
Leakage and Performance Aware Resource Management
for 2D Dynamically Reconfigurable FPGA Architectures

Siqi Wang, Nam Khanh Pham, Amit Kumar Singh, Akash Kumar
Department of Electrical and Computer Engineering, National University of Singapore, Singapore

{a0077818,phamnamkhanh,amit.singh,akash}@nus.edu.sg

Abstract—The variety of applications for field programmable
gate arrays (FPGAs) is continuously growing, thus it is important
to address power consumption issues during the operation. As
technological node shrinks, leakage power becomes increasingly
critical in overall power consumption of FPGA. The technique
of configuration pre-fetching (loads configurations as soon as
possible) adopted to achieve high performance is one of the major
reasons of leakage waste since regions containing reconfiguration
information cannot be powered down in between the time gap of
reconfiguration and execution. In this work, we present a heuristic
approach to minimize the leakage power consumption for two-
dimensional reconfigurable FPGA architectures. The heuristic
scheduler is based on list scheduling and exploits dynamic priority
for sorting the tasks into schedule order and a cost function for
cell allocation. Farthest placement scheme is adopted for anti-
fragmentation purpose. The cost function provides control to
compromise between leakage dissipation and schedule length.

I. INTRODUCTION

Field programmable gate arrays (FPGAs) are increasingly
used in current technologies. They are popular choices for
digital circuits implementation because of their short design
cycle, fast speed, and low cost compared to the traditional
application specific integrated circuit (ASIC). The run time
partial reconfigurable FPGA architecture provides even greater
flexibility. Extensive studies have been done for performance
improvements of FPGAs. Task execution time and power
consumption are popularly discussed topics [1], [2].

The leakage power of transistor does not contribute func-
tionally in the operation of FPGA. It is primarily the result
of unwanted sub-threshold current in transistor channel. As
technology advances to shrink the feature size, leakage power
becomes more and more critical in the overall power consump-
tion of FPGAs. In the recent generation of 65nm, 40nm, and
28nm FPGAs, leakage power consumption constitutes around
50% of the overall power consumption [3]. The introduction
of high-threshold voltage sleep transistors enables FPGA to be
power gated when not in use to manage active leakage power
[4]. The technique that divides FPGA into smaller portions and
uses sleep transistors to power gate the region has reduced the
leakage power consumption significantly [5].

In addition, for run-time reconfigurable FPGAs, configu-
ration pre-fetching is a well-established approach to hide the
reconfiguration time in order to reduce the overall execution
time. However, due to the involved task dependencies, tasks
can only execute after its predecessors have finished executions.
This often introduces a time gap between end of configuration
and start of execution, as shown in Figure 1, which results in
significant leakage waste. The region containing configuration
bits cannot be power gated during this time gap since it needs to
preserve the configuration. Therefore, reducing leakage waste
in such scenarios is critical and highly desired.

The ability to reconfigure and power-gate (turn-off) part
of the FPGA devices brings two types of architecture: one

Figure 1: Leakage power. (R: Reconfiguration, E: Execution)

Figure 2: FPGA architecture and application model

dimensional reconfigurable and two dimensional reconfigurable
architectures, as shown in Figure 2. The shaded area represents
the task placement on FPGA . For 1D architecture, the
configurable logic blocks (CLBs) are partitioned in forms
of columns. Tasks are placed on predefined columns and
span the whole column. One column is therefore called one
Reconfigurable Unit (RU). The sleep transistors gate the
power of the predefined column (RU) to power off when
not in use. Recent technologies enable architectures with
dynamically controlled power gating capabilities, by which
logic clusters can be selectively powered-down at run time [6].
Task placements are therefore not constrained in one dimension.
Such architectures allow RUs to be of any combinations of
CLBs and are called 2D reconfigurable architectures. Two
dimensional architecture is more flexible and can save more
space and energy when compared to column-by-column one-
dimensional reconfigurable architectures. The minimizations of
the leakage waste are studied at different levels. In this work,
we focus on the system level solution. In order to reduce the
leakage power consumption, we optimize the schedule such that
the reconfiguration is placed as close as possible to the execution
in time in order to minimize the standby period of the RUs.
We propose list based heuristic scheduling for 2D architectures
(LBHS2D) to address the leakage minimization problem for 2D
architectures. The LBHS2D adopts list scheduling skeleton. It
implements dynamic priority scheme for task sorting, and cost
function with farthest placement scheme for task placement.

