
AN AREA-EFFICIENT PARTIALLY RECONFIGURABLE CROSSBAR SWITCH WITH LOW
RECONFIGURATION DELAY

Chin Hau Hoo and Akash Kumar

Department of Electrical and Computer Engineering
National University of Singapore, Singapore

Corresponding author email address: eleak@nus.edu.sg

ABSTRACT
With the increasing number of processors in Multi-

processor System-on-Chips (MPSoCs), Network-on-Chips
(NoCs) are replacing conventional buses as the inter-
processor communication architecture. Since different use
cases might be running on MPSoCs, there is a need for dy-
namically reconfigurable NoC. However, most dynamically
reconfigurable NoCs have a large area overhead due to the
additional reconfiguration logic. While recently some dy-
namically reconfigurable NoCs have been proposed based
on partial reconfiguration (PR), they have high reconfigura-
tion delay and require off-line bitstream generation for all
possible scenarios. The problem lies with the design of the
crossbar switch, which is the fundamental component of a
NoC. In this paper, a novel partially reconfigurable cross-
bar switch design with low area requirement, low reconfig-
uration delay and runtime bitstream generation is presented.
The crossbar switch is built from lookup tables (LUTs), and
reconfiguration is done by modifying the LUTs’ content
through PR. Reconfiguration delay is minimized by con-
straining the placement of the LUTs into the least number of
configurable logic block columns and identifying the config-
uration frames that are responsible for LUTs’ content. The
novel crossbar switch design achieves an area saving of up to
84% and reconfiguration delay minimization of up to 78%.
It can be used to realize any network topology, and Clos,
Benes and single stage crossbar topologies are evaluated in
the paper.

Index Terms: Reconfigurable architectures, Network-
on-Chip, partial reconfiguration, crossbar switch, spatial di-
vision multiplexing.

1. INTRODUCTION

With increasing chip density, it is now possible to pack more
transistors into a single chip as dictated by Moore’s Law.
This results in the creation of Multiprocessor System-on-
Chip (MPSoC) where processors, memory, and other IO de-
vices are fabricated onto a single chip. As the number of
processors in an MPSoC increases, the bottleneck switches
from computation to communication [1]. In fact, traditional
bus is no longer able to meet the bandwidth and latency re-
quirement of MPSoC due to its decrease in performance as

the number of processors contending for it increases. There-
fore, Network-on-Chip (NoC) has been proposed as an alter-
native to buses.

Early NoC designs are based on packet switching that
provides only best-effort service. In other words, the NoCs
do not provide guaranteed bandwidth and bounded latency
for data transfers. Guaranteed quality of service is usually
achieved through resource reservation with techniques such
as time division multiplexing (TDM) and spatial division
multiplexing (SDM). The NoCs proposed in [2] and [3] are
examples of SDM based NoC while Æthereal [4] and Nos-
trum [5] are examples of TDM based NoC.

In addition to providing guaranteed quality of service,
NoCs have to be dynamically reconfigurable because MP-
SoCs need to handle multiple use cases [6]. A use case is
a combination of applications that are running concurrently
on an MPSoC. The use cases often have different require-
ments in terms of connectivity, bandwidth and latency, and
NoCs have to cater to those requirements. Besides, it is de-
sirable that applications that are common between two use
cases are not interrupted during reconfiguration. In multi-
media systems such as smart phones, one might expect the
music to continue playing when switching from web brows-
ing to word processing. Therefore, dynamically reconfig-
urable NoCs should allow glitch-free use case switching as
well.

There are two methods of achieving dynamic reconfigu-
ration. The first and more widely adopted approach involves
adding reconfiguration logic to the network interfaces (NIs)
and routers but the logic consumes extra area [7][8][9]. The
second and more recent method requires the use of partially
reconfigurable FPGA devices such as the Xilinx Virtex se-
ries. Partial reconfiguration (PR) allows some logic blocks
on an FPGA to be programmed at runtime without affect-
ing the operation of other logic blocks [10]. However, cur-
rent PR based NoCs have high reconfiguration delay, require
large storage space for partial bitstreams and can only cater
to predefined use cases. Besides, some network topologies
used by PR based NoCs do not allow for glitch-free use case
switching. Benes network is an example of such topology.

