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Abstract— A firewall is a crucial security element in modern 
computer networks. This work investigates and demonstrates the 
implementation of a lightweight TCP/IP firewall in a bare-metal 
environment, on a commercial embedded ARM device. 
Compared to an implementation having an operating system 
(OS), using bare-metal design enables reduction of exposure to 
potential vulnerabilities in OS code, and provides a more 
dependable system. The implemented firewall provides both 
static and stateful filtering capabilities, and is configurable in a 
user-friendly way. As the architecture of the commercial 
hardware used was not available under closed source licensing, it 
was discovered through analysis at both hardware and software 
levels. Some challenges were encountered, and tools were 
developed to address these. The prototype is validated through 
functional testing in a controlled environment successfully. 
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I.  INTRODUCTION  

A. Background 
The introduction of computer networking has brought 

numerous benefits by enabling information sharing between 
different computers at both a local and global scale, but it had 
also suffered from malicious activities which compromise the 
safety of this communication medium. Vulnerabilities in 
protocols, applications, operating system code, and even 
unsafe user practices, are inherent parts of the problem.  

A commonly used security mechanism is the firewall. This 
is often found at the point of entry between a private network 
and the Internet, such that all the traffic exchange between 
these two domains has to pass through the firewall.  

The firewall’s network protection functionality is often 
provided by software running on specialised embedded or 
general purpose computers. There are concerns over the 
security of such devices as the firewall software typically 
executes on an OS, where unnecessary lines of code and 
dynamic memories may introduce security loopholes. FPGA 
firewalls are potentially less susceptible to compromise, but it 
is harder to make these run more complex firewall logic. 

Running firewall software in a bare-metal CPU 
configuration, where code is directly executed on the processor 
without any OS is an attractive alternative. Immediate benefits 
are higher performance and higher security, as the software 
does not need to pass through the OS’s abstraction layers.   

B. Contribution 
This work demonstrates a lightweight firewall operating in 

a bare-metal environment on a commercial computer. The 
computer used was originally designed for an embedded Linux 
environment. It was analysed to discover the hardware 
architecture not available under closed source. The final 
product presents a bare-metal firewall with stateful packet 
inspection capabilities, as well as static packet filtering. This 
has also yielded tools to repurpose a commercial computer into 
a versatile device, with low source lines of code of about 9K. 

II. REVIEW OF CONCEPTS 
We assume familiarity with the OSI model. Firewall concepts 
are surveyed, to highlight the drawbacks of early-generation 
firewalls, and motivate stateful, and layer 2 firewalls. 

A. Firewall Types 
The firewall is a system providing traffic filtering between 

two network segments, according to user-defined security 
policy [3]. The firewall can be further classified into either a 
packet-filter or an application-level gateway. The packet filter 
operates between the network and transport layers, while the 
application-level gateway operates at the application level and 
is aware of application frames. 

The early generation packet-filter firewall processes each 
packet individually, based on a fixed set of filtering rules. This 
posed a problem for protocols which relied on secondary 
connections for information exchange, such as the file transfer 
protocol (FTP). As the firewall is unable to distinguish such 
traffic, this secondary connection is rejected and results in a 
loss of connectivity by the applications. The stateful firewall 
concept was introduced to overcome some drawbacks of the 
static filter. This stateful firewall maintains a state machine for 
every connection that passes through it. The decision to permit 
or reject a packet is made based on connection state maintained 
by the firewall, on top of the packet information [4].  

B. Layer 2 Firewalls 
The typical firewalls operate from layer 1 to layer 3 OSI 

level. Layer 3 firewalls are usually used to replace routers at 
the edge of a trusted internal network. This results in the 
segregation of a single IP address space into two spaces.  The 
fragmentation results in potential wastage of IP address, and 
increases the routing complexity and setup configuration. 
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The layer 2 firewall on the other hand does not segregate 
the network into two IP address spaces. This allows for a drop-
in installation of the firewall, without the need to reconfigure 
any of the existing network devices as the firewall will appear 
transparent to them [3]. One downside is that the layer 2 
firewall is harder to configure than a layer 3 one. 

III. PROBLEM DESCRIPTION 
This section analyses our firewall requirements. The 

expected functionalities of the firewall were considered, with 
some simplifying assumptions for our prototype. 

