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Abstract—This paper presents the design and robust schedul-
ing of nano-satellite (nanosat) swarm for synthetic aperture radar
(SAR) applications. Based on power budget and bandwidth limit
of nanosats, the nanosats’ form factor and swarm size are
chosen to ensure requirements on ground resolution and signal-to-
noise ratio. An energy-efficient and robust scheduling considering
stochastic failures is proposed using scenario optimization with
convexification. The effectiveness of our proposed scheduling
approach is verified with mathematical rigor as well as extensive
simulation results on a realistic SAR application using strip and
spot modes.

I. INTRODUCTION

With recent advancements in consumer electronics, the

ability to operate co-orbital nano-satellites (nanosats) in swarm

platforms in the same orbit to replace the more costly and

bulkier satellites opens new opportunities and challenges for

space industries [1]. As such, power budget and bandwidth

limit of nanosats must be carefully taken into account when

designing a nanosat swarm. In addition, energy efficiency and

reliability are highly essential scheduling objectives. Due to

restrictive on-board computational capability, given nanosat

specifications and mission details, it is essential for a nanosat

swarm to be properly designed and scheduled prior to launch.

This is opposite to the traditional synthetic aperture radar

(SAR) applications performed by large satellites, where a built-

in scheduler is able to receive the jobs submitted by users and

perform scheduling online [4]–[6].

To the best of our knowledge, design of a nanosat swarm has

only been proposed in [2], considering radar system design and

revisit times for nanosat constellation on different orbits. Dy-

namic scheduling has been recently proposed for cooperative

satellites. In particular, Pemberton and Greenwald identified

the need for dynamic scheduling of imaging satellites in the

presence of uncertain changes in the environment, desired

jobs, as well as the availability of resources [7]. Liao and

Yang formulated a satellite scheduling problem considering

stochastic weather conditions and proposed a solution using a

rolling horizon approach [8]. Wang et al. proposed a heuristic

dispatching rules for dynamic scheduling problem of Earth

observing satellites to deal with uncertain arrival of new

jobs [4]. A satellite mission scheduling problem was studied
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involving scheduling of jobs to be performed by a satellite in

which new job requests can arrive stochastically [5]. A two-

phase scheduling method is also proposed for the consideration

of emergency jobs in earth observing satellites scheduling [6].

To the best of our knowledge, energy-efficient and robust

scheduling of nanosat swarm considering stochastic failures

has not been considered in state-of-the-art literature. In ad-

dition, the scheduling approaches of existing works were

commonly proposed by a dispatching rule [4] and reschedul-

ing [8][5]. The former has no baseline schedule and jobs are

dispatched online based on a predefined criterion, the latter has

a baseline schedule to be revised multiple times online. These

approaches require online computation and are not suitable for

nanosats.

In this paper, design and robust scheduling of a swarm

of homogeneous nanosats is presented for SAR applications.

Based on power budget and bandwidth limit of nanosats, the

nanosats’ form factor and swarm size are properly chosen

to ensure minimum requirements on ground resolution and

signal-to-noise ratio (SNR). An energy-efficient and robust

scheduling approach considering stochastic failures is then

proposed using convex scenario optimization (CSO). The key

idea of CSO is to find a feasible solution to balance the

energy-optimal schedules from individual scenarios of nanosat

failures, in which occurrence probabilities of scenarios are

formulated using Weibull reliability analysis. Our proposed

CSO is applied to SAR applications in Singapore using strip

and spot modes. The effectiveness of our proposed CSO is ver-

ified with mathematical rigour as well as extensive simulation

results.

II. DESIGN OF NANOSAT SWARM BASED ON POWER

BUDGET AND BANDWIDTH LIMIT

In this section, design of a nanosat swarm for SAR ap-

plications is presented, which includes the following steps:

provision of specifications of nanosats, provision of mission

details, and proposal of nanosats’ form factor and swarm size.