Contributions: In this paper, a novel partially reconifig-
urable crossbar switch design is presented as a solution to
the aforementioned problems. The crossbar switch consists



of multiplexers built from lookup tables (LUTs), and con-
nections are set up by modifying the LUTs’ content through
PR. This results in significant saving in terms of area be-
cause dedicated control logic in the crossbar switch is no
longer required. An O(logN) algorithm is also described
to set up connections in the crossbar switch. Finally, meth-
ods of minimizing the reconfiguration delay of the crossbar
switch are proposed.

The rest of the paper is organized as follows. Section 2
provides some background on the concepts that will be used
in the rest of the paper. Section 3 describes various related
works and their limitations. Section 4 describes the archi-
tecture of the new crossbar switch. Section 5 evaluates the
performance of the new architecture. Section 6 concludes
the paper and highlights future work.

2. BACKGROUND

2.1. Introduction to SDM-based Networks

2

1

3

4

1

1 1

2 2

3 3

4 4

1

2

3

4

1

2

3

4

Incoming 
channels

1

2

3

4

6 bit physical link

Outgoing 
channels

1

1
1

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
2

2
2

2
2

3
3

3
3

3
3

4
4

4
4

4
4

(a)

2

1

3

4

1

1 1

2 2

3 3

4 4

1

2

3

4

1

2

3

4

Incoming 
channels

1

2

3

4

6 bit physical link

Outgoing 
channels

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

(b)

Fig. 1. Comparison between TDM (top) and SDM (bottom)

To provide guaranteed bandwidth and latency, virtual
connections (VCs) are created between processing elements
(PEs). VCs are built upon the concept of either TDM or
SDM [3]. Figure 1 shows how a 6-bit physical link can
be shared between four incoming channels using TDM and
SDM. In TDM, a time slot is allocated to each incoming
channel such that each channel has exclusive access to the
physical link during its allocated time slot. The duration
of time slot can vary among the incoming channels to allow
different channels to have different amount of bandwidth. In
SDM, a subset of the physical link is allocated exclusively
to an incoming channel for the whole lifetime of the connec-
tion. However, the data has to be serialized before transmis-
sion. For example, in Figure 1(b), the data from channel 1
and 2 are serialized to 2-bit while the data from channel 3
and 4 are serialized to 1-bit.

In order to implement TDM, a multiplexer is commonly
used. The configuration of the multiplexer has to be changed
every time slot to grant an incoming channel access to the

physical link [3]. If the multiplexer was made partially re-
configurable, the FPGA would have to be reconfigured every
time slot. In contrast, a SDM network needs to be config-
ured only during the setup of the connection. Therefore,
SDM is chosen over TDM to provide guaranteed bandwidth
and latency for PR based NoC because the non-trivial delay
of PR is amortized over the connection duration.

2.2. Non-Blocking Networks

There are two types of non-blocking network, strictly non-
blocking and rearrangeably non-blocking. A strictly non-
blocking network allows a new connection to be set up with-
out rerouting existing connections. On the other hand, a
rearrangeably non-blocking network may require existing
connections to be rerouted before a new connection can be
setup.

4x4 crossbar 
switch

4x4 Clos 
network

4x4 Benes 
network

Fig. 2. 4× 4 non-blocking networks

Figure 2 shows how a 4×4 network can be built as a sin-
gle crossbar switch, Clos network [11], and Benes network
[12]. A crossbar switch and Clos network are examples of
strictly non-blocking network while Benes network is an ex-
ample of a rearrangeably non-blocking network. Clos net-
work is a three-stage network that was originally designed
to reduce the total number of cross points of a telephone
switching network to less than that of a single stage cross-
bar switch of equivalent size. It can be characterized by
a triple (m,n, r) where m is the number of middle stage
switches, n is the number of input (output) ports on each in-
put (output) switch, and r is the number of input and output
switches. Clos [11] has proven that his network is strictly
non-blocking if and only if m ≥ 2n− 1.

