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Abstract—The progressive maturity of VLSI manufacturing
technology is helping in integrating more and more processing
elements and memory units on a single die to form a Multi-
processor System-On-Chip (MPSoC). Network-on-Chip (NoC) is
adopted as communication backbone for most of these modern
day multiprocessor systems. As complexity of these system scales,
there has been a growing concern on the dependability of
these processing and communication elements. In this paper, we
propose a centralized hardware fault-tolerant network interface
(NI) for NoCs based on spatial division multiplexing. Experiments
show that the proposed design has better throughput than a
non fault-tolerant design with only 18% area overhead. We
also introduce an area optimized distributed fault-tolerant NI
architecture which provides 50% more throughput than the
centralized design for high fault rates.

Index Terms—Fault-Tolerance; Network-on-Chip; Spatial Di-
vision Multiplexing; Network Interface

I. INTRODUCTION

As VLSI manufacturing technology is getting more and
more mature, the tendency to pack millions of transistors
on a single die is also on rise [1]. To extract maximum
flexibility and improve performance, increasingly more and
more processing elements (PEs) are getting integrated on
a single die. Intel Corporation announced teraflop research
chip in 2008 comprising of 80 cores [2]. As System-on-Chip
(SoC) technology scales, demand for scalable communication
architecture is also on the rise. To interconnect different
elements in an SoC, network-on-chip (NoC) was proposed by
Benini et al. in [3] as an efficient and scalable alternative to
shared bus.

The major focus of the NoC research community has been
based on time division multiplexing (TDM) wherein, data
packets for multiple connections are transmitted over the same
wire at different instances of time [4]. However, most of
the TDM-NoCs have considerable area and power overhead.
One of the effort to reduce area and power is to use NoCs
based on spatial division multiplexing (SDM) [5]. As opposed
to conventional TDM-based NoCs, which utilize the concept
of packet switching, SDM-based NoCs provide guaranteed
throughput by providing dedicated wires between source and
destination PEs.

As more and more PEs are interconnected on a single
chip using NoC (both TDM-based and SDM-based), there are
growing concerns on dependability of these PEs and the un-
derlying network backbone i.e. the NoC. Shrinking transistor
geometries and aggressive voltage scaling are contributing to
permanent faults [6]. This is affecting chip yield. Criticality
of this problem is unimaginable for real time systems where

presence of a single fault can cost human lives. One of the
major challenges in designing for deep sub-micron era is to
build a system with built-in fault-tolerance so as to provide
graceful degradation of performance rather than complete halt
in event of faults. Quite a few works have been done towards
achieving fault-tolerance in NoCs [7]–[15]. Most of these
works either target faults in network switches or look at system
level. Very few designs exist for protecting network interface
(NI), which plays a critical role in inter-PE communication.

Key Contributions – In this paper, we improve the design of
NI for SDM-based NoC so that it can tolerate hardware faults
with minimal area and power overhead. The key contributions
are listed below.

• A centralized fault-tolerant NI which can tolerate multiple
hardware faults. When a fault occurs in any component,
a controller performs connection remapping so that faulty
hardware is isolated and operation is continued using
available functional hardware.

• A new NI architecture based on control flow. Data from
a PE is pushed to NI only when an external outgoing
wire is free to receive data. The design is area efficient as
compared to the existing design. Additionally, this design
is scalable with the number of connections.

• A distributed fault-tolerant NI design based on the new
architecture. Different components of the design can
adapt to a faulty condition.

For the purpose of evaluation, we have considered an SDM-
based NoC with 8 wires on each link. We have synthesized the
designs using UMC 65nm cells and using Synopsys Design
Compiler. Results show that the centralized design only has
18% more area and 27% more power as compared to the
existing NI of an SDM-based NoC. We also introduce an
area optimized NI design where multiple components can
adapt to faults in a distributed manner. The centralized and
the distributed designs are compared with a standard triple
modular redundancy (TMR) based NI. We see that the pro-
posed designs are area and power efficient, and deliver similar
throughput to that of a TMR-based NI for lower fault-rates
(less than 10%). However, as the fault rate increases, the
throughput degradation of the centralized design is worse. The
distributed design can sustain and deliver 50% througput when
the centralized design completely breaks at higher fault rates.