A. Physical Connection of Firewall to Network Environment 
In our envisaged scenario, the firewall shall mediate 

between two networks and a crypto box (or IP encryptor). The 
firewall shall have four network interface ports, where one is 
connected to the trusted network, one to the untrusted network, 
and two connected to the crypto box as shown in Figure 1. The 
development of the encryptor is outside our scope, and it is 
assumed that encryption or decryption of packets is performed 
when they pass through, based on the direction. As the 
behaviour of the crypto box does not affect the essential 
operation of the firewall, for our test-bed the crypto box will be 
replaced with a direct pass-through point-to-point Ethernet link 
as shown in Figure 2. It is intended that the crypto box will 
appear transparent to the networked devices [1], so that the 
MAC addresses associated with the Ethernet frames processed 
remain the same when encrypted or decrypted. 

 
Fig 1–physical connection of firewall to network; Fig 2–simplified connection 

B. Packet Filtering Rule 
The default operating rule of the firewall will be to allow 

traffic to pass from the trusted to the untrusted segment via the 
crypto box for encryption. For a small number of packets 
which meet some static filtering criteria, the packets will be 
sent directly to the untrusted segment, by-passing the crypto 
box. The intuition underlying these rules are: packets 
generally need to be encrypted when they traverse the 
untrusted network towards the recipient, while there are some 
control and management packets which should not be 
encrypted (i.e. bypassed). The static filtering rules shall be 
reconfigurable by the user. Conversely, decryption will apply 
to traffic originating from the untrusted segment traversing 
towards the trusted segment generally, but they will also be 
subjected to more involved, stateful firewall filtering.  

The stateful firewall should only allow traffic from the 
untrusted segment into the trusted segment only if the firewall 
had seen similar (i.e. like “--ctstate Established” in iptables) 
outgoing traffic. This stateful firewall filter needs to maintain a 
table of existing connections; adding and removing new entries 
if a new connection or connection termination is detected. The 
stateful filtering will also be required to remove connections 
from the table if the connection is inactive for a specified time.  

C. User Interface for Firewall Configuration 
A user-friendly and eventually secure way of reconfiguring 

the filtering rules of the firewall is required. Possibilities 
ranged from console-based to graphical user-interface based. 
Allowing configuration over the data network may open 
unforeseen entry points on the system, allowing malicious 
attacks from a remote location, therefore only the local serial 
port interface will be enabled for reconfiguration. A user 
application on a computer will provide the translation of user-
defined rules in a GUI into a byte-oriented data stream for 
configuring the firewall via this serial port. 

D. Network Layer Operation of Firewall 
The transparency of the firewall can be achieved by 

cloning the MAC addresses between the ports connecting the 
two network segments, as shown in Figure 3. This results in a 
direct virtual logical link between Nodes A and B, despite 
being connected with two separate physical links. 

 

 
Fig 3 – Transparent firewall achieved by MAC address cloning 

The transparent firewall assumes that there is a point-to-
point connection beyond these two Ethernet interfaces with 
another OSI Layer 2 or higher network device. This 
assumption is important as the MAC cloning method 
described here will only work if the devices at the other end of 
the firewall's port only have one MAC address associated, i.e a 
point-to-point connection to a Layer 2 or above device. 

E. Real-time system considerations 
A real-time system describes a system where its logical 

correctness is based on the correctness of the outputs and their 
timeliness. The firewall should be in the form of a soft real-
time system. Its response-time should be as fast as possible, but 
not restricted to absolute deadlines associated with catastrophic 
failures. The accuracy of the firewall on the other hand should 
be as accurate as possible, as an error in the firewall operation 
may allow malicious activity into the trusted segment. 

The current prototype is not intended to perform any form 
of traffic shaping to provide Quality-of-Service. Traffic will be 
processed based on a first-in-first-out (FIFO) manner. 

F. Development Environment 
The bare-metal implementation requirement of the project 

calls for an integrated development environment (IDE) with 
appropriate compliers for the processor core used. The IDE 
should provide compilation and debugging capabilities for the 
target hardware. C is chosen as the implementation language. 