The rest of the paper is organized as follows: Related
works are reviewed and discussed in Section II, followed by
the problem definition in section III. The proposed LBHS2D
approach is discussed in Section IV. Experiments and results
are discussed in Section V, and a conclusion in Section VI.

II. RELATED WORKS

The scheduling problem on 1D reconfigurable architectures
is proven to be an NP-complete problem. Therefore, most of
the research works aim at developing heuristic approaches. In
[7], an efficient technique to schedule real-life applications on



FPGA is proposed, but partial reconfiguration and resource
constraint has not been considered. In [2], the authors proposed
a two stage approach, in which a schedule is first generated by
a performance driven task scheduler, and then refined to reduce
the leakage power without compromising the performance.
Hsieh et al. [8] proposed an enhanced leakage-aware scheduling
algorithm (ELAA) that comprises of three stages of binding the
reconfiguration and execution of the task together, assigning
each task block a priority, and finally placing with a split
aware placer which splits the reconfiguration and execution
only when the schedule cannot meet the deadline. Another
work proposed in [9] considers a three stage leakage aware
approach which exploits a list based scheduling and a post
placement step to do the final refining without extension in
the scheduled length. However, as aforementioned methods
are designed for 1D reconfigurable architectures, applying
them in 2D reconfigurable context will require extensive extra
considerations due to different reconfiguration behavior.

For scheduling on two-dimensional reconfigurable archi-
tectures, heuristic approaches are proposed by researchers to
consider improvement in execution time and anti-fragmentation.
To the best of our knowledge, none of the prior works focus on
leakage power reduction of 2D reconfigurable architecture.
Septién et al. [10] proposed a de-fragmentation heuristic
approach for 2D architectures which estimates the fragmentation
status of FPGA and makes decisions that are effective for
de-fragmentation purposes. However, the approach works on
incoming tasks which no precedence is presented, and leakage
power dissipation is not considered during the placement.
Redaelli et al. [11] proposed a heuristic approach called
Napoleon which adopts furthest placement and limited de-
configuration scheme for anti-fragmentation purpose. Limited
de-configuration suggests that all modules are left on the FPGA
until other tasks require the space to maximize the chance of
module reuse. However, the module reuse technique introduced
is not preferable in terms of leakage consideration.

III. PROBLEM DEFINITION

The targeted architecture is the two-dimensional (2D)
reconfigurable FPGA, as shown in Figure 2 (b). Dynamic partial
reconfiguration is supported during run time. The reconfigurable
unit can be defined as any combination of CLBs. A task can be
deployed on blocks of adjacent RUs. The reconfiguration time
required for a task is proportional to the number of required RUs.
The reconfigurations are managed by only one configuration
controller, which results in only one task reconfiguration at a
particular moment of time. For such architecture, it is assumed
that unused RUs can be totally powered off by the sleep
transistors integrated in the device, and each RU can be
independently controlled by sleep transistors [6].

Directed acyclic graph (DAG) is used to represent the
tasks of an application. An example of the task graph model
is shown in Figure 2 (c). In the DAG, each node represents a
task, and an edge indicates the dependency between tasks. The
DAG is represented as < S, p >, with S being the set of all the
tasks and p being the set of dependencies between tasks. Each
task in task graph is characterized by 3 parameters (li, ci, ri):

• li : Latency (execution time) of task i;
• ci : Number of RU columns required for task i;
• ri : Number of RU rows required for task i.

