
Lightweight Bare-metal Stateful Firewall

Yihuan Xing
Dept. of Electrical & Computer Engineering

National University of Singapore
Singapore

xingyihuan@nus.edu.sg

Ford Long Wong
Information Assurance

DSO National Laboratories
Singapore

wfordlon@dso.org.sg

Akash Kumar
Dept. of Electrical & Computer Engineering

National University of Singapore
Singapore

akash@nus.edu.sg

Abstract— A firewall is a crucial security element in modern
computer networks. This work investigates and demonstrates the
implementation of a lightweight TCP/IP firewall in a bare-metal
environment, on a commercial embedded ARM device.
Compared to an implementation having an operating system
(OS), using bare-metal design enables reduction of exposure to
potential vulnerabilities in OS code, and provides a more
dependable system. The implemented firewall provides both
static and stateful filtering capabilities, and is configurable in a
user-friendly way. As the architecture of the commercial
hardware used was not available under closed source licensing, it
was discovered through analysis at both hardware and software
levels. Some challenges were encountered, and tools were
developed to address these. The prototype is validated through
functional testing in a controlled environment successfully.

Keywords— firewall; bare-metal; ARM; stateful; encryptor

I. INTRODUCTION

A. Background
The introduction of computer networking has brought

numerous benefits by enabling information sharing between
different computers at both a local and global scale, but it had
also suffered from malicious activities which compromise the
safety of this communication medium. Vulnerabilities in
protocols, applications, operating system code, and even
unsafe user practices, are inherent parts of the problem.

A commonly used security mechanism is the firewall. This
is often found at the point of entry between a private network
and the Internet, such that all the traffic exchange between
these two domains has to pass through the firewall.

The firewall’s network protection functionality is often
provided by software running on specialised embedded or
general purpose computers. There are concerns over the
security of such devices as the firewall software typically
executes on an OS, where unnecessary lines of code and
dynamic memories may introduce security loopholes. FPGA
firewalls are potentially less susceptible to compromise, but it
is harder to make these run more complex firewall logic.

Running firewall software in a bare-metal CPU
configuration, where code is directly executed on the processor
without any OS is an attractive alternative. Immediate benefits
are higher performance and higher security, as the software
does not need to pass through the OS’s abstraction layers.

B. Contribution
This work demonstrates a lightweight firewall operating in

a bare-metal environment on a commercial computer. The
computer used was originally designed for an embedded Linux
environment. It was analysed to discover the hardware
architecture not available under closed source. The final
product presents a bare-metal firewall with stateful packet
inspection capabilities, as well as static packet filtering. This
has also yielded tools to repurpose a commercial computer into
a versatile device, with low source lines of code of about 9K.

II. REVIEW OF CONCEPTS
We assume familiarity with the OSI model. Firewall concepts
are surveyed, to highlight the drawbacks of early-generation
firewalls, and motivate stateful, and layer 2 firewalls.

A. Firewall Types
The firewall is a system providing traffic filtering between

two network segments, according to user-defined security
policy [3]. The firewall can be further classified into either a
packet-filter or an application-level gateway. The packet filter
operates between the network and transport layers, while the
application-level gateway operates at the application level and
is aware of application frames.

The early generation packet-filter firewall processes each
packet individually, based on a fixed set of filtering rules. This
posed a problem for protocols which relied on secondary
connections for information exchange, such as the file transfer
protocol (FTP). As the firewall is unable to distinguish such
traffic, this secondary connection is rejected and results in a
loss of connectivity by the applications. The stateful firewall
concept was introduced to overcome some drawbacks of the
static filter. This stateful firewall maintains a state machine for
every connection that passes through it. The decision to permit
or reject a packet is made based on connection state maintained
by the firewall, on top of the packet information [4].

B. Layer 2 Firewalls
The typical firewalls operate from layer 1 to layer 3 OSI

level. Layer 3 firewalls are usually used to replace routers at
the edge of a trusted internal network. This results in the
segregation of a single IP address space into two spaces. The
fragmentation results in potential wastage of IP address, and
increases the routing complexity and setup configuration.

2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing

978-1-4799-6474-1/14 $31.00 © 2014 IEEE

DOI 10.1109/PRDC.2014.15

53

The layer 2 firewall on the other hand does not segregate
the network into two IP address spaces. This allows for a drop-
in installation of the firewall, without the need to reconfigure
any of the existing network devices as the firewall will appear
transparent to them [3]. One downside is that the layer 2
firewall is harder to configure than a layer 3 one.