IV. SYSTEM ARCHITECTURE 
This section summarises the proposed hardware and 

software architecture of the firewall for implementation. The 
hardware constraints resulted in the need for a cyclic executive 
scheduler. The implementation of both static and stateful filters 
is discussed, describing the data structures and algorithm 
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required. The MAC address learning and cloning algorithm is 
presented, to achieve layer 2 transparent firewall operation. 

A. Overview of proposed system architecture 
The firewall is to be connected to the network via four 

Ethernet interfaces, while a host computer providing firewall 
configuration data is connected via a physical serial port. The 
Ethernet interface is implemented using existing commercial 
Ethernet controller hardware. This controller have two sets of 
buffers. The receiver buffer is used for storing Ethernet frames 
received from the network, while the transmit buffer is for 
storing frames to be sent into the network. The transmit and 
receive functionalities will be achieved by the main processing 
element reading and writing to these buffers. 

The main processing element of the firewall is described in 
the firewall filtering process, shown in Figure 4. The Ethernet 
frames buffered by the Ethernet controllers are read into the 
main processing memory. This frame is then checked against 
the static and stateful filter rules list, and the frame is either 
dropped or rerouted to another Ethernet controller for 
transmission. The system provides a 1Hz clock, allowing the 
stateful filter to be time-aware and to remove inactive 
connections from its list. 

 
Fig 4 – Level 1 dataflow diagram of firewall filtering process 

B. Hardware 
We constrain the hardware for this work to an embedded 

computer, an Artila Matrix 514 shown in Figure 5. 

 
 Fig 5 – Artila Matrix 14 front view & top view 

It is a commercial-off-the-shelf single-board computer with 
an ARM-based microcontroller. A Linux OS with version 2.6 
kernel is bundled. It was chosen based on the low powered 
ARM processor, and it provides four Ethernet interfaces. The 
specifications of the Matrix 514 device can be consulted in [6]. 

The memory access times to both program code and data 
memory should be as quick as possible, for optimal 
performance. This can be achieved with preventing external 
bus contention by placing all program memory on internal 
ROM, and all data memory on internal SRAM. If external 
memories need to be accessed for the firewall application, the 
caching mechanism may be enabled to provide reduced 
memory access latency. The processor core may also be 

operated with normal ARM instructions, at the expense of 
lower code density over the reduced THUMB instruction set. 

C. IPv4 packet de-capsulation 
The behaviour of the firewall requires the inspection of IP 

address and TCP port numbers of the Ethernet frames received. 
The traditional design of a networked device calls for the use of 
an IP library to de-capsulate the Ethernet frames. The library is 
used to extract the source and destination IP addresses, and port 
numbers of different protocols, as well as the payload 
encapsulated by the carrier. As our scenario only expects IP 
traffic, this firewall will only need to provide filtering on IPv4 
network traffic while other protocols can be subject to the 
default deny rule. The standardised protocol format meant that 
fields containing key information will be in the same byte 
offsets. This allows us to develop a lightweight IP support 
library to provide the necessary packet information extraction 
functionalities with the minimum code, instead of an IP library.  

D. Cyclic executive scheduling 
Executing in a bare-metal environment on a single-

processor system presents a hurdle to implement concurrent 
processing at the software level so that multiple processes are 
seen to be executed simultaneously. A cooperative multi-
tasking scheme in the form of cyclic executive will be 
necessary to provide scheduling between the different 
processes of the firewall software. This cyclic executive will 
guarantee zero resource conflicts, eliminating the need for any 
form of inter-process synchronisation. This scheduling method 
is represented by the state diagram illustrated in Figure 6. 

 
Fig 6 – State diagram depicting cyclic executive scheduling 

After initialization, the firewall checks if any static filter 
configuration data is available on the serial input buffer. After 
updating the static filter rules, the firewall enters the cyclic 
state where it repetitively transitions between the states until 
powered down. In the process interface states, it checks for 
Ethernet frames stored in the receive buffer of the associated 
Ethernet controllers. The buffered Ethernet frame is processed 
by checking against the static and stateful filtering rules, and 
forwarded to the corresponding output Ethernet interfaces. 

