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Abstract—Scrubbing has been considered as an effective mech-
anism to provide fault-tolerance in Static-RAM (SRAM)-based
Field Programmable Gate Arrays (FPGAs). However, the current
scrubbing techniques execute without considering the criticality
and timing of the user tasks implemented in the FPGA. They
often do not execute the scrubbing process in the right instant,
which minimizes the probability of each task being executed
without transient faults. Moreover, these current solutions are
not adapted to the tasks’ fault-tolerance requirements, since they
may not properly protect the most critical tasks in the system.
However, if they do it, they waste resources with the less critical
tasks. In this paper, a new scrubbing mechanism is proposed.
This new approach adapts the scrubbing mechanism to the tasks’
execution, by a proper scheduling and according to their criti-
cality. A proposed heuristic finds a feasible scrubbing schedule
for each hardware task. Firstly, the minimum scrubbing periods
are computed according to the criticality of each implemented
hardware task. Secondly, a proper scrubbing schedule following
the EDL (Earliest Deadline as Late as possible) algorithm is
found, maximizing the reliability of the system. The experimental
results show up to 79% improvements on the system reliability,
achieved without wasting scrubbing resources.

I. INTRODUCTION

Nano-satellites have been gaining significant importance
in space missions, since traditional satellites are expensive to
launch. They have a lighter weight, usually under ten kilograms
and a smaller size. This enables the use of smaller and more
efficient launch vehicles, thereby reducing the launch costs.
Nano-satellites have empowered smaller countries and research
institutes to explore and obtain data from space, leading to
a reduction in the development and production costs. For
instance, the use of Commercial off-the-shelf (COTS) devices
and associated tools allow a faster development and a lower
price due to the economy of scale.

Following this trend, COTS Static-RAM (SRAM)-based to
Field Programmable Gate Arrays (FPGAs) have been signifi-
cantly used in space environments, since they present a higher
operational capacity and performance, as well as reconfiguring
and reprogramming capabilities. In particular, reconfiguring
and reprogramming properties are obviously very useful after
the devices have been launched into space. However, in space,
FPGAs are commonly affected by charged particles that strike
the silicon substrate. These events called Single Event Upsets
(SEUs) can inadvertently change the device outputs and cor-
rupt the function results. Hardened FPGAs are one way to mit-
igate this problem, but they are very expensive. Due to the high
price, several fault-tolerance mechanisms have been developed
in order to increase the reliability of SRAM-based FPGAs.
Scrubbing is one of these mechanisms that take advantage of
the FPGA reconfiguration capability. Scrubbing mechanisms
periodically verify the FPGA configuration memory for faults.
When a fault is detected, they correct it using the original data,
stored in an external memory.
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Fig. 1. Motivation example.

A common drawback among the current scrubbing solu-
tions is the independence of the scrubbing execution and the
hardware tasks implemented on the FPGA. The entire FPGA
configuration memory is scrubbed sequentially at a constant
rate without any relation to the importance and timing of tasks
executed on it. In order to better understand this mechanism,
let’s consider the simple example described in Figure 1. A
task τ with a periodic behaviour is implemented on an FPGA
device, using a certain amount of hardware resources. These
resources are scrubbed periodically as described in Figure 1-
I. Since there is no relation between task τ and its scrubbing
executions, the gap between the several task τ jobs and the last
corresponding scrubbing can be significantly large (w1 and w2

intervals), increasing the probability of the task τ encountering
a transient fault, which will affect its functional outputs.
Another drawback is when the scrubbing period is smaller
than the task τ period. Considering the example described
in Figure 1-II, the first scrubbing execution (at instant t1) is
totally irrelevant for the reliability of the task τ , since any fault
between the instants t1 and t2 can be handled by the second
scrubbing execution (one that starts at instant t2). In this case,
scrubbing resources are wasted. The example in Figure 1-
III shows the ideal instant to scrub the FPGA configuration
memory related to task τ that minimizes the probability of an
SEU affecting its jobs’ execution.