III. PROBLEM DESCRIPTION
This section analyses our firewall requirements. The

expected functionalities of the firewall were considered, with
some simplifying assumptions for our prototype.

A. Physical Connection of Firewall to Network Environment
In our envisaged scenario, the firewall shall mediate

between two networks and a crypto box (or IP encryptor). The
firewall shall have four network interface ports, where one is
connected to the trusted network, one to the untrusted network,
and two connected to the crypto box as shown in Figure 1. The
development of the encryptor is outside our scope, and it is
assumed that encryption or decryption of packets is performed
when they pass through, based on the direction. As the
behaviour of the crypto box does not affect the essential
operation of the firewall, for our test-bed the crypto box will be
replaced with a direct pass-through point-to-point Ethernet link
as shown in Figure 2. It is intended that the crypto box will
appear transparent to the networked devices [1], so that the
MAC addresses associated with the Ethernet frames processed
remain the same when encrypted or decrypted.

Fig 1–physical connection of firewall to network; Fig 2–simplified connection

B. Packet Filtering Rule
The default operating rule of the firewall will be to allow

traffic to pass from the trusted to the untrusted segment via the
crypto box for encryption. For a small number of packets
which meet some static filtering criteria, the packets will be
sent directly to the untrusted segment, by-passing the crypto
box. The intuition underlying these rules are: packets
generally need to be encrypted when they traverse the
untrusted network towards the recipient, while there are some
control and management packets which should not be
encrypted (i.e. bypassed). The static filtering rules shall be
reconfigurable by the user. Conversely, decryption will apply
to traffic originating from the untrusted segment traversing
towards the trusted segment generally, but they will also be
subjected to more involved, stateful firewall filtering.

The stateful firewall should only allow traffic from the
untrusted segment into the trusted segment only if the firewall
had seen similar (i.e. like “--ctstate Established” in iptables)
outgoing traffic. This stateful firewall filter needs to maintain a
table of existing connections; adding and removing new entries
if a new connection or connection termination is detected. The
stateful filtering will also be required to remove connections
from the table if the connection is inactive for a specified time.

C. User Interface for Firewall Configuration
A user-friendly and eventually secure way of reconfiguring

the filtering rules of the firewall is required. Possibilities
ranged from console-based to graphical user-interface based.
Allowing configuration over the data network may open
unforeseen entry points on the system, allowing malicious
attacks from a remote location, therefore only the local serial
port interface will be enabled for reconfiguration. A user
application on a computer will provide the translation of user-
defined rules in a GUI into a byte-oriented data stream for
configuring the firewall via this serial port.

D. Network Layer Operation of Firewall
The transparency of the firewall can be achieved by

cloning the MAC addresses between the ports connecting the
two network segments, as shown in Figure 3. This results in a
direct virtual logical link between Nodes A and B, despite
being connected with two separate physical links.

Fig 3 – Transparent firewall achieved by MAC address cloning

The transparent firewall assumes that there is a point-to-
point connection beyond these two Ethernet interfaces with
another OSI Layer 2 or higher network device. This
assumption is important as the MAC cloning method
described here will only work if the devices at the other end of
the firewall's port only have one MAC address associated, i.e a
point-to-point connection to a Layer 2 or above device.

E. Real-time system considerations
A real-time system describes a system where its logical

correctness is based on the correctness of the outputs and their
timeliness. The firewall should be in the form of a soft real-
time system. Its response-time should be as fast as possible, but
not restricted to absolute deadlines associated with catastrophic
failures. The accuracy of the firewall on the other hand should
be as accurate as possible, as an error in the firewall operation
may allow malicious activity into the trusted segment.

The current prototype is not intended to perform any form
of traffic shaping to provide Quality-of-Service. Traffic will be
processed based on a first-in-first-out (FIFO) manner.

F. Development Environment
The bare-metal implementation requirement of the project

calls for an integrated development environment (IDE) with
appropriate compliers for the processor core used. The IDE
should provide compilation and debugging capabilities for the
target hardware. C is chosen as the implementation language.