This paper is organized as follows. In Section II we give an
introduction to prior work of fault-tolerance in NoC. We then
introduce the readers to SDM-based NoCs and the architecture
of NI used as reference design in Section III. The details



of the fault classification, detection model and metric for
performance are provided in Section IV. We introduce the
details of the centralized and the distributed fault-tolerant
NI design in Section V and VI respectively. Section VII
presents the experimental setup and results. Finally, Section
VIII concludes the paper with some recommendations for
designers.

II. RELATED WORK

The existing fault-tolerance work on NoC can be broadly
classified into two categories – connection-level and hardware-
level fault-tolerance. A connection-level fault-tolerance tech-
nique reconfigures existing connections or reroutes packets
under faulty conditions. As opposed to this, a hardware-level
fault-tolerance technique relies on reconfigurable hardware
components to mitigate the impact of faults.

There are multiple schemes for connection-level fault-
tolerance. One of the widely used schemes is flooding algo-
rithm [7]. Every node in a NoC forwards the incoming data
packet to a subset of its adjacent nodes till the data packet
reaches its destination node. There are different variants of
flooding algorithm like probabilistic flooding, directed flood-
ing, etc. In probabilistic flooding, the flood (multiple copies
of the same packet) is randomly distributed in all directions,
whereas the directed flooding takes a packet destination into
account when forwarding the packet.

Another popular scheme for connection-level fault-tolerance
is rerouting of packets when a fault is detected. Non-adaptive
routing schemes like XY routing exist where packets are
first transmitted along X direction and then in Y direction
before they reach the receiver [8]. In times of a fault, one of
the other shortest paths is selected between the sender and
receiver. There are schemes like dynamic routing [9] based
on shortest path from source PE to destination PE. Both
flooding and re-routing are not suitable for SDM-based NoCs,
where connections are established at connection setup time
and remain unchanged throughout the connection lifetime.

For hardware fault-tolerance, main focus has been on pro-
tecting network links and switches. There are architectures
capable of recovering from permanent switch faults by re-
placing them with neighboring switches [10]. There are also
techniques of using spare routers in the NoCs [14]. Another
method employs the concept of reconfigurable routers by using
spare buffers of adjacent routers in times of faults [11]. Built-
In-Self-Test (BIST) hardware has also been proposed for each
router to determine the fault site and select between ECC,
port swapping and crossbar bypass [15]. However, all these
methods protect only the switches and not the NI.

There are some designs to make the network tolerant to
faults in NIs, e.g. connecting each core to more than one NIs.
Such multi-NI technique is discussed in [12] and [13]. The
design has high area overhead and can become a bottleneck
if more than one cores share the same NI in the event of a
fault. This multi-NI technique is also not suitable for SDM-
based NoCs since multiple connections need to be established
between each pair of source and destination PE. This limits
the total number of simultaneous connections possible.

The most recent work towards fault-tolerant NI is [16].
Here, the authors propose a two-level fault-tolerance to miti-
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Fig. 1. Difference between TDM and SDM-based NoCs

gate faults in NI. They used a mix of Hamming Code for soft
errors and limited redundancy for the hard faults. Their design
is targeted for NI of a TDM-based NoC. The key architectural
difference between NI of a TDM and SDM-based NoC is
that, for a TDM-based NoC, a NI transmits data packet for
one connection at a time over parallel wires. On the other
hand, a NI of an SDM-based NoC simultaneously transmits
data packets of multiple connections serially over the wires.
Moreover, since switching is not required after a connection
setup, the LUTs are not necessary in the NIs. Thus, the design
technique of [16] is not suitable for the an SDM-based NoC.

