4

vld

Tile 2

Tile 3

Tile 4

P

Fig. 4. Execution trace of actors/edges of H.263 decoder for one periodic
execution.

The parallel simulation of the current mapping along with
the application execution prepares the updated traces faster,
which is always desired and might be required in case a
fault occurs in the early stage of the application execution.
The simulation process also guarantees for accurate execution
traces, which facilitates for more accurate analytical estima-
tions (Analyze Traces). In case one additional tile becomes
faulty, the same process is repeated to achieve fault-tolerance.
To handle the faults in more than one tiles at a time, the same
process is repeated by considering faults in one tile until all the
faulty tiles are covered. For executing multiple applications on
the platform and achieving fault-tolerance for all of them, the
same flow (Fig. 3) can be employed for all the applications.

Now, we discuss the simulation and analytical estimation
strategy that is used for simulation and execution trace analysis
of the current mapping, respectively.

A. Simulation Strategy

The simulation of the current mapping involves its through-
put computation and execution trace capturing, which are
briefed subsequently.

1) Throughput Computation: The throughput for a map-
ping is computed by taking the resource allocations of ac-
tors/edges on the platform into account. In order to compute
the throughput, first, static-order schedule for each tile is con-
structed, which orders the execution of bound actors. There-
after, all the binding and scheduling decisions are modeled in
a graph called binding-aware SDFG. Finally, the throughput is
computed by self-timed state-space exploration of the binding-
aware SDFG [16]. Towards this, states visited during self-
timed execution are examined and stored until a recurrent state
is found. The throughput is computed from the periodic part
of the state-space.

2) Execution Trace Capturing: The execution traces of
actors and edges are captured based on their execution pat-
tern for a given mapping during one periodic execution. For
example, Fig. 4 shows execution pattern of actors and edges
of H.263 decoder when each actor and edge is mapped on a
different tile and connection between tiles, respectively. First,
actor VLD fires (executes) as it has sufficient input tokens on
its incoming edge e4. Then, it generates 2376 tokens to be
transferred through e1 to process them one by one by IQ.
The transfer of tokens through edges and their processing by
different actors follows the shown trace. For easier realization,
the shown trace considers 4 tokens in places of 2376 and thus
actors VLD, IQ, IDCT & MC fire 1, 4, 4 & 1 times respectively
during one period. The execution traces for each actor and edge
is captured as the start and end time of their active executions
(firings) in the whole period. For example, 4 active executions
of actor IQ will get captured with different start and end times.

Algorithm 1: Analysis Strategy
Input: Execution trace for the current mapping μ using m tiles.
Output: Mappings & their throughput and energy consumption, using (m − 1)

tiles.
Initialize the mapping set M , i.e., M = { };
Select m tiles containing actor(s);
for each unique pair of selected tiles do

Move actor(s) from one tile to another to generate a new mapping η
using (m − 1) tiles;
Estimate throughput & energyConsumption of η;
Add η with its throughput & energyConsumption to set M ;

end

B. Analysis Strategy

The analysis strategy to perform the analytical estimation
is presented in Algorithm 1. The strategy takes the updated
execution traces of actors/edges for the current mapping μ
using m tiles as input and estimates throughput and energy
consumption of mappings using (m− 1) tiles when a tile
becomes faulty. The strategy first selects m tiles containing
actor(s). Then, for each unique pair of selected tiles, actors of
one tile are moved to another to generate a new mapping η
that uses (m− 1) tiles. For each new mapping, its throughput
(1/period) and energy consumption are estimated and the
mapping with its throughput and energy values is added to
mapping set M .

Period (P) of the mapping using (m − 1) tiles (Pη) is
estimated by utilizing period of the current mapping using m
tiles (Pμ) by Equation 1, where incμ,η and decμ,η are the
increase and decrease in the period of the mapping μ when
the new mapping η is generated by moving actors from one
tile to another in μ.

Pη = Pμ + incμ,η + decμ,η (1)

The period increases when parallel executing actors (e.g.,
IQ and IDCT in Fig. 4) mapped on selected pair of tiles in
mapping μ are forced to execute sequentially by mapping the
actors on the same tile in mapping η. The period decreases
when execution of the edge(s) between the selected pair of
tiles is not in parallel with other actors and edges (e.g.,
execution of edge e1 in Fig. 4). The incμ,η is calculated by
assuming sequential execution of the actors mapped on the
selected pair of tiles. The non-parallel executions of the actors
(with executions of other actors/edges) contribute to incμ,η .
The decμ,η is calculated by considering execution traces of
edge(s) mapped between the selected pair of tiles. The non-
parallel executions of the edge(s) (with executions of other
actors/edges) contribute to decμ,η .