Nowadays, FPGA systems can accommodate a large num-
ber of heterogeneous tasks with different timing and fault-
tolerance requirements, which consequently organizes them in
different levels of criticality or importance for the system [1].
One fault in a very critical task may have a significant negative
impact on the system as compared to a fault in a less critical
task. Using a decoupled scrubbing process from the tasks’
execution, the current scrubbing solutions are not efficient for
these systems. They may not properly protect the most critical



tasks if the scrubbing period is higher than the tasks’ period.
On the other hand, if they scrub the critical tasks with the
shortest possible period, they are wasting scrubbing resources
(time) with the less critical tasks. Wasted scrubbing resources
can also mean wasted power, which is limited and critical in
space equipments.

Contributions: This paper proposes an efficient scrubbing
mechanism, which takes into account the criticality and tim-
ing of the hardware task execution in order to increase the
reliability of the system. A heuristic that finds a feasible
scrubbing scheduling for each hardware task is introduced.
Firstly, the minimum scrubbing periods are computed ac-
cording to the criticality of each implemented hardware task.
Secondly, a proper scrubbing schedule following the EDL
(Earliest Deadline as Late as possible) algorithm is found,
maximizing the reliability of the system. With this approach,
experimental results show up to 79% of improvement on the
system reliability without wasting scrubbing resources.

To the best of the authors’ knowledge, this is the first work
that proposes a schedule for the scrubbing of tasks, taking into
account the hardware tasks’ importance and timing (mapped
to the fault-tolerance requirements) in order to increase the
reliability of the system.

The rest of the paper is organised as follows. Section II
presents the FPGA background and related works concerning
the scrubbing mechanisms. Section III describes the system
model. Section IV details the problem and deduces its com-
plexity. Section V proposes a heuristic to solve it. Section VI
presents a case study. Section VII introduces the experiments
performed and discusses the respective results. Finally, Sec-
tion VIII presents the conclusions and the future work.

II. BACKGROUND AND RELATED WORK

A brief background on SRAM-based FPGAs is first pre-
sented before discussing the related works on scrubbing.

A. FPGA Background

One of the most important features provided by the current
FPGAs is their ability to be reconfigured at runtime, modifying
both the structure and functionality of the implemented circuit.
This is achieved through the use of the Internal Configuration
Access Port (ICAP), which reads back the current circuit
and can write back a different configuration at runtime. An
FPGA can accommodate multiple hardware/software tasks
each placed in its own partition of the FPGA (region), com-
monly called partially reconfigurable regions (PRRs). Each
partition is responsible for implementing a specific hardware
functionality, which can be dynamically modified by loading
the respective bit file, while the other blocks continue their
normal operation. Different circuits with different functional-
ities (different bit files) can be loaded onto the FPGA and
thereafter be used for the reconfiguration when required. Each
PRR is composed of several configuration frames and each
configuration frame contains the bitstream of several reconfig-
urable digital blocks, such as Look-Up Tables (LUTs), Block-
RAMS (BRAMs), Flip-Flops (FFs), switch matrices, etc. If a
digital block in a particular configuration frame needs to be
reconfigured, the entire frame has to be rewritten. In this sense,
a configuration frame is the lowest reconfigurable granularity
that can be found in an FPGA. For example, the Xilinx Virtex-
6 FPGA (XC6VLX240T-1f1156) contains 28, 464 frames in
total and each frame contains 2, 592 bits (81 words).
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Fig. 2. FPGA – background.