A. Specifications of Nanosats

Nanosats are widely defined as artificial satellites with a wet

mass between 1 and 10 kg (2.2 and 22 lb). The most common

platform to build a nanosat is cubesat, which measures the
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satellites in units of 10×10×10 cm with a wet mass between 1

and 2 kg per cube.

Power supply of nanosats is provided by rechargeable

battery packs, which are tailored to fit in cubesat platforms.

10% of space of nanosats is assumed to carry battery packs.

For example, lithium polymer battery is one of the most

popular batteries used for cubesats with typical energy density

of 1.08 MJ/L. The power which can be supplied safely by

battery packs is restricted due to thermal issue in removing

the excess heat, e.g., maximum dissipating rate was reported

as 15 W for a 2U cubesat. In addition, it is assumed that

battery charge/discharge efficiency is 100% and self-discharge

rate is 0%.

Recharging of battery packs is commonly done using solar

panels. Different materials can be used for solar panels. One

approach is to use gallium arsenide thin film cells with energy

density of 40 W/m2 using multiple junction cells at high solar

concentrations [10].

Let pmax be the maximum power which can be supplied

to a nanosat. The power budget of nanosats can be planned

such that 60% of energy capacity is used for SAR operations

and 40% is used for other processes. SAR operations and

recharging of battery packs spend up to 5% and 45% of orbital

cycle under sunlight, respectively, while other processes are

carried out during 50% of orbital cycle in darkness.

Let f be the bandwidth of SAR. One of the common

antennas used in nanosats is the patch antenna. The satellite

must be facing the Earth during transmission. Two or more

antennas may be required, which can take up a significant

amount of space in the satellite’s surface. They also have lim-

ited bandwidth, compared to other types of antennas. Typical

value for antenna bandwidth of 3U cubesats is f = 30 MHz

and is assumed to be scalable by form factors [2].

B. Mission Details

SAR jobs are commonly excuted under three modes,

namely, strip, spot, and scan. Strip mode maintains a fixed

pointing direction of the radar antenna broadside to the plat-

form track. A strip map is formed in width by the swath of

the SAR and follows the length contour of nanosats’ ground

track. On the contrary, spot mode is used for obtaining high

resolution signals by steering the radar beam to keep the target

within the beam for a longer time and thus form a longer

synthetic aperture. Scan mode is omitted as it is too energy

consuming for implementation on nanosats.

For SAR applications in countries near Equator like Sin-

gapore, it is worth noting that they are usually covered by

the equatorial cloud bands. From month to month, a band of

clouds girdles the Equator. This band of persistent clouds is

called the intertropical convergence zone, the place where the

easterly trade winds in the northern and southern hemispheres

meet. Orbits with long revisit time have difficulty to see the

ground during their pass, since large percentage of the ground

is covered by cloud. As such, an equatorial low earth orbit

(LEO) is selected for a short revisit time of 90 minutes.

Mission details also provide user requirements on ground

resolution and SNR of SAR jobs. Ground resolution is defined

as the minimum distance on the ground at which two object

points can be imaged separately, while SNR is defined as the

ratio between radar transmitted power versus antenna thermal

noise.

C. Nanosat Swarm Design

Let us denote by R = {rj}Kj=1 and V = {vi}Qi=1 the

nanosat swarm and the set of mission jobs, respectively. The

required bandwidths of job vi at a desired ground resolution

under strip mode and spot mode are

fmin
i =

c

2ψi
, fmin

i =
c

2ψi sinαi
, (1)

respectively, where ψi denotes desired ground resolution of vi
and c is the speed of light. αi denotes steering angle of radar

beam of vi.
The required power of of vi at a desired ground resolution

and SNR is calculated by

pmin
i =

SNRi × (4π)
3
H2kFTaψi

G2λ2σ
, (2)

where SNRi represents the desired SNR of vi. k, Ta, and

H denote Boltzmann constant, antenna noise temperature, and

orbital altitude, respectively. G is antenna gain and λ expresses

radar beam wavelength. σ and F denote radar target cross

section and amplifier stage noise figure.