3. RELATED WORKS

Joseph et al. [2] describe a dynamically reconfigurable
SDM based NoC with a circuit switched data network and
a packet switched control network. The control network is
responsible for configuring the routers in the data network
and the NIs. Focus was placed on reducing the amount of
resource used by the NIs and the routers by replacing a 32-
to-N bit serializer with N 32-to-1 bit serializers and a k-way
router with a 1-way router. However, the routers still incur
area overhead due to the need to support dynamic reconfig-
uration. As described later in Section 5.1, the area overhead
is eliminated by making the router partially reconfigurable.
In addition, the 1-way router design limits routing flexibil-
ity, resulting in cases where a use case’s connection require-



ment cannot be satisfied. Besides, the link allocation has to
be done at design time. Therefore, the limitations prevent
the NoC from adapting to new runtime requirements.

DyNoC [13], CuNoC [14] and CuNoChi [15] are at-
tempts of applying PR to the design of NoC. However, they
suffer from various limitations. Regular partially reconfig-
urable regions (PRRs) are defined on the FPGA, and each
of them can be reconfigured as a router or a PE. Therefore,
the minimum size of the PRR is the size of the largest PE in
the system. As a result, there is a waste of resources when
a PRR is reconfigured as a router since PE is usually much
larger than a router. In addition, the reconfiguration delay
is high because the whole PRR has to be reconfigured even
though the router uses just a fraction of it. Devaux et al.
[16] propose a static fat tree network with partially reconfig-
urable routers known as R2NoC in which the routing logic is
replaced with direct links, resulting in significant area sav-
ing. Each router is placed in an independent PRR, and the
PRRs are defined specifically for routers only. Therefore,
the size of the PRR can be tailored to the size of the router.
Although connections can be established at runtime, the re-
configuration delay is non-trivial due to the large number of
routers that needs to be reconfigured, and the authors did
not attempt to minimize the delay. A fat tree network is es-
sentially a folded Benes network that is known to be only
rearrangeably non-blocking. Therefore, there is a possibil-
ity of the network stalling when a new connection has to be
made. This results in a loss of bandwidth that is proportional
to the reconfiguration delay. Therefore, the high reconfigu-
ration delay outweighs the saving in area. Hur et al. [17]
also leverage on PR to create direct links similar to R2NoC
but the network is not flexible in that the partial bitstreams
for each use case have to be generated at design time.

Young et al. [18] describe an approach to efficiently
build a large crossbar switch on a Xilinx FPGA using the
switch matrix. The crossbar switch is configured through
PR. However, the drawback of the approach is that the JBit
library required is deprecated and does not support devices
other than Virtex-II. In addition, Brant and Lemieux [19]
describe how a LUT can be configured as a multiplexer but
methods of building larger multiplexers and minimizing re-
configuration delay have not been explored.

4. PARTIALLY RECONFIGURABLE CROSSBAR
SWITCH ARCHITECTURE

4.1. Building Multiplexers without Dedicated Selector
Pins

A crossbar switch is the basic building block of any network.
On a Xilinx FPGA, it can be realized using logic elements
called configurable logic blocks (CLBs). CLBs are arranged
in columns, and their composition varies across different
families of FPGA. In the case of a Virtex-6 FPGA, a CLB is
made up of two slices that are connected to a switch matrix.
Each slice in turn contains four 6-input LUTs, which can
be used to implement any 6-input logic function. A cross-

bar switch can be built using either the switch matrix alone
or a combination of the LUTs and the switch matrix. Both
approaches have their own advantages and limitations.

The switch matrix has abundant routing resources which
are perfect for creating a crossbar switch. However, there
are two major problems that limit the feasibility of this ap-
proach. Firstly, the switch matrix cannot be instantiated in
VHDL/Verilog. Therefore, cascading the switch matrices
to build a larger crossbar switch can be tedious and error
prone because high level design is impossible. Secondly,
runtime reconfiguration of the switch matrix would require
the knowledge of the mapping between the programmable
interconnect points in the switch matrix and the bits in the
partial bitstream. However, the mapping is undocumented
by Xilinx. Due to the reasons described above, the second
approach of implementing the crossbar switch using LUTs
is used.