B. Scrubbing Related Work

Scrubbing is a mechanism to repair faults on the FPGA that
takes advantage of the frame reconfiguration. Several fault-
tolerance solutions have been developed around this mecha-
nism with the simplest approach being blind scrubbing [2] [3].
This solution does not detect the existence of faults on the
FPGA, but it periodically rewrites the configuration frames
(bitstream file) onto the FPGA instead, overwriting possible
faulty bits caused by SEUs. An external memory with con-
tinuous access is required to store the original configuration
frames, frequently called golden copy (Figure 2). Readback
scrubbing is another solution, which enables fault detection,
reading frame-by-frame the configuration data from the FPGA
and then performing a bit-for-bit comparison to the original
frames stored in the external memory (golden copy). Another
alternative combines readback scrubbing with Error Correction
Codes (ECCs) [4]–[6]. This approach enables fault detection
by reading the configuration data frame-by-frame and comput-
ing their error correction codes (ECCs) and comparing them to
the original ones previously computed and stored externally for
each frame. Nazar et al. [7] also introduce an improvement in
the scrubbing mechanism, assuming a non-uniform distribution
of the critical bits in a given partition. In this sense, some
regions are more likely to have a fault affecting the system.
With this information, the authors propose a mechanism that
statistically finds the optimal frame to start the scrubbing,
which reduces the mean time to repair a certain fault.

All these scrubbing mechanisms are independent of the
hardware tasks implemented in the FPGA. The entire FPGA
is scrubbed sequentially with a constant rate and considering
an initial starting point. Therefore, the time interval between
the scrubbing and the task execution can be large, increasing
the probability of the task being affected by a fault. Moreover,
they do not provide differentiated scrubbing rates according
to the criticality of the tasks in the system. The most critical
tasks may not obtain the sufficient scrubbing resources in order
to reach a certain reliability. On the other hand, if they are
scrubbed with the shortest possible period, scrubbing resources
are wasted with the less critical tasks.
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Fig. 3. Hardware task execution and proposed scrubbing execution. I) Scrubbing executed every task execution instance. II) Scrubbing executed every two task
execution instances.

III. SYSTEM MODEL

A. Task Model

An FPGA device can accommodate several functionalities
(tasks) divided by a set of partitions SP , as described in
Figure 2. Each partition, also called partial reconfigurable
region, PRRi ∈ SP is responsible for implementing a specific
hardware functionality. Many of these functionalities have
a periodic behaviour and, in this sense, they are generally
modelled as a set Γ of periodic tasks. Each task τi ∈ Γ
implemented on the PRRi is characterized by four parameters
τi = (Ci, Ti, ηi, ζi): Ci defines the worst case execution time
in hardware; Ti represents the execution period; ηi defines the
number of FPGA configuration frames used to implement the
task; and finally, ζi represents the criticality of the task in the
system (higher values of criticality mean higher criticality).
Their execution described in Figure 3-I can be interpreted as
following: τi is released in an infinite sequence of jobs at the
instants kTi, with k = {0, 1, 2, 3, ...}. The job instance τki has
to execute Ci time units during the interval [kTi, (k + 1)Ti),
assuming the deadline is equal to the period Ti. Once, these
tasks execute in their own dedicated hardware, they do not
suffer any interference or blocking from other tasks in the
system. Therefore, we can assume that each job τki is executed
without jitter at the beginning of the period, i.e, at the instant
kTi.

The proposed scrubbing mechanism does not scrub the
entire FPGA or the used configuration frames sequentially
with a constant rate, but it scrubs the FPGA configuration
frames associated to each task τi independently from the
others, enabling adaptive scrubbing. The FPGA configuration
frames associated to task τi are scrubbed taking into account
task τi’s execution as well as its criticality. In this sense,
there is a scrubbing task set sΓ associated to the task set
Γ. Each scrubbing task sτi ∈ sΓ represents the scrubbing
process of task τi, as described in Figure 3-I. Moreover,
each scrubbing task sτi can also be modelled as a periodic
task characterized by three parameters sτi = (SCi, STi, ζi):
SCi defines the time to scrub the ηi FPGA frames used to
implement the task τi; STi represents the scrubbing period,
which is a multiple of the corresponding task period Ti; and
finally ζi is the criticality of the task τi. The execution of sτi
can be interpreted as following: sτi is released in an infinite
sequence of jobs at the instants pSTi, with p = {1, 2, 3, ....}.

Note that the release of the first scrubbing job is synchronized
with the corresponding first task job execution. Considering the
deadline of sτi to be equal to its period STi, the job instance
sτpi has to execute SCi time units without preemption during
the interval [pSTi, (p+1)STi), as described in Figure 3-I. Non-
preemption is considered in order to reduce the scheduling
overhead and to minimize the size of the stored scrubbing
schedule table.