We assume additivity in bandwidth and power requirements

when using a nanosat swarm, i.e.,∑
rj∈R

pij ≥ pmin
i ,

∑
rj∈R

fj ≥ fmin
i , (3)

where pij and fj denote power of rj to perform vi and

bandwidth of rj , respectively. pij and fj can be obtained based

on nanosat specifications.

As the nanosat swarm must satisfy fmin
i and pmin

i for all

vi ∈ V , let us define the following:

pmin
max

Δ
= max

{
pmin
i

}Q

i=1
, fmin

max
Δ
= max

{
fmin
i

}Q

i=1
. (4)

The minimum swarm size Kmin is computed for each form

factor by

Kmin = argmin
k

(kpmax ≥ pmin
max ∧ kf ≥ fmin

max), (5)

where ∧ denotes logical conjunction.

III. ENERGY-EFFICIENT AND ROBUST SCHEDULING

CONSIDERING STOCHASTIC FAILURES

In this section, standard notations are used. R, R∗
+, and R+

are used to denote set of real numbers, set of nonnegative real

numbers, and set of strictly positive real numbers, respectively.

Z is used to denote set of integer numbers. N and N
∗ denote the

set of natural numbers and the set of non-zero natural numbers,

respectively. [a, b] is used to denote a range or interval defined

by {a ≤ x ≤ b}.
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TABLE I
NANOSAT SWARM DESIGN BASED ON BANDWIDTH AND POWER

REQUIREMENTS OF MISSION JOBS

Max bandwidth SNR Max power Min swarm size

(fmin
max) (pmin

max) (Kmin)
MHz dB W 1U 2U 3U 4U 5U

5 40 101.54 14 7 5 4 3
5 45 321.08 43 22 15 11 9

10 40 203.07 28 14 10 7 6
15 40 304.6 41 21 14 11 9
20 40 406.14 55 28 19 14 11
25 40 507.67 68 34 23 17 14
30 35 192.65 26 13 9 7 6
30 40 609.2 82 41 28 21 17
35 35 224.76 30 15 10 8 6
40 35 256.87 35 18 12 9 7
45 35 288.97 39 20 13 10 8
50 35 321.08 43 22 15 11 9

A. Problem Formulation

Given fmin
max and pmin

max, the mission manager first refers to

Table I for references on the nanosats’ form factor and Kmin.

Depending on the number of failures that the mission manager

wants the nanosat swarm to tolerate, the number of nanosats

K is determined by

K = Kmin +N, (6)

where N is the maximum number of failures under consider-

ation. In such a case, new orbit insertion must be carried out

before the occurrence of (N + 1)th failure, else the mission

will fail.

The mission manager’s next task is to plan the power

levels for nanosats according to N . While being designed

homogeneously, nanosats are subjected to a practical range

of variation in power consumption, denoted by [−ε%,+ε%],
because of the lumped and undecoupled errors throughout

many production phases.

pi and pn are used denote the nominal powers which the

mission manager sets for vi in the case of zero failure and

for all jobs in the case of n failures, respectively. The actual

realizations of pi and pn for rj are pij and pnj , respectively,

with variations defined by

pij ∈ [pi(1− ε%), pi(1 + ε%)] , (7)

pnj ∈ [pn (1− ε%) , pn (1 + ε%)] , (8)

where
{
pij , p

n
j

} ∈ R+, n ∈ N
+ and n ≤ N .

Let di ∈ R+ denote the processing time of vi and te ∈
R+ denote the end time of mission. Based on mission details,

di and te are known prior to launch. Decision variables are

denoted by xij . xij = 1 if rj is assigned to vi, else xij = 0.