O0

I0
I1
I2
I3

I0

I1

I2

I3

O0

Fig. 3. Multiplexer as the building block of a crossbar switch

Each output port of an N × N crossbar switch can be
built using an N -to-1 multiplexer as shown in Figure 3.
Therefore, an N × N crossbar switch requires N number
of N -to-1 multiplexers, one for each output of the switch.
A multiplexer can be realized on an FPGA by using LUTs.
Conventionally, an N -to-1 multiplexer requires log2N num-
ber of selector pins. Therefore, a Virtex-6 LUT can imple-
ment a 4-to-1 multiplexer by using 4 out of the 6 inputs of
the LUT as data inputs and the remaining 2 inputs as selec-
tor inputs. However, with PR, dedicated selector inputs are
not required.

The input pins of the LUT address one of the 64 entries
of the LUT. Each entry of the LUT contains 1 bit of data.
For example, when the value of the input pins is 000000, the
output contains the value stored at the first entry of the LUT.
Therefore, by carefully selecting the content of each entry,
any of the LUT’s input pins can be multiplexed to the output
without the need of dedicated selector pins. The value of
each entry equals to the value of the n-th bit of the entry’s
address, where n is the index of the LUT input pin to be
multiplexed.

Figure 4 shows an example of how the LUTs’ content
can be configured to act as a multiplexer. A 2-input LUT
has 4 entries. To multiplex I0 or I1, the value of each en-
try equals to the 0th or 1st bit of the corresponding entry’s
address respectively.



0 0
0 1
1 0
1 1

0
1
0
1

0 0
0 1
1 0
1 1

0
0
1
1

I0 of LUT 
multiplexed

I1 of LUT 
multiplexed

I0

I1

I0

I1

Fig. 4. Configuring 2-input LUTs as multiplexers

Listing 1. LUT6 instantiation in VHDL with I0 being mul-
tiplexed initially
LUT6_0 : LUT6
generic map (INIT => X"AAAAAAAAAAAAAAAA")
port map (
O => crossbar_out,
I0 => crossbar_in(0),
I1 => crossbar_in(1),
I2 => crossbar_in(2),
I3 => crossbar_in(3),
I4 => crossbar_in(4),
I5 => crossbar_in(5)

);

To build an N-to-1 multiplexer with k-input LUTs where
N > k, multiple k-input LUTs can be cascaded in the form
of a k-ary complete tree. Cascading can be done easily be-
cause LUT is a primitive that can be instantiated in VHDL or
Verilog. The completeness criterion for the tree is required
to simplify the reconfiguration process. Listing 1 shows an
example of how a LUT can be instantiated in VHDL where
the first input of the LUT (I0) is mapped to the crossbar
switch’s first input port (crossbar in(0)), the second input
of the LUT is mapped to the crossbar switch’s second in-
put port and so on. However, Xilinx’s Place and Route tool
may not preserve the pin mappings in order to improve tim-
ing. Therefore, the LOCK PINS constraint has to be ap-
plied to every LUT instance that is connected to the crossbar
switch input ports to ensure the mapping is preserved. This
is important because the connection establishment algorithm
described in Section 4.2 requires the mapping between the
crossbar switch input ports and the LUT input pins.

4.2. Connection Establishment through Partial Recon-
figuration

To establish a new connection between an input port and an
output port of the crossbar switch, the multiplexer that is as-
sociated with the output port has to be reconfigured. Since
the multiplexer is realized as a k-ary complete tree as de-
scribed in Section 4.1, setting up a new connection involves
finding a path from the leaf node that is associated with the
input port to the root node. The completeness of the tree
allows path finding to be done using simple division and re-
mainder operation as shown in Algorithm 1.