The reconfiguration time of task is proportional to the area
of the task occupied, which is ci × ri. The reconfiguration

part is mostly dependent on the architectural constraints of
only one reconfigurator, while scheduling of execution part
depends on the task dependencies. In the scheduling, the
communication overhead between tasks is ignored due to two
reasons: firstly, tasks on FPGA communicate with each other
through a shared memory with equal latency and cost; secondly,
the communication overhead is negligible in comparison to
reconfiguration and execution time of the tasks.

Scheduling Problem: The problem targeted in this paper
considers following set of input, constraints and objective.

• Input: The application task graph, FPGA architecture
(number of RU columns and RU rows).

• Constraints: Task dependencies, 1 reconfigurator.
• Objective: Minimize leakage power dissipation, minimize

schedule length.

IV. LIST BASED HEURISTIC SCHEDULING

List scheduling is one of the fundamental methods that has
been widely adopted by researchers because of its simplicity
and efficiency. List scheduling in the simplest form contains
two stages of operation. In the first stage, it sorts the tasks to
be scheduled according to a priority scheme and makes sure
that precedence constraints are respected. In the second stage,
each task of the list is successively scheduled to a processor
block chosen for the task. Algorithm that applies list scheduling
technique has the freedom to define the two criteria: the priority
scheme for sorting the task and the choice criterion for the
processor block, which in FPGA context, is the placement
position on FPGA.

The heuristic approach proposed in this work is based on
list scheduling skeleton. It includes a leakage aware priority
dispatcher in the sorting stage. The placement stage depends
on a cost function based on leakage waste and execution time,
and farthest placement scheme. The algorithm of the heuristic
approach is presented in Algorithm 1.

In the operation of scheduling, tasks in the task graph
will be selectively put into two sets: readyNodeList, which
contains all the tasks to be scheduled, and scheduledNodeList,
which contains the tasks that have been scheduled. A leakage
aware priority dispatcher calculates the priority of tasks in the
readyNodeList set according to Equation 1. The task with the
largest priority is then selected for placement. The placement
of the task is decided using Algorithm 2. After the placement,
the task is removed from readyNodeList, and added into
scheduledNodeList. The child tasks of this task are then
added into readyNodeList for next round of schedule.

A. Priority Scheme
A leakage aware priority function is used in the scheduling

stage to choose the next task to be placed on the FPGA
from the readyNodeList set. The priority of each task in
the readyNodeList set is calculated. The dynamic priority
scheme used here ensures that the scheduling process can adapt
with the partial schedule of the task graph as well as the current
usage of the FPGA. The priority function is defined as follows.

F = αBL− βLK− γEEST (1)

where LK is defined as:

LK = C× R× (EEST − (ERST + RT)) (2)

The terms in the formula are defined as follow:
BL : bottom level of the task, represents the length of the

2



Algorithm 1: LBHS2D Algorithm

Input: Task graph < S, p >
Output: Leakage aware schedule

1 Put source tasks (tasks with no predecessors)
{ti ∈ S : parent(ti) = 0} into set readyNodeListreadyNodeListreadyNodeList;

2 while readyNodeListreadyNodeListreadyNodeList �= ∅ do
3 Calculate priority of tasks in readyNodeListreadyNodeListreadyNodeList (by

Equation 1);
4 Choose the task t with maximum priority;
5 Choose the best cell (c, r) for task t (by Algorithm 2);
6 if Child tasks of t are not already added to

readyNodeListreadyNodeListreadyNodeList then
7 Add the child tasks to readyNodeListreadyNodeListreadyNodeList;
8 end
9 Remove task t from readyNodeListreadyNodeListreadyNodeList;

10 Add task t to scheduledNodeListscheduledNodeListscheduledNodeList;
11 end

longest path in the task graph from this task to the exit task;
LK : leakage waste caused by scheduling the task.
C : number of columns required by the task;
R : number of rows required by the task;
EEST : earliest execution start time of the task;
ERST : earliest reconfiguration start time of the task;
RT : the reconfiguration time of the task, which is proportional
to C× R;
The metrics to be considered in deciding which task to be
scheduled next are the overall execution time and the leakage
power consumption. Therefore here we include the following:

• Bottom level (BL): to schedule the tasks with more
descendants first.