B. Weibull Reliability Analysis

In general, reliability of a device can be defined by the

probability to execute its intended functions [12]. Reliability

of satellite components and systems are commonly modelled

by Weibull distribution. The reliability function of rj is then

given by

Rj (t) = e

(
−
(

t
αj

)β
)
, (9)

for t ≥ 0, and Rj(t) = 1 for t < 0, where β ∈ R+ is the

shape parameter and αj ∈ R+ is the scale parameter.
In state-of-the-art literature, several authors have recently

considered costs of usage of machines, i.e., a machine assigned

more workload degrades faster and incurs more costs. Analo-

gously, a dynamic Weibull reliability of rj is proposed herein

such that the costs of usage of nanosats are included. The usage

of rj is

sj =
∑
vi∈V

xij , (10)

and α is modified by αj(sj), where αj(·) is a strictly mono-

tonic decreasing function such that αj : N → R+. For

simplicity, αj(sj) is chosen by

αj (sj) =
δ1

sj + δ2
, (11)

where {δ1, δ2} ∈ R+. β, δ1, δ2 can be determined based on

offline testing or commercial failure database of satellites such

as SpaceTraks.

C. Scenario Optimization
A set of scenarios is constructed, each of which represents

a distinctive combination of failures. Let ω denote a scenario

and ΩR,n denotes a superset of n-combination sets of R.

For example, ΩR,2 = {{r1, r2} , {r1, r3} , {r2, r3}} for R =
{r1, r2, r3}. Let ω ⊂ Ω, where Ω denotes the set of possible

failure scenarios, then clearly

Ω =

N⋃
n=1

ΩR,n ∪ ω0, (12)

where ω0 denote the scenario of zero failure. Obviously, N ≤
K.

Let us introduce an additional decision variable γ ∈ R and

0 ≤ γ ≤ 1 to denote the worst reliability of all nanosats

during the mission. Let πω denote the occurrence probability

of scenario ω, then πω is

πω =

{
γK−n(1− γ)n ∀ω ⊂ ΩR,n,

γK ω = ω0.
(13)

Thus, our proposed SO problem is

Min g (xij ; γ) = Ξ + Θ (14)

s.t., Rj (t
e; sj) > γ, ∀rj ∈ R, (15)∑

rj∈R\ω
xijfj ≥ fmin

i , ∀vi ∈ V, ∀ω ⊂ Ω, (16)

∑
rj∈R

xijpij ≥ pmin
i , ∀vi ∈ V, (17)

∑
rj∈R\ω

xijp
n
j ≥ pmin

i , ∀vi ∈ V, ∀ω ⊂ ΩR,n, ∀n, (18)

0 ≤ γ ≤ 1, xij ∈ {0, 1} . (19)
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g (xij ; γ) consists of two costs, namely, the energy cost of

scenario ω0

Ξ =
∑
vi∈V

∑
rj∈R

πω0xijpijdi, (20)

and the energy cost of other scenarios

Θ =

N∑
n=1

∑
ω⊂ΩR,n

∑
vi∈V

∑
rj∈R\ω

πωxijp
n
j di. (21)

(15) indicates worst reliability of all nanosats throughout the

mission. (16) specifies the minimum bandwidth requirements,

while (17) and (18) indicate the minimum power requirements.

Finally, the bounds of decision variables are given in (19).

D. Convexity and Convexification

SO problem includes two nonlinear terms, namely,

g (xij ; γ) and Rj (t
e; sj). While it is straightforward to show

that Rj (t
e; sj) is convex, the convexity of g (xij ; γ) requires

further analysis. We have the following result.

Theorem 1: g (xij ; γ) is non-convex on R
Q+1
+ for any

{K,Q,N} ∈ N.

To convexify g (xij ; γ), the following results are needed [11]:

Lemma 1: ρer1x1+r1x2+...+rnxn is convex on R
n if ρ > 0

and r ∈ R
n.