The firewall then transits to the next state, where it 
performs a similar operation on a different Ethernet interface. 
If no Ethernet frame is ready in the receive buffer, the 
processing for the Ethernet interface is skipped and transited to 
the next state. After processing all the four Ethernet interfaces, 
the relative timestamps in the stateful filters and logical timer 
are refreshed if the logical timer is near the overflow state. The 
receive buffer of the serial interface is also checked for updated 
static filtering configuration data. This new data is read and 
updated into the static filters of the firewall, before resuming 
the cyclic state of the firewall.  
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E. Static filter 
The static filtering of the firewall is used to determine 

which output interface the received Ethernet frame should be 
sent to. If the Ethernet frame matches the relevant description 
in the static filter rules list, the Ethernet frame is allowed to by-
pass the crypto box. This frame is then accordingly sent 
directly into the trusted or untrusted network. The comparison 
between the received Ethernet frame and rules list is done 
using a sequential list search. The search traverses down the 
stored rules list and returns a positive result if an exact match is 
found, else a negative result is returned. 

The static filter rules list do not constantly change over 
time, except during the rare user-initiated reconfiguration. The 
rules list can be implemented with statically allocated memory 
such as an array in C. It will comprise of the following four 
fields per rule entry: source IP address, source port number, 
destination IP address, and destination port number. 

We assume a manageable number of static filter rules. An 
array will be declared as lookup table for TCP stateful filter. 
An example is illustrated in Figure 7, showing two filter rules. 

 
Fig 7 – Lookup table for static filtering 

F. Re-configurability of static filter 
We developed a communication protocol to be used for the 

firewall’s configuration. A two-way handshake using ASCII 
encoded commands will be used to place the firewall into a 
mode to receive the configuration data. Upon successful 
reception of the configuration data, the firewall will 
acknowledge the transfer and close the connection before 
updating the static filter rules list. In future versions, 
cryptographic authentication methods could be implemented to 
provide more secured access. 

The host computer will always send a fixed amount of 
bytes determined by the maximum filter entries in the firewall. 
The fields are sent to the firewall with lowest byte first in the 
format shown in Figure 8. A GUI program running on a host 
computer was developed, that generates the necessary data 
stream compliant to the data format described, and handles the 
handshaking for the data transfer. 

 

 
Fig 8 – Data format of firewall configuration data sent over serial interface 

G. Stateful filter 
The stateful filter is responsible for allowing traffic from 

the untrusted network into the trusted network, only if similar 
traffic has been seen outgoing to the untrusted network. The 
stateful filter on the other hand allows all traffic from the 
trusted network to traverse into the untrusted network, and 

stores this event in its active connections list. The stateful filter 
monitors the TCP packet for the FIN-ACK flag, which then 
removes the associate entry from the active connections list. 

Unlike the static filter where its filter list does not 
constantly change, the stateful filter’s list may change as 
frequent as every cycle of the cyclic executive. This frequently 
changing filter list will require a data structure capable of 
dynamic assignment with low processing overhead for data 
insertion or deletion. The linked list data structure meets the 
described needs and can provide possible speedup on certain 
scenarios. 

This linked list can be constructed by statically allocating 
two memory arrays on the firewall. The first array is used to 
store the IP address of the stateful entry, and serves as an index 
to provide entry point to the main data array. The second array 
stores the port number and timestamp of the last connection 
made with the associated IP address in the index table. 

An example of an active connection to destination IP 
address 10.11.12.13 on destination ports 5000 and 5001 is 
shown in Figure 9. When searching the stateful filter, the 
firewall first performs a sequential search in the index array. 
The firewall then traverses down the associated linked list 
looking for a match in the port number. The linked list search 
returns negative if no match is found in either stage. 

 
Fig 9 – Example of linked list with one IP address and two ports 

When a new connection is established, the new entry is 
always appended at the front of the linked list. This exploits 
temporal locality of the data access [5], assuming that the new 
connection established here will most likely be accessed soon, 
as compared to connections established earlier. This strategy 
reduces the number of traverses required before convergence, 
leading to less processing time for the search. 

The entries in the stateful filter table are removed if no 
active connection is seen for more than a user-specified time 
(e.g. 3,600 seconds). The firewall also inspects all the TCP 
packets for the FIN-ACK flag, which signals the end of current 
TCP transmission session. Upon detection of such packets, the 
firewall removes the associated entry from the stateful filter.  