B. Error Model

As referred above, the FPGA device composed by Θ
configuration frames can be affected by SEUs, which follow
a Poisson distribution with a rate of λ failures per unit
of time [8]. Therefore, the probability of no failures in an
unprotected FPGA-based design in an interval t is given by
the following equation [9] [10].

Pne = e−
λΘ
Θ t ⇔ Pne = e−λt (1)

For a given task τi, the ideal scrubbing instant, i.e., the
instant that reduces the probability of the kth job to be exe-
cuted without suffering any fault, is the interval immediately
before its executions. This mechanism reduces the probability
of a task execution being affected by any fault. Therefore, the
probability of kth job execution of the task τi being executed
without any fault, considering the last corresponding sτi job
execution, is given by:

Pne[τ
k
i ] = e−

ληi
Θ wk

i , (2)

where wk
i is the time interval between the beginning of the last

scrubbing process and the beginning of the kth job execution,
as described in Figure 3-I. Note that the SEU rate that affects a
task τi is proportional to the hardware resources (configuration
frames) used by it. Moreover, faults during each task execution
instance are not considered.

Definition 1. (RELIABILITY OF A TASK) Reliability of a task
is a metric that defines the probability of a task τi being
executed in the interval [0, t] without faults [11].



Therefore, the reliability of the task τi can be expressed in
the following equation as the probability of all instances of τi
in the interval [0, t] being executed without faults.

Ri(t) = Pne[τ
0
i ∧ τ1i ∧ ... ∧ τki ], kTi ≤ t (3)

Definition 2. (SYSTEM RELIABILITY BASED ON CRITICAL-
ITY) System reliability based on criticality is a metric that
defines the system reliability during the interval [0, t] taking
into account the reliability as well as the criticality of each
task executing in the system.

Therefore, the system reliability based on criticality can be
expressed as follows,

R(t) =

|Γ|−1∑

i=0

Ri(t)× norm1(ζi) (4)

where |Γ| is the number of tasks that are executing in the
system and norm1(ζi) is the normalized task criticality.

IV. PROBLEM DEFINITION

The ideal case, which maximizes the reliability of each task
τi during an interval [0, t] is to scrub the corresponding FPGA
frames in all job instances of τi and just before their execution
as described in Figure 3–I. However, this ideal case may not
be possible to achieve, since the ICAP resources (time to read
and write the user design frames) are limited. In that case the
scrubbing periods (STi) may have to be larger than the task
periods (Ti), as described in Figure 3–II.

Taking into account these concerns, the problem can be for-
mulated as follows. Given all hardware tasks τi implemented
in FPGA using a certain number of configuration frames,
which require SCi time units to be scrubbed, we want to
determine the exact scrubbing schedule (εpi and STi – refer
to Figure 3), in way that it enables the fault-tolerance in all
tasks in the system and reduces the probability of each task
job execution τki being affected by a fault. The most critical
hardware tasks in the system must be the most reliable tasks,
i.e., they must have the lowest probability of being affected
by a fault, while the less critical tasks may be less reliable. In
short, the global objective is to maximize the system reliability
based on the task criticality. Therefore, taking equations 3
and 4 into account, the objective function can be expressed
as follows,

max R(t) = max
|Γ|−1∑

i=0

�t/Ti�∑

k=0

Pne[τ
k
i ]× norm1(ζi) (5)

where |Γ| is the number of tasks in the system and �t/Ti� gives
the number of hardware task τi instances in a pre-defined time
interval [0, t].

A. Complexity

This scrubbing problem can be modelled as a well known
non-preemptive scheduling problem. However, these problems
are NP-Hard in the strong sense as Jeffay et al. [12] have
showed. In the next section, a heuristic is proposed in order
to find a feasible solution in a suitable time interval.