IV. SYSTEM ARCHITECTURE
This section summarises the proposed hardware and

software architecture of the firewall for implementation. The
hardware constraints resulted in the need for a cyclic executive
scheduler. The implementation of both static and stateful filters
is discussed, describing the data structures and algorithm

54

required. The MAC address learning and cloning algorithm is
presented, to achieve layer 2 transparent firewall operation.

A. Overview of proposed system architecture
The firewall is to be connected to the network via four

Ethernet interfaces, while a host computer providing firewall
configuration data is connected via a physical serial port. The
Ethernet interface is implemented using existing commercial
Ethernet controller hardware. This controller have two sets of
buffers. The receiver buffer is used for storing Ethernet frames
received from the network, while the transmit buffer is for
storing frames to be sent into the network. The transmit and
receive functionalities will be achieved by the main processing
element reading and writing to these buffers.

The main processing element of the firewall is described in
the firewall filtering process, shown in Figure 4. The Ethernet
frames buffered by the Ethernet controllers are read into the
main processing memory. This frame is then checked against
the static and stateful filter rules list, and the frame is either
dropped or rerouted to another Ethernet controller for
transmission. The system provides a 1Hz clock, allowing the
stateful filter to be time-aware and to remove inactive
connections from its list.

Fig 4 – Level 1 dataflow diagram of firewall filtering process

B. Hardware
We constrain the hardware for this work to an embedded

computer, an Artila Matrix 514 shown in Figure 5.

 Fig 5 – Artila Matrix 14 front view & top view

It is a commercial-off-the-shelf single-board computer with
an ARM-based microcontroller. A Linux OS with version 2.6
kernel is bundled. It was chosen based on the low powered
ARM processor, and it provides four Ethernet interfaces. The
specifications of the Matrix 514 device can be consulted in [6].

The memory access times to both program code and data
memory should be as quick as possible, for optimal
performance. This can be achieved with preventing external
bus contention by placing all program memory on internal
ROM, and all data memory on internal SRAM. If external
memories need to be accessed for the firewall application, the
caching mechanism may be enabled to provide reduced
memory access latency. The processor core may also be

operated with normal ARM instructions, at the expense of
lower code density over the reduced THUMB instruction set.

C. IPv4 packet de-capsulation
The behaviour of the firewall requires the inspection of IP

address and TCP port numbers of the Ethernet frames received.
The traditional design of a networked device calls for the use of
an IP library to de-capsulate the Ethernet frames. The library is
used to extract the source and destination IP addresses, and port
numbers of different protocols, as well as the payload
encapsulated by the carrier. As our scenario only expects IP
traffic, this firewall will only need to provide filtering on IPv4
network traffic while other protocols can be subject to the
default deny rule. The standardised protocol format meant that
fields containing key information will be in the same byte
offsets. This allows us to develop a lightweight IP support
library to provide the necessary packet information extraction
functionalities with the minimum code, instead of an IP library.

D. Cyclic executive scheduling
Executing in a bare-metal environment on a single-

processor system presents a hurdle to implement concurrent
processing at the software level so that multiple processes are
seen to be executed simultaneously. A cooperative multi-
tasking scheme in the form of cyclic executive will be
necessary to provide scheduling between the different
processes of the firewall software. This cyclic executive will
guarantee zero resource conflicts, eliminating the need for any
form of inter-process synchronisation. This scheduling method
is represented by the state diagram illustrated in Figure 6.

Fig 6 – State diagram depicting cyclic executive scheduling

After initialization, the firewall checks if any static filter
configuration data is available on the serial input buffer. After
updating the static filter rules, the firewall enters the cyclic
state where it repetitively transitions between the states until
powered down. In the process interface states, it checks for
Ethernet frames stored in the receive buffer of the associated
Ethernet controllers. The buffered Ethernet frame is processed
by checking against the static and stateful filtering rules, and
forwarded to the corresponding output Ethernet interfaces.

The firewall then transits to the next state, where it
performs a similar operation on a different Ethernet interface.
If no Ethernet frame is ready in the receive buffer, the
processing for the Ethernet interface is skipped and transited to
the next state. After processing all the four Ethernet interfaces,
the relative timestamps in the stateful filters and logical timer
are refreshed if the logical timer is near the overflow state. The
receive buffer of the serial interface is also checked for updated
static filtering configuration data. This new data is read and
updated into the static filters of the firewall, before resuming
the cyclic state of the firewall.