H. MAC address learning 
It is useful for the firewall to appear transparent to the 

attached network device; at other times the MAC bindings can 
be hard-coded before use. A MAC address cloning method was 
developed and implemented. This was achieved by inspecting 
the Ethernet frames that the Ethernet interface sees 
immediately after a successful physical media negotiation. 
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V. IMPLEMENTATION ISSUES 
Some significant challenges were faced during 

implementation. Solutions and workarounds were developed.  

A. Closed source of hardware design 
Development in bare-metal environment required low-level 

drivers for access to the hardware peripherals. This required 
prior knowledge of the logical and physical connections of 
such peripherals. However, the hardware schematic of the 
Matrix 514 device is closed source. On the other hand, the 
Linux OS used by the Matrix 514 is open source, and analysing 
this provided insights into the hardware architecture. Also, the 
device was physically taken apart for analysis at the component 
level. The functionalities of the integrated circuit modules were 
discovered through searching public datasheets. Spatial locality 
between components also provided clues. It was discovered 
that five peripherals are mapped onto the external address/data 
bus of the microcontroller system, which are three DM9000, 
one SDRAM, and one NOR flash.  

B. Lack of in-circuit emulator/debugger 
The Matrix 514 uses an ARM9-based microcontroller with 

in-circuit emulation accessible over JTAG. A compatible 
Segger J-Link JTAG emulator used was unable to detect the 
microcontroller, returning no valid devices found on the 
boundary scan. Some configuration may have disabled the 
JTAG functionality. Alternatively, the serial port was used to 
periodically print the firewall state for debugging, implemented 
as a blocking call. But this complicated the development of 
advanced processor mechanism, such as direct memory access 
(DMA) and interrupts, leading to data transfer between 
Ethernet interfaces not being accelerated, and high processor 
overhead. The Ethernet interfaces were polled periodically 
instead, but increasing latency in responding to incoming data.  

C. Booting with bare-metal program 
The factory state of the Matrix 514 only allowed the 

microcontroller to boot from the external NOR flash. However, 
when a high logic is applied to the BMS, the microcontroller 
boots from the internal ROM instead of external flash. When 
the microcontroller does not find any valid program during this 
boot, it would expect to receive firmware upgrade over the 
debug serial port. This built-in firmware upgrade mechanism 
takes in a binary executable file, stores it in the internal SRAM, 
and executes the binary file like a normal program from the 
SRAM. This method is restricted to a program memory size of 
less than 13Kbytes. We adapted this mechanism to load our 
program.  

D. Volatile storage of bare-metal program 
It is desirable to store the bare-metal program permanently 

in the reprogrammable external NOR flash, as compared to the 
one-time-programmable internal ROM of the microcontroller. 
So, another bare-metal program was developed, which reads a 
binary file via the serial port and writes it into the external 
NOR flash. However, while it was possible for the device to 
boot this way a simple program we developed, there were 
issues with getting it to boot the firewall program. This was 

traced to an environment configuration of the IDE used, which 
required a different linker description if the bare-metal were 
stored in external flash. This problem is only partially resolved. 

VI. RESULTS 
The results of validating the firewall implemented are 

presented. The firewall was also subjected to benchmarking to 
provide a performance baseline.  

A. Bare-metal program 
The firewall bare-metal program was successfully 

implemented in Keil �Vision 4.7 with ARM MDK-Lite, free 
license with code and data size restriction of 32Kbytes. The 
compiler produced a binary executable file. The size of the 
compiled program is 8,492bytes, below the maximum 
13Kbytes allowed by the firmware upgrade mechanism. The 
firewall was verified to be up by observing for messages on the 
debug serial port of the Matrix 514 device. Compared to the 
Linux kernel OS (version 2.6) which has 4M SLOC, the bare-
metal firewall program has only around 9K SLOC. 

B. MAC address learning 
The MAC address learning functionality was tested with a 

consumer-class router and a laptop computer. The firewall 
bare-metal program was uploaded, and the MAC address 
learning procedure was allowed to run. The procedure was 
validated to be able to discover the devices’ MAC addresses.  

C. Reconfiguration capability 
Reconfigurability was achieved through the development of 

a Windows-based application using Microsoft Visual Studio 
2010 C#. The developed application provided an all-in-one tool 
to upload the bare-metal program into the device, upload static 
filter rules, and visually display data received on the serial port.  