V. PROPOSED HEURISTIC

If the scrubbing tasks are scheduled as close as possible to
their deadlines (Figure 3), the probability of the corresponding
hardware tasks being affected by a fault is reduced. Therefore,
instead of finding the exact scheduling for the scrubbing tasks,
we propose a heuristic that finds the minimum scrubbing
periods which makes the scrubbing task set schedulable by the
utilization-based schedulability test. Then, the earliest deadline
as late as possible (EDL) algorithm [13] is used to schedule
the scrubbing tasks, since it schedules the tasks as late as
possible near the deadlines. However, EDL algorithm is not
optimal for non-preemptive task sets. Although the task set
verifies the utilization-based schedulability condition given by

equation
∑sΓ−1

i=0
SCi

STi
≤ 1, when the schedule is performed,

there may be one or more tasks which do not meet their
deadlines. Therefore, in order to find the minimum periods
which make the scrubbing process schedulable, an iterative
approach is used. If the scrubbing task set is not schedulable,
the process is repeated after reducing the utilization upper
bound, until the scrubbing task set is scheduled.

Algorithm 1 describes the proposed heuristic. Three main
steps can be highlighted. The first step implemented by the
function findSPeriods (line 4) finds the minimum periods,
which makes the scrubbing task set sΓ schedulable accord-
ing to the utilization-based schedulability test. This step is
performed using an Integer Linear Programming (ILP) for-
mulation described in the following subsection. The second
step, implemented by the function computeLCM (line 5),
computes the least common multiple (LCM) of the obtained
periods in the previous step. The schedule produced in the
next step has a cyclic property, i.e, for every LCM interval,
the schedule is repeated [14]. Therefore, the feasibility of
the schedule only has to be assured for the LCM interval.
The third step implemented by the function edlSchedule
(line 6) verifies the schedulability of the system following the
EDL algorithm [13] and returns the corresponding schedule.
Basically, the schedule of the scrubbing tasks is built and at
the same time the schedulability is verified. Note that the EDL
scheduling algorithm is not optimal for non-preemptive task
sets. Therefore, if the scrubbing task set is not schedulable,
new scrubbing periods have to be computed. The utilization
upper bound is reduced (line 7) by Δ, given as an algorithm
input variable. This process is repeated until the scrubbing
task set is scheduled. When a schedulable scrubbing task set
is found, the corresponding schedule is returned (line 9).

Algorithm 1 Proposed Heuristic

Require: Γ, sΓ, Δ;
Ensure: schedule;

1: uBound = 1;
2: is schedulable = 0;
3: while is schedulable == 0 do
4: findSPeriods(Γ, sΓ, uBound); //using ILP
5: lcm = computeLCM(sΓ);
6: (is schedulable, schedule) = edlSchedule(sΓ, lcm);
7: uBound = uBound – Δ;
8: end while
9: return schedule;

A. ILP formulation

The scrubbing task periods returned by the function
findSPeriods in Algorithm 1 are computed by an ILP formu-
lation. As described, the input variables are the hardware task



TABLE I. TASK SET (Γ) PARAMETERS

τi Task Name Ci(ms) Ti(ms) ηi ζi

τ0 Control Law 1.2 50 250 8
τ1 Process IRES data 0.41 100 150 7
τ2 Calibrate Gyro 0.39 100 100 6
τ3 Present Encryptor 1.0 10 1200 2
τ4 MPEG4 Encoder 1.0 10 800 1

set (Γ), scrubbing task set (sΓ) and the system utilization upper
bound (uBound). Given these inputs, the ILP formulation
finds the scrubbing periods STi, multiples of the corresponding
task periods Ti,

• φi := ratio between the scrubbing and the task execu-
tion period (STi = φi × Ti).

The scrubbing periods (STi) are computed according to the
objective function defined in the following equation, which
minimizes the sτi scrubbing periods (STi) according to the
criticality (ζi) of the corresponding task τi. Therefore, the less
critical tasks have higher scrubbing period (STi). On the other
hand, the more critical tasks have smaller scrubbing periods.