The k-to-1 multiplexer that is associated with the input
to be multiplexed at each level of the tree can be determined
by dividing the input index at the corresponding level with
the tree radix. Then, the input to be selected by the k-to-1

Algorithm 1 Determining the k-to-1 multiplexers to be
modified to setup a new connection
Input: crossbar input port index Idx, radix of the tree k,

number of levels of the tree numOfTreeLevels
Output: logical identifier of the k-to-1 multiplexers to be

modified
1: if Idx ≥ numOfNodesAtLastLevel × k then
2: Idx← Idx− [numOfNodesAtLastLevel× (k−

1)]
3: startLevel← numOfTreeLevels− 1
4: else
5: startLevel← numOfTreeLevels
6: end if
7: modifiedMux← ∅
8: for i← startLevel to 0 do
9: muxIndex← bIdx/kc

10: muxPortIndex← Idx%k
11: modifiedMux ← modifiedMux ∪

{(i,muxIndex,muxPortIndex)}
12: Idx← muxIndex
13: end for
14: return modifiedMux

multiplexer determined in the previous step can be found by
finding the remainder of the input index when divided by
the tree radix. Since the division and remainder operations
have to be executed once for every level of the tree, and the
number of levels of the tree is ofO(logN), the routing algo-
rithm has a very desirable complexity of O(logN) for each
connection setup. In the worst case where all connections
of the crossbar switch have to be changed, the complexity is
O(NlogN).

0 1

0

0

1

0 1 2 3

0 1

4 5

2 3

4 at level 2 -> 2 at level 1

Level 2

Level 1

Level 0

0 1
muxIndex = ⌊2/2⌋ = 1
muxPortIndex = 2%2 = 0

muxIndex = ⌊1/2⌋ = 0
muxPortIndex = 1%2 = 1

Fig. 5. Example of applying Algorithm 1

Figure 5 illustrates the result of applying Algorithm 1 to
a complete binary tree (k = 2) with 3 levels to provide a
total of 6 inputs.

After determining the logical configuration of the mul-
tiplexers that are required to setup a new connection, par-
tial bitstreams are generated at runtime to reconfigure the
crossbar switch. Runtime bitstream generation is possible
because the data required to configure a LUT is position in-
dependent. For example, LUTs that are located at different



columns of the device require the same data to configure
them as multiplexers. In addition, a k-input LUT has only k
different configurations when it implements a k-to-1 multi-
plexer. Therefore, only k number of different configurations
need to be determined and stored at design time. The k dif-
ferent configurations are then used to incrementally gener-
ate the required configuration of a crossbar switch at run-
time. In contrast, the conventional method of reconfiguring
an N ×N crossbar switch requires N ! partial bitstreams to
be generated and stored at design time.

PR is performed through the process described in Algo-
rithm 2 using Internal Configuration Access Port (ICAP).
The algorithm does not use the PR function provided by
Xilinx to modify a LUT’s content because the function is
inefficient. The smallest addressable unit in the FPGA con-
figuration memory space is known as a configuration frame,
and the LUTs in a column of CLB are reconfigured by 8
frames as shown in Figure 6(a). Therefore, modifying a sin-
gle LUT requires all the frames to be written even though
only a small segment is modified. Instead, Algorithm 2 re-
lies on the aforementioned k-configuration database and the
mapping shown in Figure 6 to fill a temporary frame data
buffer with the configuration of multiplexers to be modified.
Then, the buffer is written to the ICAP to reconfigure the
multiplexers. Therefore, the overhead of writing redundant
data to the ICAP is eliminated.

Algorithm 2 Reconfiguring FPGA with new network con-
figuration

1: M ← getAllModifiedMux()
2: clear frameData
3: for all mux ∈M do
4: update frameData with configuration of mux
5: end for
6: write frameData to FPGA through ICAP

4.3. Minimizing Reconfiguration Delay

Since the FPGA is reconfigured column-wise, the reconfig-
uration delay can be minimized by constraining the place-
ment of the crossbar switch into the least number of columns
of CLB with sufficient LUTs to implement the multiplexers
required by the crossbar switch. This is done by creating an
AREA GROUP constraint based on the number of LUTs re-
quired by the crossbar switch. The number can be calculated
analytically as described in Section 5.2.

In addition to the AREA GROUP constraint, reconfig-
uration delay can be minimized by writing only the frames
that are responsible for the configuration of the content of
the LUTs. To fully reconfigure a column of CLB, 36 frames
are required. However, only 8 frames need to be written to
reconfigure the LUTs’ content, resulting in a speedup of up
to 78%.