III. SPATIAL DIVISION MULTIPLEXING BASED NOCS

SDM-based NoCs have been proposed as an alternative
to TDM-based NoCs [5]. In SDM-based NoCs, a subset of
available wires is dedicated between a pair of PEs to form a
connection. Each connection thus has exclusive usage of the
wires assigned to it. Data from PEs is serialized at transmitter
NI and sent over the wire. At the receiving end, data is de-
serialized at the receiver NI. Figure 1 shows the difference
between an SDM-based and a TDM-based NoC. For a TDM-
based NoC, three different connections A, B and C are time
multiplexed over the wires. For an SDM-based NoC, data for
all connections is transmitted simultaneously over multiple
wires. The number of wires dedicated for a connection is
bandwidth dependent. In Figure 1, two of the wires are
assigned to connection A and one each to connection B and
C. SDM networks do not require any switching at the routers
once the connections are configured; it is essentially circuit
switched once the data leaves the network interface. Thus,
packets no longer need to be buffered in the switches saving
area and power. However, serialization and de-serialization of
data add to complexity in the NI.

SDM-NoCs are power and area efficient as compared to the
TDM-based NoCs. The authors in [5] observed 8% reduction
in power and 31% reduction in area for an 8x8 NoC. These
savings have the potential to drive future MPSoCs employing
hundreds of cores. An area-efficient NI architecture for SDM-
based NoC, proposed in [17] is used as the base design for all
comparison in this paper. This is shown in Figure 2. The design
consists of two sections – transmitter and receiver. The trans-
mitter consists of multiple n-to-1 bit serializers. A PE delivers
data packets for an outgoing connection to a fifo which in turn
forwards the packet to an attached data distributor. The number
of distributors in the NI limits the number of connection that
can be established from the corresponding PE. Each distributor
can deliver data to any of the serializers. This is shown by the
“or” gates in front of each serializer. During connection setup,
distributors are programmed to deliver data to a subset of the
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serializers. This subset depends on the destination node and
the bandwidth requirement for the connection.

The receiver end is just the compliment of the transmitter.
The serialized data arriving at the NI is first deserialized
and then sent to the collector, which delivers them to the
PE through the input fifos. Without loss of generality, the
transmitter section is emphasized in the remainder of the paper.

The data distributors are the most critical component of
an SDM-based NI. While faults in the serializers can be
easily managed using connection remapping, any fault in the
data distributors will render a complete outgoing connection
infeasible. The network interface needs to be made tolerant to
such distributor faults to ensure no data is lost and the number
of connections of a PE is not affected. The focus of the current
research is therefore on making the NI tolerant to hardware
faults in the distributor.

IV. PERMANENT FAULTS IN NETWORK-ON-CHIPS

With shrinking feature size, dependability is becoming
major concern even for NoCs. It is predicted that 20%-
30% fault rate is expected in future MPSoCs [18]. As in
most components in SoC, Networks-on-Chip also suffers from
two categories of faults – permanent and transient. Transient
faults are intermittent and can occur due to alpha or neutron
emissions. Transient faults are measured in flit error rate. Prior
work in transient fault-tolerance reveals a flit-rate between
10−9 to 10−12 for NoC [19]. Permanent faults, as the name
itself indicates, are damages to the circuit caused by such
phenomena like electro migration, dielectric breakdowns, bro-
ken wires etc. These faults are caused during manufacturing
or during the product lifetime due to component wear-out.
Behavior of a system under permanent faults is time invariant.

Permanent faults are usually modeled as fail-stop where a
complete module shuts-down and informs other modules about
the same. These faults are described in terms of Mean-Time-
Between-Failures (MTBF) and the failure rates are mostly
expressed in Failures in Time (FIT). Although permanent
faults are less frequent than transient faults, however, recovery
from permanent failures are extremely crucial for a NoC

(or any component) to continue its operation albeit some
acceptable performance degradation.

The design technique proposed in this paper deals with
permanent faults in network interface design, caused during
manufacturing as well as due to component wear-out. In this
section, we provide details of the fault model used together
with the diagnosis technique and performance metric.