• min

|Γ|−1∑

i=0

STi × ζi

The objective function is subjected to the presented
utilization-based schedulabilty condition:

•
|Γ|−1∑

i=0

SCi

STi
<= uBound

VI. CASE STUDY

This case study highlights two subsystems of a nano-
satellite, namely the navigation control and the payload sub-
system. The navigation control subsystem is responsible for
monitoring and controlling the orientation of the nano-satellite,
while the payload subsystem is responsible for implementing
the functionality of the nano-satellite.

The considered nano-satellite collects high resolution video
images from the earth. These video images are encrypted
before being sent to a ground station. Five processing tasks
were implemented in an SRAM-based FPGA, whose param-
eters are defined in Table I. The first three tasks, based
on [15], are related to the nano-satellite navigation subsystem
and hence have a higher criticality. The other two tasks are
related to the payload subsystem and have a lower criticality.
The Process IRES data processes the information data
provided by the infra-red earth sensor, which is required to
stabilize the satellite in the right orbit. The Control Law task
implements the space control laws that are responsible for the
satellite orientation and its results are provided to the actuators.
Calibrate Gyro computes the necessary information in order
to properly calibrate the gyroscope. MPEG4 Encoder [16]
encodes the video frames captured by the nano-satellite camera
to be transmitted to the earth, while Present Encryptor [17]
encrypts the encoded video using the Present algorithm.

The five tasks were implemented in an SRAM-based FPGA
with 30, 000 configuration frames1. It was assumed that each

1Comparable to Xilinx Virtex-6 FPGA board.

TABLE II. SCRUBBING TASK SET (sΓ) PARAMETERS

sτi SCi(ms) STi(ms) ζi

sτ0 0.25 50 8
sτ1 0.15 100 7
sτ2 0.10 100 6
sτ3 1.20 10 2
sτ4 0.8 20 1

TABLE III. CASE STUDY RESULTS

Method System Reliability Wasted ICAP Time (s)

Proposed 0.99 0
Selective 0.90 1170
Blind 0.58 6600

frame of the FPGA device requires 1μs to be scrubbed.
The FPGA device was targeted to be placed in the space
environment, subjected to SEUs with a rate λ = 1

1Hour [8].
Moreover, in order to reduce the energy consumption, the
maximum percentage of ICAP utilization was limited to 20%.

According to the proposed scrubbing solution, a scrub-
bing task (sτi) must be defined for each hardware task (τi).
Therefore, the minimum scrubbing periods, which make the
scrubbing task set schedulable by the EDL algorithm, using
20% of the ICAP module, have to be obtained. Table II
presents the scrubbing tasks’ parameters given by the proposed
heuristic (in particular the scrubbing periods – STi). Note that
in order to have a scrubbing task set that uses only 20% of
the ICAP module capacity, task τ4, the less critical one, will
be scrubbed one time in two periods (ST4 = 20ms). The
remaining tasks will be scrubbed every period.

We consider two different types of scrubbing for the
case study – blind scrubbing and selective scrubbing. Blind
scrubbing scrubs the entire device without considering the
tasks that have been implemented on it. However, selective
scrubbing only scrubs those frames of the device that are
utilized by the user design. Selective scrubbing has a better
reliability than blind scrubbing since only those frames that
are essential to the user design are scrubbed.

Figure 4 describes the tasks’ execution as well as the
scrubbing execution according to the proposed and the current
scrubbing mechanisms. Note that with 20% of ICAP capacity
available, each task is scrubbed every 12.5ms using the
selective approach and every 150ms using the blind one. The
proposed scrubbing mechanism executes the scrubbing tasks
following the EDL algorithm, i.e, as late as possible, nearest to
the deadline (STi). Therefore, the scrubbing tasks execute just
before the hardware task execution, minimizing the probability
of the task jobs being affected by an SEU fault. On the other
hand, the existing scrubbing approaches execute without any
relation to the task execution, decreasing the system reliability.
Also Figure 4 shows the wasted resources for both selective
and blind scrubbing.