Energy consumption (E) of a mapping
(energyConsumption) is estimated as the sum of
communication and computation energy for one iteration of
the application. The communication energy for each edge
(e) mapped to a connection (c) is estimated as product of
the number of tokens (in bits) to be transferred through c,
delay (D) and power consumption (Pbit) for transferring one
bit through c. Total communication energy for all the edges
is estimated from Equation 3. The number of tokens for an
edge is computed as the product of repetition vector (repV)
of source (or destination) actor and source (or destination)
port rate (equation 2). The power required to transfer one bit
is denoted as Pbit [2]. Computation energy for each actor
(a) mapped to tile (t) is estimated as product of the number
of executions of a (repV [a]), execution time (ET [a]) and
power consumption (pow) on t. Total computation energy for



260180

Time

VLDTile 1

IQ IQ IQ
e1 e1

e2

e1

e2

IDCT
e3

IDCT

Tile 2

Tile 3

Tile 4

Tile2 Faulty

Re-
config.

VLD IQ IQ IQ

e2 e2

IDCT
e3

IDCT

(a) 4-tiles used (b) 3-tiles used

Tile3 Faulty

Re-
config.

VLD IQ IQ IQ

e2 e2

IDCT IDCT

e2 e2

IDCT IDCT

IQ

e4

MC

VLD

(c) 2-tiles used

1 Period

Fig. 5. Dynamic fault-tolerance demonstration.

all actors is estimated from equation 4. Power consumption
on a tile is estimated as C × v2 × f , where C, v and f
denote average load capacitance, supply voltage and operating
frequency, respectively.

nrTokens[e] = repV [e → srcActor] × (e → srcPortRate) (2)

ECOMM =

∑

∀e→c

[{nrTokens[e] × tokenSize[e]} × D → c × Pbit] (3)

ECOMP =
∑

∀a→t

[repV [a] × (ET [a] → t) × (pow → t)] (4)

In Algorithm 1, a total of m-choose-2 (mC2) unique pairs
are found for the selected m tiles. Each unique pair provides
a mapping that uses (m − 1) tiles. Out of all the mappings
M using (m − 1) tiles, the proposed flow (Fig. 3) selects
the mapping having maximum throughput/energy in order to
jointly optimizing for through and energy consumption towards
achieving the fault tolerance.

Example Demonstration

The proposed dynamic fault-tolerant flow has been applied
onto the example H.263 decoder (Fig. 1) executing on 4-tiles
periodically, as shown in Fig. 4. Fig. 5 (a) shows that a fault
has occurred on tile 2 during a particular periodic execution.
In order to achieve fault-tolerance, the proposed strategy finds
the best mapping (having maximum throughput/energy) using
3 tiles. In the best mapping, the actor from the faulty tile (tile 2)
is moved to some other tile. The platform is then reconfigured
with the best mapping to start the application execution, as
shown in Fig. 5 (b). Now, let a fault occur on tile 3, as shown
in Fig. 5 (b). The proposed strategy moves the actor from
faulty tile to a non-faulty tile to get the best mapping using
2 tiles. The best mapping contains actors VLD & IQ on tile
1 and IDCT & MC on tile 4. The platform is reconfigured
with the current best mapping to start the periodic application
execution, as shown in Fig. 5 (c).

V. EXPERIMENTAL RESULTS

Experiments are conducted on a quad-core Intel Xeon
2.4GHz server running Linux with ten synthetic and ten real-
life applications modeled as SDFGs. The synthetic applications
are generated from the SDF 3 tool [17] with the number of
actors ranging from 4 to 32. The real applications are derived
from the benchmarks provided in the tool. These applications
are executed on an MPSoC with six tiles arranged in 2 × 3
mesh architecture. All algorithms developed in the paper are
coded in C++ and used in conjunction with the SDF 3 tool
for throughput computation.

A. Throughput Comparison for Different Fault-Scenarios

The throughput obtained using the proposed trace-based
dynamic reconfiguration technique is compared with the
throughput obtained using the communication energy-aware
static fault-tolerant technique of [6] (referred to as TCon-
CEMin) and communication energy-aware dynamic technique
of [2] (referred to as DCEMin). Further, to determine how far
the proposed approach is from the highest throughput obtained
for different fault-scenarios, the results are compared with
the throughput maximization technique of [7] (referred to as
TMax).