55

E. Static filter
The static filtering of the firewall is used to determine

which output interface the received Ethernet frame should be
sent to. If the Ethernet frame matches the relevant description
in the static filter rules list, the Ethernet frame is allowed to by-
pass the crypto box. This frame is then accordingly sent
directly into the trusted or untrusted network. The comparison
between the received Ethernet frame and rules list is done
using a sequential list search. The search traverses down the
stored rules list and returns a positive result if an exact match is
found, else a negative result is returned.

The static filter rules list do not constantly change over
time, except during the rare user-initiated reconfiguration. The
rules list can be implemented with statically allocated memory
such as an array in C. It will comprise of the following four
fields per rule entry: source IP address, source port number,
destination IP address, and destination port number.

We assume a manageable number of static filter rules. An
array will be declared as lookup table for TCP stateful filter.
An example is illustrated in Figure 7, showing two filter rules.

Fig 7 – Lookup table for static filtering

F. Re-configurability of static filter
We developed a communication protocol to be used for the

firewall’s configuration. A two-way handshake using ASCII
encoded commands will be used to place the firewall into a
mode to receive the configuration data. Upon successful
reception of the configuration data, the firewall will
acknowledge the transfer and close the connection before
updating the static filter rules list. In future versions,
cryptographic authentication methods could be implemented to
provide more secured access.

The host computer will always send a fixed amount of
bytes determined by the maximum filter entries in the firewall.
The fields are sent to the firewall with lowest byte first in the
format shown in Figure 8. A GUI program running on a host
computer was developed, that generates the necessary data
stream compliant to the data format described, and handles the
handshaking for the data transfer.

Fig 8 – Data format of firewall configuration data sent over serial interface

G. Stateful filter
The stateful filter is responsible for allowing traffic from

the untrusted network into the trusted network, only if similar
traffic has been seen outgoing to the untrusted network. The
stateful filter on the other hand allows all traffic from the
trusted network to traverse into the untrusted network, and

stores this event in its active connections list. The stateful filter
monitors the TCP packet for the FIN-ACK flag, which then
removes the associate entry from the active connections list.

Unlike the static filter where its filter list does not
constantly change, the stateful filter’s list may change as
frequent as every cycle of the cyclic executive. This frequently
changing filter list will require a data structure capable of
dynamic assignment with low processing overhead for data
insertion or deletion. The linked list data structure meets the
described needs and can provide possible speedup on certain
scenarios.

This linked list can be constructed by statically allocating
two memory arrays on the firewall. The first array is used to
store the IP address of the stateful entry, and serves as an index
to provide entry point to the main data array. The second array
stores the port number and timestamp of the last connection
made with the associated IP address in the index table.

An example of an active connection to destination IP
address 10.11.12.13 on destination ports 5000 and 5001 is
shown in Figure 9. When searching the stateful filter, the
firewall first performs a sequential search in the index array.
The firewall then traverses down the associated linked list
looking for a match in the port number. The linked list search
returns negative if no match is found in either stage.

Fig 9 – Example of linked list with one IP address and two ports

When a new connection is established, the new entry is
always appended at the front of the linked list. This exploits
temporal locality of the data access [5], assuming that the new
connection established here will most likely be accessed soon,
as compared to connections established earlier. This strategy
reduces the number of traverses required before convergence,
leading to less processing time for the search.

The entries in the stateful filter table are removed if no
active connection is seen for more than a user-specified time
(e.g. 3,600 seconds). The firewall also inspects all the TCP
packets for the FIN-ACK flag, which signals the end of current
TCP transmission session. Upon detection of such packets, the
firewall removes the associated entry from the stateful filter.

H. MAC address learning
It is useful for the firewall to appear transparent to the

attached network device; at other times the MAC bindings can
be hard-coded before use. A MAC address cloning method was
developed and implemented. This was achieved by inspecting
the Ethernet frames that the Ethernet interface sees
immediately after a successful physical media negotiation.

56

V. IMPLEMENTATION ISSUES
Some significant challenges were faced during

implementation. Solutions and workarounds were developed.