A. Diagnosis
There are different techniques for diagnosis of faults for

networks-on-chip [20] [21]. The current research is orthogonal
to any fault diagnosis mechanism. However, scan-chains are
built in the design to support scan based failure detection.

B. Fault Model
We classify the faults occurring in the Network Interface

into two categories.
• Data Fault: Data formatting or processing inside the NI

can be corrupted by the presence of one or more hardware
faults inside NI. This type of data faults can occur in the
fifo, the distributor or the serializers.

• Channel Fault: Any fault in the channel can permanently
disable a link from future use.

In this paper we deal with the data path faults occurring
in the network interface of NoC. Link faults are mitigated
by dedicating fewer wires for a connection or using higher
frequency for data transfer.

C. MTBF Measure
As has been established in Section III, the major compo-

nents of an NI are the distributors, collectors and serializers.
In this section we describe techniques to improve the MTBF
of the components of an NI to make it fault-tolerant.
Serializers :- The base design of NI (Figure 2) provides
support for tolerating faults in the serializers. Specifically,
to satisfy a connection requirement, multiple wires (and the
corresponding serializers) are allocated. Assuming a fail-stop
model, once a serializer becomes faulty, the defect information
is fed back to the associated core which changes the number
of allocated wires/serializers for that connection. This can po-
tentially degrade the throughput if no extra serializers are left
to be allocated. Thus a graceful degradation of performance
is guaranteed under faulty condition.
Distributors/Collectors :- The distributors (or collectors) are
the heart of a NI design. They are responsible for distributing
(or collecting) data to (or from) the correct serializers. The
same technique for fault-tolerance of serializers cannot be
adopted for distributors due to the fact that there is only one
distributor for a connection as opposed to multiple serializers
per connection. Two possible techniques of fault-tolerance
involve introducing redundancy or hardware reconfiguration. It
has been shown in [22], the reliability of M-of-N redundancy
systems 1and that of hardware reconfiguration systems are
given by Equation 1 where R(t) is the reliability of each
distributor and Rru is the reliability of the reconfiguration

1N identical modules with output dependent on M modules. TMR is 2-of-3
system
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Fig. 3. Centralized fault-tolerant NI design

unit. This assumes independent failure rates. The reliability of
a M-of-N system and that of reconfigurable system are higher
than that of the reliability of a single distributor. The MTBF
is related to reliability according to equation 2.

RM of N (t) =

N∑
i=M

(
N

i

)
Ri(t)[1−R(t)]N−i (1)

RReconfig(t) = Rru(t)(1− [1−R(t)]N+1)

MTBF = MTTF + Mean Time To Repair (2)

MTTF =

∫ ∞
0

Roverall(t) dt

As seen from these equations, MTBF of reconfiguration-
based and M-of-N systems are more than the base design. In
this paper we therefore propose and evaluate two architectures
for fault-tolerant NI – one based on dynamic reconfigura-
tion (Centralized) and the other based based on redundancy
(Distributed). Although, the centralized design models the
reconfiguration based system, but there are no spare distrib-
utors, instead they serve a connection and assume additional
responsibilities under a faulty condition. Similarly, the dis-
tributed design models an M-of-N system, but the architecture
is improved to avoid multiple distributors per connection. Thus
significant area and power savings are obtained as compared
to a typical M-of-N systems but providing the same reliability.
D. Fault Metric

There has been some research on fault-tolerant metric for
NoC infrastructure [23]. For the current research, we use the
following three metrics for comparison.
• Power
• Area
• Throughput
We use the above three metrics for comparison of the

architectures proposed here. Based on the fact that failure
probability increases with area of a component, we also use
throughput per unit fault-density (fault per unit area) as a
metric of comparison.

V. CENTRALIZED FAULT-TOLERANT APPROACH

In the centralized architecture, a controller is introduced
between data distributors and output fifos of a PE. Whenever
data is available, the controller pushes the data from an output
fifo to a distributor. When a fault occurs in a distributor,
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Fig. 4. Operation of centralized design

the controller maps the corresponding output fifo to another
distributor.