• Leakage power (LK): not to schedule the tasks those have
more leakage power in current FPGA condition.

• Earliest execution time (EEST ): to schedule the tasks that
can start early first.

α,β, γ are the coefficient that are adjustable for better schedule
results for different parallelism of task graphs.

B. Farthest Placement Placer

The algorithm to find the best RUs for a task is presented
in Algorithm 2. To find the best cell, the placer checks all the
RUs and choose the cell (c, r) proving least cost K, which is
computed as follows.

K = a× LK+ (1− a)× EEST (3)

where LK represents leakage power, EEST represents the earliest
execution starting time for the task to be placed on the block
of cells. a is a coefficient to compromise between amount of
leakage power and scheduled length which can be set to any
value between 0 and 1. Large value of a will result in more
concentration of leakage power minimization in the scheduling,
while a small value of a will concentrate more on the scheduled
length optimization. This parameter gives designer flexibility to
compromise between leakage power dissipation and scheduled
length.

The algorithm checks all the blocks of the task size and find
the block with the least cost K. If more blocks are available
with the same least cost, the algorithm chooses the block that
is nearer to the boundary of the FPGA. This farthest placement
criterion is the anti-fragmentation technique used to facilitate
better future placements such as easier fitting of larger tasks
into the middle part of FPGA.

Algorithm 2: Best Placement Cell Search Algorithm

Input: FPGA, task t
Output: Best placement cell (c, r)

1 for each cell: ci ∈ C, ri ∈ R do
2 Put task t on the block begin with (c, r);
3 Calculate the cost cost new for task t on the block;
4 if cost new > cost min then
5 Update minimum cost value cost min;
6 Update best placement cell (c, r);
7 end
8 if cost new = cost min then
9 Check the distance of the cells (c, r) to the boundary

of FPGA;
10 if new cell (c, r) is nearer to the boundary than old

cell then
11 Update best placement cell (c, r);
12 end
13 end
14 end

V. EXPERIMENTS AND RESULTS

A series of task graphs are generated and scheduled by
our proposed approaches in order to evaluate the quality of
obtained results. The approaches are compared with existing
performance driven scheduler (PDA) proposed in [1], Enhanced
Leakage Aware Algorithm (ELAA) proposed in [8], and the
Napoleon (NAP) heuristic proposed in [11]. The experiments
are designed to test the performance of the scheduler; therefore
no hard deadline is specified in the experimental settings.

PDA [1] algorithm considers only the scheduled length,
while ELAA [8] makes sure the minimum leakage dissipation
when meeting the deadline constraints. Since no deadlines
are specified in the context, ELAA will always return zero
leakage dissipation. The parameter a in Equation 3 is set to
different values in the experiments to explore the trade-offs
between scheduled length and leakage power dissipation. NAP
algorithm proposed in [11] exploits limited de-configuration
method which introduces large amount of leakage dissipation.
Therefore the implementation of the algorithm omits the limited
de-configuration scheme for fair comparison.

The algorithms are implemented in Java language, and the
experiments are performed on an Intel Core i5 2.30 GHz CPU
with 4GB RAM. A series of synthetic task graphs are generated
by the TGFF tool [12]. 5 sets of task graphs with 10 task graphs
in each set are generated. The number of tasks in a task graph
in each sets is 10, 20, 30, 40 and 50. The tasks have li in range
of 15± 10 time units, ci in range of 4± 3 cells and ri in range
of 3±2 cells. In order to see the effectiveness of approaches to
real-life applications, task graphs of JPEG encoder [1], MPEG4
decoder [13] and MP3 decoder [14] are also considered with
their specifications provided in respective references.