A. Closed source of hardware design
Development in bare-metal environment required low-level

drivers for access to the hardware peripherals. This required
prior knowledge of the logical and physical connections of
such peripherals. However, the hardware schematic of the
Matrix 514 device is closed source. On the other hand, the
Linux OS used by the Matrix 514 is open source, and analysing
this provided insights into the hardware architecture. Also, the
device was physically taken apart for analysis at the component
level. The functionalities of the integrated circuit modules were
discovered through searching public datasheets. Spatial locality
between components also provided clues. It was discovered
that five peripherals are mapped onto the external address/data
bus of the microcontroller system, which are three DM9000,
one SDRAM, and one NOR flash.

B. Lack of in-circuit emulator/debugger
The Matrix 514 uses an ARM9-based microcontroller with

in-circuit emulation accessible over JTAG. A compatible
Segger J-Link JTAG emulator used was unable to detect the
microcontroller, returning no valid devices found on the
boundary scan. Some configuration may have disabled the
JTAG functionality. Alternatively, the serial port was used to
periodically print the firewall state for debugging, implemented
as a blocking call. But this complicated the development of
advanced processor mechanism, such as direct memory access
(DMA) and interrupts, leading to data transfer between
Ethernet interfaces not being accelerated, and high processor
overhead. The Ethernet interfaces were polled periodically
instead, but increasing latency in responding to incoming data.

C. Booting with bare-metal program
The factory state of the Matrix 514 only allowed the

microcontroller to boot from the external NOR flash. However,
when a high logic is applied to the BMS, the microcontroller
boots from the internal ROM instead of external flash. When
the microcontroller does not find any valid program during this
boot, it would expect to receive firmware upgrade over the
debug serial port. This built-in firmware upgrade mechanism
takes in a binary executable file, stores it in the internal SRAM,
and executes the binary file like a normal program from the
SRAM. This method is restricted to a program memory size of
less than 13Kbytes. We adapted this mechanism to load our
program.

D. Volatile storage of bare-metal program
It is desirable to store the bare-metal program permanently

in the reprogrammable external NOR flash, as compared to the
one-time-programmable internal ROM of the microcontroller.
So, another bare-metal program was developed, which reads a
binary file via the serial port and writes it into the external
NOR flash. However, while it was possible for the device to
boot this way a simple program we developed, there were
issues with getting it to boot the firewall program. This was

traced to an environment configuration of the IDE used, which
required a different linker description if the bare-metal were
stored in external flash. This problem is only partially resolved.

VI. RESULTS
The results of validating the firewall implemented are

presented. The firewall was also subjected to benchmarking to
provide a performance baseline.

A. Bare-metal program
The firewall bare-metal program was successfully

implemented in Keil �Vision 4.7 with ARM MDK-Lite, free
license with code and data size restriction of 32Kbytes. The
compiler produced a binary executable file. The size of the
compiled program is 8,492bytes, below the maximum
13Kbytes allowed by the firmware upgrade mechanism. The
firewall was verified to be up by observing for messages on the
debug serial port of the Matrix 514 device. Compared to the
Linux kernel OS (version 2.6) which has 4M SLOC, the bare-
metal firewall program has only around 9K SLOC.

B. MAC address learning
The MAC address learning functionality was tested with a

consumer-class router and a laptop computer. The firewall
bare-metal program was uploaded, and the MAC address
learning procedure was allowed to run. The procedure was
validated to be able to discover the devices’ MAC addresses.

C. Reconfiguration capability
Reconfigurability was achieved through the development of

a Windows-based application using Microsoft Visual Studio
2010 C#. The developed application provided an all-in-one tool
to upload the bare-metal program into the device, upload static
filter rules, and visually display data received on the serial port.

D. Static filter functionality
The functionality of the static filter was evaluated using
different test scenarios:

• Allow all traffic to bypass crypto box
• Allow some traffic to bypass crypto box
• Allow no traffic to bypass crypto box
The static filter was tested with direct connections to one

packet generator, and one packet sniffer, as shown in Fig. 10.

Fig 10 – Test setup for static filtering

The packet generator was placed on the trusted network
side, so that the stateful filter did not block any of the packets
from propagating towards the packet sniffer. The packet
generator was realised using a Raspberry Pi embedded Linux

57

computer executing Mausezahn, a network traffic generator.
This setup provided the flexibility of specifying the source and
destination IP addresses, and port numbers of the TCP
packets. The packet sniffer was realised using Wireshark.