Lemma 2: ρxpyq is convex on R
2
+ if ρ < 0 and p+ q ≤ 1.

f (xij ; γ) is non-convex as it contains some products of

decision variables in the form ργnx (the subscripts of xij

is dropped for brevity), where ρ ∈ R. First, γ can be

approximated by a set of discrete values {γk}Mk=1, γk ∈ R

and 0 ≤ γk ≤ 1, such that

γ =
M∑
k=1

ξiγk and

M∑
k=1

ξk = 1. (22)

x can be represented by {x1, x2} = {0, 1}, such that

x = ζ1x1+ζ2x2 and ζ1+ζ2 = 1. (23)

If ρ > 0, then ργnx is convexified by introducing additional

variables X and Γ such that

x = eX and γ = eΓ, (24)

then the following equivalent convex representation is obtained

Min ργnx (25)

⇔ Min ρenΓ+X (26)

s.t., Γ =

M∑
k=1

ξk ln (γk), (27)

M∑
k=1

ξk = 1, (28)

X = ζ1 ln (x1)+ζ2 ln (x2) , (29)

ζ1+ζ2 = 1, (30)

{ξk, ζk} ∈ {0, 1} . (31)

If ρ < 0, then ργnx is convexified by introducing additional

variables X and Γ such that

x = X
1

1+n and γ = Γ
1

1+n , (32)

then the following equivalent convex representation is obtained

Min ργnx (33)

⇔ Min ρΓ
n

1+nX
1

1+n (34)

s.t., Γ =
M∑
k=1

ξkγ
1+n
k , (35)

M∑
k=1

ξk = 1, (36)

X = ζ1x
1+n
1 +ζ2x

1+n
2 , (37)

ζ1+ζ2 = 1, (38)

{ξk, ζk} ∈ {0, 1} . (39)

CSO problem can be solved by convex optimization which

is widely available in commercial solvers. The cutting-plane

algorithm is used herein.

IV. SIMULATION RESULTS

Simulations are carried out to verify the feasibility of our

proposed CSO. For evaluation, CSO are compared to two gen-

eral rescheduling algorithms, namely, partial rescheduling (PR)

and complete or full rescheduling (CR) [13]. The basic idea

of CR is to prepare an baseline schedule without anticipation

of failures. Once a failure happens, the existing schedule will

be revised online. While having the same baseline schedule,

PR revises schedules online to minimize schedule instability

instead of scheduling objectives of baseline schedule.

A. Singapore SAR Application

A SAR application in Singapore is selected for simulations.

The mission is to taking M consecutive SAR signals of three

specific locations using both strip and spot modes. In particular,

the set of mission jobs includes taking M strip signals from

east to west of Singapore, M spot signals of Kent Ridge

campus, National University of Singapore (NUS), and M spot

signals of Singapore Changi international airport.

As Singapore locates just 1◦ north of the Equator which is

usually covered by the equatorial cloud bands, an Equatorial

LEO is chosen with H = 700 km, inclination angle ≈ 0◦,

and revisit time ≈ 90 min. Based on revisit time and areas of

target locations, processing times of jobs can be calculated by

di = 9, 27, 29 s for vi ∈ V1, V2, V3, respectively.

pmin
i = 30 MHz ∀vi ∈ V . SNRi = 30, 35 dB for vi ∈ V2 ∪

V3 and vi ∈ V1, respectively. As such, pmin
max = 30 and pmin

max =
192.65 accordingly. Based to Table I, the mission manager has

different options to build the nanosat swarm. Let the nanosats’

form factor be chosen as 3U, as such Kmin = 9. Let N ∈ [1, 5]
and ε ∈ {±7.5,±2.5}. Table II details the power levels of

nanosats. pij and pnj are generated using uniform distribution.