To perform distributor and serializer allocation, the con-
troller maintains d n−bit serializer maps (SMap), where d is
the number of distributors and n is the number of serializers.
SMap represents the serializers that a distributor needs to
activate for data transmission. Further, a d−bit DFault register
is maintained to indicate the fault status of all distributors.

Considering a fault-free scenario, all positions of the DFault
register are set to 0. The SMaps are filled based on the
destination PE and the bandwidth requirement of a connection.
Figure 3 represents a scenario when three connections are
established with 2, 2 and 3 links respectively with all dis-
tributors functioning correctly. For ease of representation, we
have omitted the “or” gates from the inputs of each serializer.

When a permanent fault is detected in any distributor, either
during production testing or during the device lifetime, the
corresponding location of the DFault is permanently set as 1
and the controller reconfigures the mapping accordingly. The
runtime reconfiguration of centralized fault-tolerant NI design
is shown in Figure 4 for single and double-fault scenarios. The
controller checks the DFault register and directs the data for
the faulty distributor to one of the free distributors. In case no
distributor is free, one of the busy distributors is chosen. The
controller ensures that the data for the fault-free distributor is
given highest priority over the data for the faulty distributor(s).
As shown in the figure, three distributors are active for three
connections from a PE. If a fault is detected in one of the
distributors, say distributor 2, the corresponding bit of the
DFault is set to 1. Since there is no free distributor, data
originally meant for distributor 2 is mapped to distributor 3
in our example. This is shown with the change in the SMap
for distributor 3. In case of a further fault in distributor 1,
the entire load is transferred to distributor 3. This results in
graceful performance degradation.
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VI. DISTRIBUTED FAULT-TOLERANT APPROACH

The data distributors of an SDM-based NI are the major
contributor for area and power. We observe that distributors of
the base design are not fully utilized all the time. Specifically,
the distributors are idle when serialized data is sent over the
link for the corresponding connection. In order to minimize
the area and power of the NI, we propose an architectural
change in the data distributors, so that a single distributor can
serve all the connections from a PE. This helps to decouple
the number of distributors from the number of connections to
be established from a PE. In this section, we introduce the new
design for the distributors and highlight the key architectural
changes with respect to the base design in [17].

A. Operation
The operation of the distributor is based on request-

acknowledge protocol with serializers requesting for data only
when they finish sending the serialized packet to the network.
This is shown in Figure 5 with red dashed lines indicating
request flow and black solid lines indicating data flow. Once a
connection is established, participating serializers request for
data. These requests are forwarded to corresponding output
fifos via the distributor and the requester. Upon getting the
request, the output fifo sends data back to the requesting seri-
alizer. Moreover, we also split the distributor design to separate
the distributor-fifo and the distributor-serializer interface. The
new component is called the “requester”. In order to maintain
data correctness and ensuring correct data is sent to the correct
output line, every component in the design is identified by
uniquely assigned IDs, namely serializer ID (sID), distributor
ID (dID), requester ID (rID) and the fifo ID (qID). At the start
of operation, each serializer is assigned a fifo ID to indicate
the fifo from which data needs to be fetched. The distributor
polls for ready signal of each serializer once every clock. If it
finds that a particular serializer requires data, it forwards the
request to the requester along with control data – its own dID,
the sID of the requesting serializer and corresponding qID.
The distributor then moves on to poll the next serializer at the
next clock cycle.

Requester logic is rather simple. Upon receiving a request
from a distributor, the requester stores the incoming dID and
sID bits and forwards the request to the correct fifo determined
by incoming qID bits. When data comes back from the fifo, the
requester pushes this data to the requesting distributor (known
from the dID bits) along with the stored sID bits. Finally,
the distributor sends this data to the requesting serializer
determined by incoming sID bits. Once a request is polled
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for data, it takes 4 clock cycles to propagate the request to a
fifo and getting data to the serializer. Further, each serializer
is polled every 8 cycles. Hence, every serializer can obtain
data in at most 12 cycles. The serializer design is modified
to include a buffer of one word giving us a tolerance of 33
cycles to process the data, or up to 29 outgoing wires without
any impact in performance.