D. Static filter functionality 
The functionality of the static filter was evaluated using 
different test scenarios:  

• Allow all traffic to bypass crypto box 
• Allow some traffic to bypass crypto box 
• Allow no traffic to bypass crypto box 
The static filter was tested with direct connections to one 

packet generator, and one packet sniffer, as shown in Fig. 10.  

  
Fig 10 – Test setup for static filtering 

The packet generator was placed on the trusted network 
side, so that the stateful filter did not block any of the packets 
from propagating towards the packet sniffer. The packet 
generator was realised using a Raspberry Pi embedded Linux 
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computer executing Mausezahn, a network traffic generator. 
This setup provided the flexibility of specifying the source and 
destination IP addresses, and port numbers of the TCP 
packets. The packet sniffer was realised using Wireshark. 

The packet generator was configured to generate a burst of 
TCP packets. The different static filter rules were then 
configured into the firewall, and the packets received on the 
packet sniffer is noted and consolidated in Table 1. 

 

 
Table 1 – Summary of static filter test results 

The test results showed that when no traffic is allowed to 
bypass the crypto box, the packet sniffer does not receive any 
packets from the generator. The test results also showed that it 
was able to selectively pass packets when filtering criteria was 
met, as well as allow all traffic to bypass the crypto box. The 
pass thru cable was unconnected to help distinguish bypassed 
and non-bypassed packets. 

E. Stateful filter functionality 
The functionality of the stateful filter was similarly evaluated 
like the static filter test, using the following test scenarios:  

• Access TCP port in untrusted network 
• Access test computer’s TCP port from untrusted 

network at cold state 
• Access test computer’s TCP port from untrusted 

network after initiating an outgoing connection 
• Access test computer’s TCP port with a timed out entry 

 

The stateful filter was tested with almost the same hardware 
setup as in Figure 10, with pass thru cable connected. The 
packet generator and sniffer was swapped, such that packets 
were sent towards the trusted network. In addition to packet 
sniffing, the test computer now performed packet generation 
to insert entries in the stateful filter which allow traffic in from 
the untrusted network. The packet generation was realised 
using Ostinato, a packet generator software. 

The static filter was configured to permit all traffic to 
bypass the crypto box, so that this test was independent of 
static filtering. The packet generator was configured to 
generate the similar packet burst, as before. The stateful filter 
was then subjected to four test scenarios, and the response of 
these test scenarios were recorded and shown in Table 2. 

The test results showed that the stateful filter was able to 
block traffic which was not included in the active connections 
list. The filter was able to append new established TCP 
sessions into this list, which allowed previously blocked traffic 
to now enter into the trusted network. Finally, the filter was 
able to identify and remove inactive connections from the list, 
in accordance to the proposed design. 

 
Table 2 – Summary of stateful filter test results 

F. Network performance 
A network benchmark tool, LANBench is used to 

determine the firewall performance in bare-metal and original 
Artila Linux environments and results are consolidated in 
Table 3. The small disparity in the results suggests that if DMA 
and interrupts are implemented, the bare-metal case may even 
produce performance superior to the OS-based environment. 

Test case (speed in kbits/sec) Artila Linux Bare-metal 
Max speed (operated as Ethernet bridge) 2,487 2,141 

Average send speed 2,278 1,726 
Average receive speed 2,316 1,583 

Table 3 – Summary of firewall switching performance 

VII. CONCLUSIONS 
 The work aims at the development of a lightweight firewall 
in bare-metal using an embedded Artila Matrix 514 ARM-
based computer. A cyclic executive scheduler was developed, 
to overcome the lack of native concurrent processing support. 
The behaviour and algorithms of the static filter, stateful filters, 
and MAC address learning were developed. 

 The functionality of the firewall was validated with a series 
of test cases, targeting the different software modules. The tests 
revealed a successful implementation of the firewall based on 
the specification. The bare-metal program’s SLOC at 9K 
compares very favourably with any Linux OS-based solution, 
which would require at least 4M SLOC, representing a great 
reduction in complexity and possible vulnerabilities in code. 

 Possible future work include: setting up the JTAG interface 
to enable better debugging, development of DMA and 
interrupts, implementing more extensive firewall policies, 
performance optimisation, and formal analysis of the design. 
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