Table III presents for this particular task set the system
reliability computed through the equation 4. The system re-
liability was measured for a duration of 10 hours. Using the
proposed approach, the system is 9% and 41% more reliable
when compared to selective scrubbing and blind scrubbing,
respectively. Taking into account the ICAP wasted resources,
during 10 hours selective scrubbing wasted 1, 170 seconds
of ICAP utilization and selective scrubbing wasted 6, 600
seconds.
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VII. EXPERIMENTAL RESULTS

Experiments were conducted in order to better evaluate the
new scrubbing mechanism. The experiments were also based
on SRAM-based FPGA with 30,000 configuration frames2. It
was assumed that each frame requires 1μs to be scrubbed by
the ICAP module. Moreover, for these experiments the FPGA
device was also targeted to be placed in the space environment,
subjected to SEUs with a rate λ = 1

1Hour [8].

The experiments used task sets with different sizes, ranging
from 1 to 20 tasks, which generated different loads of used
resources (configuration frames) in the FPGA. For each task set
size, 1, 000 synthetic hardware task sets were generated. The
number of configuration frames used to implement each task
τi assumes only values that are multiples of 100, synthetically
generated and uniformly distributed from 1, 000 and 2, 000,
corresponding to a scrubbing execution time (SCi) between
1ms and 2ms, respectively. Moreover, the period (Ti) of each
task τi assumes only values that are multiples of 5ms, syn-
thetically generated and uniformly distributed between 10ms
and 50ms.

The proposed scrubbing mechanism was compared to
the blind scrubbing and the selective scrubbing mechanism,
described in the previous section. Moreover, the proposed
mechanism considered three different methods to assign the
task criticality. The first method (i0 = 1) assigns the same
criticality to all the tasks τi. The second method (i1) assigns
to the task τi the criticality i, while the third method (i2)
assigns the criticality i2.

A. System reliability over the number of tasks implemented

The top graph in Figure 5 shows, over the task set size, the
amount of resources (configuration frames) used. Moreover, it

2Comparable to Xilinx Virtex-6 FPGA board.

shows the ICAP utilization generated by the different scrub-
bing mechanisms. Note that the percentage of configuration
frames used increases linearly with the size of the task set,
reaching the full capacity of the FPGA at 20 tasks. Moreover,
the scrubbing mechanisms were configured to use 100% of
ICAP module capacity. The proposed mechanism increases the
ICAP utilization with the size of the task set, reaching 100% at
17 tasks. Blind and selective scrubbing scrub at the maximum
allowed ICAP capacity (100%), regardless of the number of
tasks implemented.

The middle graph in Figure 5 compares the system reliabil-
ity among the proposed, the blind and the selective scrubbing
mechanisms over the task set size and a duration of 10 hours.
The proposed mechanism is evaluated considering the different
methods to assign the task criticality, as described above. We
observe that for task sets with only one task, the proposed
mechanism performs the same way as selective scrubbing.
However, selective scrubbing wastes a huge amount of ICAP
resources, since it is constantly scrubbing the implemented
task, as presented latter. In comparison to blind scrubbing the
proposed mechanism improves the system reliability around
33% without wasting scrubbing resources. Between 1 and 20
tasks the reliability of the system decreases linearly. This is
due to the increased interference among the scrubbing tasks
when they are scheduled by the EDL algorithm. With 20
tasks, the FPGA is completely used, therefore the maximum
interference is reached. In this case, the proposed scrubbing
mechanism improves the system reliability 5%, 10%, and 14%
when compared to selective scrubbing; and 10%, 15% and
19%, when compared to blind scrubbing and using the different
methods to assign the criticality.

The bottom graph in Figure 5 shows the wasted ICAP
resources by the different scrubbing mechanisms, measured
also during 10 hours. The proposed scrubbing mechanism
has not wasted ICAP resources, since the scrubbing is only
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Fig. 5. System reliability – Maximum ICAP utilization = 100%.

performed when the hardware tasks execute. On the contrary,
selective and blind scrubbing present a huge amount of wasted
scrubbing resources, since they are not adapted to the hardware
task execution. For instance, for 1 task, selective scrubbing
wastes 34, 300 seconds of ICAP utilization and blind scrubbing
wastes 34, 750 seconds. In embedded systems, in particular
in space equipments, this wasted resources can have a great
impact on the power consumption.