B. Throughput Saturation and Fault-Tolerance

As the number of links increases beyond 29, the throughput
saturates. This is based on data packet size of 32 bits. In
order to overcome this limitation and to add fault-tolerance,
we can have multiple distributor-requester pairs; each pair can
be dedicated to multiple connections. In an event of a fault
in a distributor, one of the other distributors can take over the
task of the faulty distributor albeit at a reduced throughput.

By separating the distributor-fifo and distributor-serializer
interface, the distributed approach provides more flexibility.
Specifically, in the base design and the centralized fault-
tolerant approach, a fault in either the distributor-fifo interface
or the distributor-serializer interface would render a distributor
faulty. In the new design, a fault in the requester (distributor-
fifo interface in the base design) can be bypassed using another
requester. Thus, a finer control of fault-tolerance is provided.

Distributors and requesters in the new architecture can adapt
to faults by runtime connection re-mapping. There are two
registers in the design – RFault and DFault. The RFault is
maintained by the distributors while the DFault is maintained
by the requesters. In a fault-free scenario, all bits of both
RFault and DFault are set to 0. Connection is carried out
using a distributor-requester pair. When a fault occurs in the
pair, say in the requester, the corresponding bit of the RFault
is set to 1. The distributor then forwards the serializer data
request to another functioning requester. On the other hand, if
a distributor becomes faulty, the corresponding DFault bit is
set to 1 and the requester sends the fifo data to a functioning
distributor. Since the qID is embedded with the serializer



TABLE I
COMPARISON OF VARIOUS NI ARCHITECTURES

Design Area without Area with Max Freq. Power
scan circuit scan circuit (MHz) (µW)

(µm2) (µm2)
Base 17,678 20,614 750 275
TMR-based 31,034 31,034 750 449
Centralized 20,904 25,256 750 349
Distributed (1 pair) 16,146 18,932 917 294
Distributed (2 pairs) 19,936 23,678 917 351

request and sID in the return data, any distributor-requester
combination can be involved in serving a serializer for a
connection. Figure 6 shows how the data mapping changes at
runtime in presence of faults. As can be seen, the distributed
fault-tolerant NI can work as long as one distributor-requester
combination is free from faults.

VII. EXPERIMENTS AND RESULTS

For the purpose of evaluation, we have considered SDM-
based NoCs with 8 outgoing wires. The data packets from
each PE are assumed to be of 32 bits. The base network
interface design is generated using the on-line tool developed
by the authors in [17]. For the purpose of comparison, we
also developed a triple modular redundancy (TMR) based
implementation of the NI2. Corresponding to each distributor
in the base design there are two additional distributor with
a majority voting circuit. We compare the area, power and
performance of the base NI design with TMR-based NI and
the two design techniques proposed in this paper.

Synopsys Design Compiler is used to synthesize the designs
using 65nm technology libraries from UMC. The clock fre-
quency used for synthesis is 100MHz, but the designs support
higher frequency as discussed in a later section. We used
Synopsys Power Compiler (PwC) to report the power based
on Switching Activity Interface Format (SAIF) flow. Area
numbers are reported post-synthesis.

A. Area Comparison
Each NI is designed to have two outgoing and incoming

connections. Therefore, the base and the centralized designs
have two distributors in each NI. The TMR-based implementa-
tion has two sets of 3-distributors. The new architecture only
requires one distributor-requester pair for correct operation.
However, for fault-tolerant operation distributed design with
two distributor-requester pairs is considered throughout this
section, unless mentioned otherwise.