The comparison of different approaches are mainly based on
the overall scheduled length and the leakage power dissipation.
The scheduled length is measured in time units, and the leakage
dissipation is measured in energy units. One energy unit is
defined as the leakage power dissipation of 1 cell (RU) during
1 time unit. The leakage power of the task is calculated as
defined in equation 2. The overall leakage power of a task
graph is the sum of all individual tasks. The leakage power of
the task set is the average of all the task graphs in the set.

3



(a) Schedule Length (b) Leakage Waste

0
100
200
300
400
500

10 20 30 40 50

Sc
he

du
le
d�
Le
ng
th
�

(T
im

e�
U
ni
t)

Number�of�Tasks�in�Task�Graphs

PDA LBHS2D ELAA NAP

1

10

100

1000

10 20 30 40 50Le
ak
ag
e�
Di
ss
ip
at
io
n�

(E
ne

rg
y�
U
ni
t�l
og
�sc

al
e)

Number�of�Tasks�in�Task�Graphs

PDA LBHS2D ELAA NAP

Figure 3: Scheduled length and leakage dissipation comparison

PDA
a�=�0.1

a�=�0.3

a�=�0.7
a�=�0.9 ELAA0

20
40
60
80

100
120
140

260 270 280 290 300 310 320

Le
al
ag
e�
Di
ss
ip
at
io
n�

(E
ne

rg
y�
U
ni
t)

Scheduled�Length�(Time�Unit)

Figure 4: Leakage dissipation and scheduled length trade-offs

A. Schedule Length and Leakage Dissipation

Figure 3 (a) shows schedule length for application sets for an
FPGA having 10 row and 10 columns of RUs. It can be observed
that as the number of tasks in the task graph increases, the
overall scheduled length increases. Further, LBHS2D provides
scheduled length in between best performance scheduler (PDA)
and best leakage scheduler (ELAA). Figure 3 (b) shows
corresponding leakage results. It can be observed that LBHS2D
reduces the leakage waste significantly compared to PDA. On
an average, LBHS2D reduces leakage waste by 33.72% when
compared to PDA.

B. Leakage Dissipation and Scheduled Length Trade-offs

The parameter a in Equation 3 gives the designers flexibility
to control over the scheduled length and leakage power
dissipation. Figure 4 shows the results of LBHS2D for different
values of a, and existing approaches PDA and ELAA. The
results shown are for task graphs of 30 tasks on an FPGA of
size 10× 10. The figure shows the experimental Pareto-front,
which indicates that designers can choose different values of a
to achieve different objectives. Additionally, it can be observed
that when parameter a approaches 0.9, the LBHS2D algorithm
can achieve zero leakage power dissipation with scheduled
length shorter than ELAA. Similar behavior has been observed
for other application sets.

C. Real-life Applications Case Study

Table I shows schedule length and leakage dissipation results
for real-life applications JPEG encoder, MPEG4 decoder and
MP3 decoder when different approaches are employed. The
shown results are for an FPGA size of 6×6. The parameter a is
set to 0.5 in our LBHS2D approach. It can be observed from the
table ELAA always provides results with no leakage dissipation,
but at the cost of higher schedule length. The LBHS2D provides
a good compromise between schedule length and leakage,
and low leakage in most of the cases. Therefore, based on
the requirements to trade between leakage and performance,
one can employ LBHS2D to achieve good values for leakage
dissipation and schedule length.