Figure 6 (a) & (b) plot the throughput of the TConCEMin,
DCEMin and the proposed technique normalized with respect
to the throughput obtained using the TMax technique for five
real applications for single and double faults respectively.
Single fault refers to fault in one PE and fault in 2 PEs is
referred to as double fault. There are few trends to follow
from these figures. First of all, the throughput of the DCEMin
is the least amongst all the techniques. This is expected as
DCEMin does not consider throughput degradation. Secondly,
the throughput of the proposed fault-tolerant technique is better
than the energy aware fault-tolerant technique, i.e. TConCEMin
([6]). This is expected because the proposed technique remaps
the tasks from the faulty tile to other working tile(s) such that
communication energy is minimized with the least degradation
of throughput, facilitating for least actor migration. The static
fault-tolerant technique of TConCEMin on the other hand
determines one mapping which results in minimum communi-
cation energy satisfying the throughput requirement even at the
expense of more actor migrations. On average for all single-
fault scenarios, the proposed technique achieves 74% and 17%
better throughput than DCEMin and TConCEMin technique
respectively. For double-fault scenarios theses numbers are
94% and 20% respectively. Finally, the proposed technique
is only within 2% and 3% of the highest throughput technique
of TMax for single and double fault-scenarios respectively.

B. Energy Comparison for Different Fault-Scenarios

Figure 7 plots the energy consumption of the same four
techniques for the same set of applications. The energy values
are average for all single and double faults and are normalized
with respect to the energy obtained using TMax technique.
As can be seen from the figure, the energy of DCEMin is
the least as communication energy is explicitly minimized in
this technique without considering the throughput degradation.
Secondly, the communication energy of the TConCEMin is
better than the proposed technique. This is because TCon-
CEMin uses integer linear programming to solve the minimum
communication energy problem and is guaranteed to determine
the optimum solution. The proposed technique on the other
hand uses a heuristic to solve the same. On average for single
and double faults, the proposed technique results in 15% and



H.263 Dec H.263 Enc MPEG4 DecJPEG Dec SRC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Applications

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(a) Single Fault Scenarios

H.263 Dec H.263 Enc MPEG4 Dec JPEG Dec SRC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Applications

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(b) Double Fault Scenarios

TMax DCEMin TConCEMin Proposed

Fig. 6. Throughput Performance of the proposed technique

TABLE I. STORAGE REQUIREMENT WITH INCREASING TILES FOR A

3-FAULT-TOLERANT SYSTEM

Tiles TConCEMin [6] Proposed
4 4.6 1

8 32.8 1.2

12 92.4 1.3

16 187.5 1.4

20 320.7 1.6

24 494.3 1.8

28 709.8 1.9

32 968.7 2.0

30% lower energy than the static technique of TMax. The
energy of the proposed heuristic is within 10% of the minimum
energy of TConCEMin.

The important conclusion to make from these results is
that, the proposed technique maximizes throughput (by average
74% and 80% for single and double faults respectively) in
comparison with the existing dynamic techniques with less
than 10% degradation of energy as compared to existing static
throughput-aware fault-tolerant techniques.

C. Storage Overhead Performance

Table I shows the storage requirement of the proposed
dynamic technique in comparison to the static technique of [6]
for different number of tiles. The number of actors for the
application is the same as the number of tiles. Synthetic
applications with different number of actors are used for
different number of tiles. As can be seen from the table and
also expected, the static technique requires significant storage
overhead. This is due to the fact that the static technique eval-
uates and stores the application mapping and scheduling for
all processor fault-scenarios. On the other hand, the proposed
dynamic approach derives the schedule for a fault-scenario
from a master execution trace as and when faults occur. Thus,

TABLE II. ALGORITHM EXECUTION TIME (MS) FOR SINGLE-FAULT

SCENARIO FOR DIFFERENT APPLICATIONS

Applications TConCEMin [6] Proposed
H.263 decoder 2055.20 4.81

H.263 encoder 2124.61 109.00

sample rate converter 17922.48 3.80

the storage overhead associated with the dynamic technique is
only that required to store the master execution trace. This is
shown in column 3 of the table.

Thus, the proposed technique achieves significant savings
in storage which is crucial for multimedia applications where
the storage space is limited.

D. Algorithm Execution Time

Table II shows the execution time of different approaches
to find mappings in the case of single fault scenario for
different multimedia applications. The initial mapping for each
application has been assumed to use the same number of tiles
as the number of actors in the application. Therefore, for each
application, the approaches need to evaluate mappings using
one less number of tiles. Both the approaches evaluate the same
number of mappings for the single fault scenario. The number
of mappings is n-choose-2 (nC2), where n is the number of
actors in the application. However, the static technique of [6]
employ simulative evaluations and the proposed approach em-
ploy analytical estimations. As can be seen from the table and
also expected, the static technique needs large time compared
to the proposed technique. The different in execution times is
observed due to simulative and analytical evaluations. In case
of other fault scenarios such as double-fault, similar results are
obtained. Thus, the proposed technique reduces the execution
time significantly, which is essential to take rapid decisions at
run-time.