The packet generator was configured to generate a burst of
TCP packets. The different static filter rules were then
configured into the firewall, and the packets received on the
packet sniffer is noted and consolidated in Table 1.

Table 1 – Summary of static filter test results

The test results showed that when no traffic is allowed to
bypass the crypto box, the packet sniffer does not receive any
packets from the generator. The test results also showed that it
was able to selectively pass packets when filtering criteria was
met, as well as allow all traffic to bypass the crypto box. The
pass thru cable was unconnected to help distinguish bypassed
and non-bypassed packets.

E. Stateful filter functionality
The functionality of the stateful filter was similarly evaluated
like the static filter test, using the following test scenarios:

• Access TCP port in untrusted network
• Access test computer’s TCP port from untrusted

network at cold state
• Access test computer’s TCP port from untrusted

network after initiating an outgoing connection
• Access test computer’s TCP port with a timed out entry

The stateful filter was tested with almost the same hardware
setup as in Figure 10, with pass thru cable connected. The
packet generator and sniffer was swapped, such that packets
were sent towards the trusted network. In addition to packet
sniffing, the test computer now performed packet generation
to insert entries in the stateful filter which allow traffic in from
the untrusted network. The packet generation was realised
using Ostinato, a packet generator software.

The static filter was configured to permit all traffic to
bypass the crypto box, so that this test was independent of
static filtering. The packet generator was configured to
generate the similar packet burst, as before. The stateful filter
was then subjected to four test scenarios, and the response of
these test scenarios were recorded and shown in Table 2.

The test results showed that the stateful filter was able to
block traffic which was not included in the active connections
list. The filter was able to append new established TCP
sessions into this list, which allowed previously blocked traffic
to now enter into the trusted network. Finally, the filter was
able to identify and remove inactive connections from the list,
in accordance to the proposed design.

Table 2 – Summary of stateful filter test results

F. Network performance
A network benchmark tool, LANBench is used to

determine the firewall performance in bare-metal and original
Artila Linux environments and results are consolidated in
Table 3. The small disparity in the results suggests that if DMA
and interrupts are implemented, the bare-metal case may even
produce performance superior to the OS-based environment.

Test case (speed in kbits/sec) Artila Linux Bare-metal
Max speed (operated as Ethernet bridge) 2,487 2,141

Average send speed 2,278 1,726
Average receive speed 2,316 1,583

Table 3 – Summary of firewall switching performance

VII. CONCLUSIONS
 The work aims at the development of a lightweight firewall
in bare-metal using an embedded Artila Matrix 514 ARM-
based computer. A cyclic executive scheduler was developed,
to overcome the lack of native concurrent processing support.
The behaviour and algorithms of the static filter, stateful filters,
and MAC address learning were developed.

 The functionality of the firewall was validated with a series
of test cases, targeting the different software modules. The tests
revealed a successful implementation of the firewall based on
the specification. The bare-metal program’s SLOC at 9K
compares very favourably with any Linux OS-based solution,
which would require at least 4M SLOC, representing a great
reduction in complexity and possible vulnerabilities in code.

 Possible future work include: setting up the JTAG interface
to enable better debugging, development of DMA and
interrupts, implementing more extensive firewall policies,
performance optimisation, and formal analysis of the design.

REFERENCES
[1] M. Gonçalves, Firewalls : a complete guide / Marcus Gonçalves: New
York : McGraw-Hill, c2000., 2000.

[2] J. F. Kurose and K. Ross, Computer Networking: A Top-Down Approach
Featuring the Internet, 5 ed.: Addison-Wesley Publishing Co., 2010.

[3] C. Douligeris, Network security: current status and future directions.
Hoboken, N.J: Wiley, 2007.

[4] M. G. Gouda and A. X. Liu, "A model of stateful firewalls and its
properties," in Dependable Systems and Networks, 2005. DSN 2005.
Proceedings. International Conference on, 2005, pp. 128-137.

[5] M. Frantzen, F. Kerschbaum, E. E. Schultz, and S. Fahmy, "A Framework
for Understanding Vulnerabilities in Firewalls Using a Dataflow Model of
Firewall Internals," Computers & Security, vol. 20, pp. 263-270, 5/1/ 2001.

[6]Artila, Artila Matrix 514 Data Sheet, http://www.artila.com/docs/Matrix-
514/ Matrix-514%20Data%20Sheet.

58