VI. CONCLUSION

In this work, we presented a heuristic approach to tackle the
leakage power minimization problem on two dimensional re-
configurable FPGAs. The proposed LBHS2D approach includes

Application Performance PDA LBHS2D ELAA NAP
JPEG Scheduled Length 23 22 25 28

Leakage dissipation 3 2 0 16
MPEG4 Scheduled Length 37 47 47 45

Leakage dissipation 25 0 0 37
MP3 Scheduled Length 44 53 53 59

Leakage dissipation 30 1 0 40

Table I: Leakage waste and scheduled length for real-life applications

a leakage aware priority function at the scheduling stage and
cost function with farthest placement scheme at the placement
stage. The experimental results indicate effectiveness of the
proposed approach. We can also see from the results that further
improvement of the approaches is possible. In the future, we
plan to explore on post placement adjustment of the approach
to further reduce the leakage power consumption by taking
fixed schedule length.

REFERENCES

[1] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Physically-aware hw-
sw partitioning for reconfigurable architectures with partial dynamic
reconfiguration,” in Proceedings of Design Automation Conference
(DAC), 2005, pp. 335–340.

[2] P.-H. Yuh, C.-L. Yang, C.-F. Li, and C.-H. Lin, “Leakage-aware task
scheduling for partially dynamically reconfigurable FPGAs,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 14, no. 4, p. 52, 2009.

[3] A. Nafkha, J. Palicot, P. Leray, and Y. Louët, “Leakage power
consumption in fpgas: thermal analysis,” in Wireless Communication
Systems (ISWCS), 2012 International Symposium on. IEEE, 2012, pp.
606–610.

[4] J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, and
V. De, “Dynamic sleep transistor and body bias for active leakage
power control of microprocessors,” IEEE Journal of Solid-State Circuits,
vol. 38, no. 11, pp. 1838–1845, 2003.

[5] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin,
and T. Tuan, “Reducing leakage energy in FPGAs using region-
constrained placement,” in Proceedings of International Symposium
on Field Programmable Gate Arrays (FPGA), 2004, pp. 51–58.

[6] A. A. Bsoul and S. J. Wilton, “An FPGA architecture supporting dynam-
ically controlled power gating,” in Proceedings of Field-Programmable
Technology (FPT), 2010, pp. 1–8.

[7] A. K. Singh, A. Kumar, T. Srikanthan, and Y. Ha, “Mapping real-life
applications on run-time reconfigurable NoC-based MPSoC on FPGA,”
in Proceedings of Field-Programmable Technology (FPT), 2010, pp.
365–368.

[8] J.-W. Hsieh, Y.-H. Chang, and W.-L. Lee, “An enhanced leakage-aware
scheduler for dynamically reconfigurable FPGAs,” in Proceedings of
Asia and South Pacific Design Automation Conference (ASP-DAC), 2011,
pp. 661–667.

[9] N. K. Pham, A. K. Singh, and A. Kumar, “A Multi-stage Leakage Aware
Resource Management Technique for Reconfigurable Architectures,” in
Proceedings of Great Lakes Symposium on VLSI (GLSVLSI), 2014, pp.
63–68.

[10] J. Septién, H. Mecha, D. Mozos, and J. Tabero, “2d defragmentation
heuristics for hardware multitasking on reconfigurable devices,” in
International Parallel and Distributed Processing Symposium (IPDPS),
2006, pp. 7–pp.

[11] F. Redaelli, M. D. Santambrogio, and S. O. Memik, “An ILP formulation
for the task graph scheduling problem tailored to bi-dimensional
reconfigurable architectures,” International Journal of Reconfigurable
Computing, vol. 2009, p. 7, 2009.

[12] R. P. Dick, D. L. Rhodes, and W. Wolf, “Tgff: task graphs for free,” in
Proceedings of Hardware/software codesign, 1998, pp. 97–101.

[13] P. Kumar and L. Thiele, “Thermally optimal stop-go scheduling of task
graphs with real-time constraints,” in Proceedings of Asia and South
Pacific Design Automation Conference (ASP-DAC), 2011, pp. 123–128.

[14] J. Cong and K. Gururaj, “Energy efficient multiprocessor task scheduling
under input-dependent variation,” in Proceedings of Design, Automation
and Test in Europe (DATE), 2009, pp. 411–416.

4