H.263 Dec H.263 Enc MPEG4 DecJPEG Dec SRC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Applications

N
or

m
al

iz
ed

 E
ne

rg
y

(a) Single Fault Scenarios

H.263 Dec H.263 Enc MPEG4 Dec JPEG Dec SRC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Applications
N

or
m

al
iz

ed
 E

ne
rg

y

(b) Double Fault Scenarios

TMax DCEMin TConCEMin Proposed

Fig. 7. Energy Performance of the proposed technique

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes an execution trace based run-time
technique to minimize the communication energy and through-
put degradation of applications for different processor fault-
scenarios. Experiments conducted with applications modeled
as Synchronous Data Flow Graphs clearly indicate that the pro-
posed technique provides significant throughput improvement
(average 74% and 80% for single and double faults respec-
tively) with respect to the existing dynamic technique with
less than 10% deviation in communication energy obtained
with an ILP-based technique. Processor heterogeneity and task
computation energy minimization are left as future works.

ACKNOWLEDGMENT

This work was supported by Singapore Ministry of Ed-
ucation Academic Research Fund Tier 1 with grant number
R-263-000-655-133.

REFERENCES

[1] W. Wolf, “Multimedia applications of multiprocessor systems-on-
chips,” in IEEE Conference on Design, Automation and Test in Europe
(DATE), 2005.

[2] J. Hu and R. Marculescu, “Energy-aware communication and task
scheduling for network-on-chip architectures under real-time con-
straints,” in IEEE Conference on Design, Automation and Test in Europe
(DATE), 2004.

[3] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-
aware heuristics for run-time task mapping on NoC-based MPSoC
platforms,” Elsevier Journal of Systems Architecture (JSA), vol. 56,
no. 7, pp. 242–255, 2010.

[4] S. Borkar, T. Karnik, and V. De, “Design and reliability challenges
in nanometer technologies,” in ACM Design Automation Conference
(DAC), 2004.

[5] I. Koren and C. Krishna, Fault-tolerant systems. Morgan Kaufmann,
2007.

[6] A. Das, A. Kumar, and B. Veeravalli, “Energy-Aware Communication
and Remapping of Tasks for Reliable Multimedia Multiprocessor Sys-
tems,” in IEEE International Conference on Parallel and Distributed
Systems (ICPADS), 2012.

[7] C. Lee, H. Kim, H. Park, S. Kim, H. Oh, and S. Ha, “A task
remapping technique for reliable multi-core embedded systems,” in
IEEE/ACM/IFIP Conference on Hardware/Software Codesign and Sys-
tem Synthesis (ISSS+CODES), 2010.

[8] O. Derin, D. Kabakci, and L. Fiorin, “Online task remapping strate-
gies for fault-tolerant Network-on-Chip multiprocessors,” in IEEE/ACM
Symposium on Networks on Chip (NoCS), 2011.

[9] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[10] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
Multi/Many-Core Systems: Survey of Current and Emerging Trends,”
in ACM Design Automation Conference (DAC), 2013.

[11] C. Yang and A. Orailoglu, “Predictable execution adaptivity through
embedding dynamic reconfigurability into static MPSoC schedules,”
in IEEE/ACM/IFIP Conference on Hardware/Software Codesign and
System Synthesis (ISSS+CODES), 2007.

[12] J. Huang, J. Blech, A. Raabe, C. Buckl, and A. Knoll, “Analysis and
optimization of fault-tolerant task scheduling on multiprocessor embed-
ded systems,” in IEEE/ACM/IFIP Conference on Hardware/Software
Codesign and System Synthesis (ISSS+CODES), 2011.

[13] A. Das and A. Kumar, “Fault-aware task re-mapping for throughput
constrained multimedia applications on noc-based mpsocs,” in IEEE
International Symposium on Rapid System Prototyping (RSP), 2012.

[14] C.-L. Chou and R. Marculescu, “FARM: Fault-aware resource manage-
ment in NoC-based multiprocessor platforms,” in IEEE Conference on
Design, Automation and Test in Europe (DATE), march 2011, pp. 1 –6.

[15] L. Ost, M. Mandelli, G. M. Almeida, L. Moller, L. S. Indrusiak,
G. Sassatelli, P. Benoit, M. Glesner, M. Robert, and F. Moraes, “Power-
aware dynamic mapping heuristics for noc-based mpsocs using a unified
model-based approach,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 12, no. 3, pp. 75:1–75:22, 2013.

[16] A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen,
M. Bekooij, B. Theelen, and M. R. Mousavi, “Throughput Analysis of
Synchronous Data Flow Graphs,” in IEEE Conference on Application
of Concurrency to System Design (ACSD), 2006, pp. 25–36.

[17] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in IEEE
Conference on Application of Concurrency to System Design (ACSD),
2006. [Online]. Available: http://www.es.ele.tue.nl/sdf3.