Table I shows the area of the transmission side of the
network interface for the five designs. The area overhead of the
centralized and the TMR-based approach are approximately
18% and 75% respectively in comparison with base design.
The new distributed architecture with one distributor-requester
pair consumes 9%less area than the base-design, while the
fault-tolerant distributed design with two pairs has 12% area
overhead. Although it is expected that TMR based design
should be three times the area of base design, we see only 75%
increase in area since TMR is implemented only for the data

2Although, TMR-based systems are frequently used for tolerating transient
faults, but can also be used for hardware faults [24]. Moreover, due to the
non-existance of any fault-tolerant techniques for Network Interface for SDM-
NoC, we use TMR-based design as a reference.
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distributors of NI. The area overhead for the centralized fault-
tolerant design comes from two major components – the new
controller introduced and the modifications in the distributors
to incorporate fault-tolerance. Prior research in the area of
fault-tolerant NoC reports an area overhead of 42% for routers
[15] and 75% for NI [16]. The designs introduced in this paper
have less than 20% overhead due to fault-tolerance.

To analyze the impact of fault-tolerant NI for a complete
SDM-based NoC, we plot the total area of NoC with increas-
ing size of the network. This is shown in Figure 7 for the four
different NI designs. The area overhead of NoCs with fault-
tolerance is less than 5% of the total area of NoC without
fault-tolerance for both centralized and distributed designs.

Table I also reports the area of network interface after
implementing the fault detection circuit using scan chains.
This results in an overhead of around 20% for both centralized
and distributed designs. This is consistent with the numbers
predicted in prior-art for fault-detection circuits [25], [26]. The
maximum frequency of operation for the distributed design is
more than the other three designs. For the distributed design,
splitting the requester and distributor reduces the critical path
delay. This helps in increasing the frequency of operation.

B. Power Comparison
Table I shows the power consumption of various NI designs

in comparison with the base design. The numbers are reported
for 100MHz operation assuming switching activity of 0.3.
The TMR-based NI consumes 63% more power than the
base design while the centralized approach consumes 27%
more power. This power overhead in the centralized design
is due to the added controller. The new architecture without
fault-tolerance consumes 7% more power when compared to
the base design while the fault-tolerant two-pair distributed
approach consumes 28% more power. Prior research in the
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TABLE II
FAULT COVERAGE IN NETWORK INTERFACE USING VARIOUS TECHNIQUES

Fault Class Base Design TMR-based Centralized Distributed
Detected 190,543 219,724 200,773 199,583
Undetected 129 165 261 345
ATPG Untestable 198 216 223 160
Not Detected 24 33 355 16
Total Faults 190,894 220,138 201,612 200,104
Fault Coverage 99.82% 99.80% 99.58% 99.73%

field of fault-tolerance reports power overhead of around
50% for fault tolerance [16]. The power consumption of the
entire NoC is shown in Figure 8 normalized to the power
consumed in the base design. The average power overhead of
the TMR-based design is 30% while about 13% overhead for
the other two designs. The overhead increases marginally with
increasing network size.

C. Impact of Increasing Fault-tolerance

We now provide the impact of increasing levels of fault-
tolerance on area. For the centralized design, increasing fault-
tolerance implies increasing the number of distributors and
the size of DFault. For the distributed design, higher fault-
tolerance is achieved by adding more distributor-requester
pairs. Figure 9 shows the impact of increasing extra sets of
distributors for the two designs, e.g. a 2-fault tolerant NI point
in distributed design can tolerate faults in at most 2 distributors
and 2 requesters i.e. 4 components in total. For the centralized
design, a 2-fault tolerant point can tolerate at most 2 faults in
only distributors. Any fault in the controller will render the NI
useless. The increasing gap in area between the two designs
with increasing fault-tolerant level can be explained by higher
area of distributor-requester pair in the distributed design as
compared to the distributor in the centralized design.