With regard to Weibull reliability, β = 1.5, δ1 = 2.06 × 106,

and δ2 = 100.
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TABLE II
POWER LEVELS OF NANOSATS FOR SIMULATION CASES

N K pi
+ pi

++ p1 p2 p3 p4 p5

1 10 6.09 19.26 21.40 – – – –
2 11 5.53 17.51 19.26 21.40 – – –
3 12 5.07 16.05 17.51 19.26 21.40 – –
4 13 4.68 14.81 16.05 17.51 19.26 21.40 –
5 14 4.35 13.76 14.81 16.05 17.51 19.26 21.40

+
vi∈V2∪V3

++
vi∈V1

B. Performance Metrics

The performance metrics used to evaluate CSO, CR, and

PR are mean total energy consumption (MTEC), mean time

to mission failure (MTMF), and mean time between failure

(MTBF). The temporal instants of failures are obtained by

sampling Rj (t; sj).
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Fig. 1. MTEC at ε = 7.5.

MTEC is computed by assuming that all scheduling algo-

rithms are able to finish the mission, i.e., only N failures occur.

Q is varied by Q ∈ [1000, 5000]. Missions containing 1000

and 5000 jobs last for 125 and 625 days, respectively. On

the contrary, Q = 5000 is fixed when computing MTMF and

MTBF so that the mission is sufficient long for N +1 failures

to occur. MTMF is defined as the mean time from stating of

the mission to the (N+1)th failure instant. MTBF is the mean

time from nth to (n+ 1)th failure instants, where n ≤ N − 1.

C. Results and Discussions

This computational test is carried on MATLAB. For each

simulation case, three performance metrics are obtained after

100 test runs.

Figs. 1 and 2 illustrate the performance of all algorithms

in terms of MTEC. It is observed that MTEC increases for all

algorithm with the increase of Q. For all cases, CSO achieves

comparable performance with PR, while CR yields the lowest

MTEC. This result can be attributed to the fact that CR scarifies
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Fig. 2. MTEC at ε = 2.5.
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Fig. 3. MTMF at ε = 7.5.
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Fig. 4. MTMF at ε = 2.5.
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Fig. 6. MTBF at ε = 2.5.

both computational effort and schedule stability for MTEC. It

also can be seen that the gap in MTEC between CSO and

CR is reduced when ε gets smaller. As such, the performance

of CSO in terms of MTEC can be significantly improved by

careful design and manufacture of nanosats.

Figs. 3 and 4 show the performance of all algorithms in

terms of MTMF. MTMF is an important measure mission

reliability which basically specifies a deadline for a new orbit

insertion to ensure the mission to be completed. It can be seen

that CSO yields significantly longer MTMF as compared to

CR and PR for all values of ε. The reason is that CR and PR

tend to overuse and therefore degrade the most energy-efficient

nanosats first. On the contrary, CSO balances utilization among

nanosats to guarantee that all nanosats operate in a safe region

above γ reliability threshold. The mission is hence scheduled

such that all nanosats degrade gradually and simultaneously.

In addition to MTMF, MTBF is also of importance for

the mission of a nanosat swarm. A shorter MTBF allows

multiple nanosats to be replaced at the same time with fewer

orbit insertions, which cuts costs. Figs. 5 and 6 give the

performance of all algorithms in terms of MTBF, where CSO

yields significantly shorter MTMF as compared to CR and PR

for all values of ε. It is worth noting that all failures using CSO

occur toward the end of mission, while failures using CR and

PR tend to occur in the middle of mission.

V. CONCLUSION

In this paper, design and robust scheduling of a nanosat

swarm for SAR applications were studied. Design of nanosat

swarm was first proposed based on power budget and band-

width limit to ensure requirements on ground resolution

and SNR. Energy-efficient and robust scheduling considering

stochastic failures was proposed using CSO. The effectiveness

of our proposed CSO was verified with mathematical rigor

as well as a realistic SAR application in Singapore using

both strip and spot modes. Our extensive simulation results

showed that CSO achieved acceptable MTEC but while yielded

significant improvements in MTMF and MTBF as compared

to related works in current literature. Our future works include

formation control and path-planning for a nanosat swarm using

multi-agent and graph theory.
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