For a fairer comparison, the selective and blind approaches
instead of using the maximum allowed ICAP capacity (100%)
only use the ICAP utilization generated by the proposed
scrubbing mechanism, in particular the one generated using
the method i0. The graphs in Figure 6 present the results. For
task sets with one task there is an improvement on the system
reliability of 36% and 96% when comparing the proposed
solution to the selective and blind scrubbing, respectively. For
task sets with 20 tasks, as expected, the results are the same as
the last experiment, since selective and blind approaches are
also allowed to use the maximum ICAP capacity (100%).

B. System reliability over the ICAP utilization

The graph in Figure 7 shows the system reliability (equa-
tion 4) for a task set size with 5 tasks implemented over
maximum ICAP utilization allowed, measured for a duration of
10 hours. The ICAP utilization allowed ranges from 20% and
100%. As expected the system reliability decreases when the
ICAP capacity used by the scrubbing mechanism decreases.

i0 i1 i2 Selective Blind FPGA R.
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Fig. 6. System reliability – Selective and Blind scrubbing mechanisms using
the same ICAP utilization as the one used by the proposed mechanism (i0).
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Fig. 7. System reliability based on the criticality over the ICAP utilization.

If the scrubbing mechanism is configured to use up to 100%
of the ICAP capacity, the proposed solution performs 5% and
28% better when compared to selective and blind scrubbing
respectively. On the other hand, if the scrubbing mechanisms
only uses 20% of the ICAP capacity, the proposed approach
performs between 14% and 24% better when compared to
selective scrubbing. In comparison to blind scrubbing, it per-
forms between 56% and 64% better.
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Fig. 8. System reliability based on the criticality over the timing interval.

C. System reliability over the timing interval

The graph in Figure 8 shows the system reliability (equa-
tion 4) for a task set size with 5 tasks implemented over
the size of the time interval used to measure the reliability.
The ICAP capacity provided to the scrubbing mechanisms is
25%. As expected the system reliability decreases linearly with
the time interval size used to measure the system reliability.
For a 24 hour window size the proposed mechanism performs
between 25% and 34% better than the selective mechanism. It
also performs between 70% and 79% better than the blind
scrubbing, considering the different methods to assign the
criticality (i0, i1, i2).

D. Heuristic performance

Considering the first experiment with an ICAP utilization
equal to 100%, the graph in Figure 9 shows an average for
each task set size, the time taken by the proposed heuristic to
produce a feasible schedule, using the three different methods
to assign the task criticality (i0, i1, i2). Note that, this time is
dependent on the generated task sets, in particular on the task
periods (Ti), since they can set scrubbing periods multiples of
(Ti), having impact on the LCM. For higher ICAP utilizations
i2 takes more time to find a feasible schedule, since it has
to scrub more frequently the most critical tasks, increasing the
scrubbing periods of the less critical ones. In this case the LCM
may increase as well as the time to verify the schedulability,
as a consequence. Thus, as shown in the graph, a feasible
schedule is obtained in a suitable time. In the same experiment,
in 20, 000 task sets generated, only 100 task sets required more
than 1 heuristic iteration to find a feasible scrubbing schedule.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, a new scrubbing mechanism is proposed in
order to improve the system reliability. This new mechanism
takes into account each hardware task execution as well as its
criticality in the system to find the proper scrubbing period
which maximizes the overall system reliability when all the
scrubbing processes of all tasks are scheduled by the EDL al-
gorithm. Experiments conducted show effective improvements
up to 79% on the system reliability without wasting scrubbing
resources, when compared to the current scrubbing approaches.
In the near future, we will study the impact on the system
reliability and on the scheduling overhead of a preemptive
approach (scheduling on the frame level). Moreover, we will
study the impact of the wasted ICAP resources on the FPGA
power consumption.
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Fig. 9. Heuristic time latency (experiment conducted on a quad-core Intel
i7-3770 – 3.40GHz).
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