D. Fault Coverage

Synopsys DFT-Max is used to stitch scan chain for all
four NI designs. The fault coverage numbers are reported in
Table II. Faults in each category are comparable for all the
designs except for the centralized one, where approximately
10 times more faults are not-detected. The majority of these
not-detected faults are in the controller. Although the numbers
could be improved using high analysis effort of the tool, the
improvement is minor (approx 2%) as compared to the tool
runtime (2x). Thus, there is a high probability of a fault in
the controller not being detected using scan. The distributed
design on the other hand, performs better and achieves higher
fault coverage.
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E. Design Latency in Fault
The design latency is computed for both the designs under

faulty conditions. The latency of centralized fault-tolerant
architecture is calculated as follows. During a fault, the design
takes 4 cycles to reconfigure. Priority is given for assigned
distributor to first serve its own serializer before starting to
service serializers of the faulty distributor. Hence, the latency
is given by L = 4 + i where i ranges from 0 to 7, and
denotes the number of the serializers originally linked with
the correct distributor. For the distributed design, the latency
is L = 4 + 2 × n, where n denotes the number of outgoing
links. Thus, with 32 bits per word, the design can have at most
14 wires with no impact on performance.

F. Network Performance
In this section, we analyze network performance as the

number of faults in the network increases. For evaluation of
the different fault-tolerance scheme, we developed a model of
a 4x4 NoC using Matlab. The base NI and the centralized
fault-tolerant NI has three distributors each. The NI based on
distributed approach has 3 distributor-requester pairs. Faults
are randomly injected and results are normalized over 1000
runs. Figure 10 plots the normalized throughput of the NoC
using base NI, TMR-based NI, the centralized and the dis-
tributed fault-tolerant NI.

Few observations can be made from the above plot. First of
all, the throughput of the base design decreases linearly with
the number of faults. Every fault in a distributor renders the
outgoing connection infeasible thereby reducing the available



throughput. Secondly, all fault-tolerant designs have less than
10% reduction in performance for up to 15 faults. As more
faults are injected, the performance degradation of centralized
design is worse than for TMR-based design and the NoC
with distributed NI. Both TMR-based and distributed NI based
designs have redundant hardware which can tolerate multiple
faults. For the distributed design, an NI breaks only when
all distributors or requesters are faulty. In a way, each NI of
the distributed design can tolerate upto 4 hardware faults. For
the NI based on centralized design, a maximum of two faults
can be tolerated. Finally, at around 50 faults, the NoC breaks
completely for both the base design and the centralized fault-
tolerant NI. The throughput-reduction for the TMR-based NI
and the distributed NI is only 30% and 45% respectively.

We see that TMR and the distributed NI-based NoC perform
better for a higher number of faults. However, both designs
are based on redundant hardware. It is, therefore, not fair to
compare the designs only on the basis of number of faults. To
normalize the comparison of the fault-tolerant techniques, we
plot the normalized throughput against fault-density in Figure
11. The fault density is defined as faults per unit area of the
NI (number of faults per mm2). We see that the performance
of all fault-tolerant designs degrades gracefully as the fault
density increases. This figure shows that the distributed design
provides highest throughput for higher fault rates.

VIII. CONCLUSIONS AND DISCUSSIONS

In this paper, we presented two fault-tolerant architectures
for NI which plays a crucial role in inter-PE communication.
We evaluated both architectures with respect to area, power,
latency and throughput. Our analysis shows that designers
need to make careful considerations to select ideal design
technique for their architecture. First of all, the distributed
design is more area efficient and provides better throughput
than the centralized version. As more distributors are added
to the system for higher fault-tolerance, the centralized de-
sign becomes more efficient. Secondly, the distributed design
offers the advantage that any fault at a single place can be
easily tolerated with no performance penalty, while for the
centralized design, a fault in the controller renders the NI
useless. Finally, from the scalability perspective, by decoupling
the outgoing connections with the distributors, the distributed
design becomes more scalable with increase in the number
of connections. A tool has been developed to automatically
generate fault-tolerant NIs for various configuration parame-
ters and is made available for use on-line for the benefit of
research community.

There are still a few open areas where some more im-
provements are possible. Currently, in both approaches, link
faults are handled at the application level. As a future work,
fault-tolerant design of links can be looked into. Another
potential area could be the design of an efficient load balancing
algorithm and the consideration of constant failure rate models.
Both designs discussed here picks up one of the other func-
tional distributors if a fault is detected in any distributor. This
is independent of how many outgoing wires the new distributor
is already serving. A more granular load-balancing technique
can be looked at in the future.
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