A network rarely consists of only one crossbar switch.
For example, each wire in a SDM network is connected

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

D0

C0

B0

A0

CLB 
39

..
.

CLB 0

8 configuration frames

A column 
of 40 CLBsConfigures

0
6

3
2

5
2

8
2

5
9

1

0 6315 31 47

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

0 7

B0 A0 D0 C0

4 LUTs 
from the 
right slice

Frames 0 to 3 Configures

D1

C1

B1

A1
0 6315 31 47

B1 A1 D1 C1

4 LUTs 
from the 
left slice

Frames 4 to 7 Configures

(a)

(b)

H
C

LK
..

.
1

2
8

0
1

3
1

1

..
.

H
C

LK
..

.

..
.

H
C

LK
..

.

..
.

H
C

LK
..

.

..
.

H
C

LK
..

.

..
.

H
C

LK
..

.

..
.

H
C

LK
..

.

..
.

H
C

LK
..

.

..
.

Fig. 6. Structure of Virtex-6 configuration frames

by an independent crossbar switch. Applications with high
bandwidth requirement often requires links that are wider
than 1-bit. Therefore, multiple crossbar switch requires
the same configuration, and reconfiguration delay can be
minimized by exploiting the common configuration among
crossbar switches. The optimization is achieved by utilizing
the Multiple Frame Write (MFW) command of the ICAP
module. The command allows the frame data that is written
to the FDRI register to be transferred to multiple different
frame addresses as specified by the FAR register. There-
fore, N frames can be configured with the same data by
writing the data only once to the FDRI register instead of
writing it N times, resulting in a significant minimization
of reconfiguration delay. In order to effectively utilize the
MFW command, the AREA GROUP constraint must be ap-
plied to each crossbar switch in a way that they occupy
non-overlapping CLB region, and in turn, non-overlapping
frames. In this case, when two or more crossbar switches
have the same configuration, the reconfiguration delay can
be minimized with the MFW command because the config-
uration data has to be written only once to the FDRI regis-
ter, and it is transferred to all the switches which require the
same configuration.

5. RESULTS AND ANALYSIS

To evaluate its area requirement and reconfiguration delay,
the novel crossbar switch design has been implemented in
a SDM based NoC on a Virtex-6 FPGA ML605 Evaluation



Board with Xilinx ISE 13.2.

5.1. Area Saving of a Partially Reconfigurable Router

0 50 100 150 200 250

PR

Non-PR

Area (Number of LUTs)

R
o
u
te
r 
ty
p
e

 

 

Routing logic

Control logic

Fig. 7. Area requirement of non-PR and PR router

The non-PR 1-way router described in [2] consists of w
5× 5 crossbar switches where w is the width of the link be-
tween the routers and a control logic to set the configuration
of the crossbar switches. As shown in Figure 7, the control
logic of the non-PR router incurs a significant area overhead
of 75%. When the router in [2] is implemented with par-
tially reconfigurable 5 × 5 crossbar switches, the per-router
control logic is replaced with a global reconfiguration con-
troller, which configures the entire network and consumes
799 LUTs. While the overhead seems significant, it should
be noted that it is independent of the network size. In con-
trast, the area overhead of the design described in [2] scales
linearly with the network size. In addition, the routing logic
of PR based router consumes only 40 LUTs as compared to
61 LUTs required by Joseph’s routing logic. This is because
PR based multiplexers require no dedicated input selection
pins as described in Section 4.1. Therefore, the 5-to-1 mul-
tiplexer in the 5× 5 crossbar switches can be built with less
LUTs when PR is utilized.

5.2. Area Complexity of Various Network Topologies

Table 1. Number of cross points of various network topolo-
gies

Topology Number of cross points
Single N ×N crossbar N2

N ×N Clos 6N
3
2 − 3N

N ×N Benes 2N(2log2N − 1)

Clos and Benes network were designed to reduce the to-
tal number of cross points in the telephone switching net-
work to less than that of a single stage crossbar switch as
shown in Table 1. The results in Figure 8 shows how the
number of cross points actually translates to the number of
LUTs required by the new PR based crossbar switch design.
The PEs in the network are connected with 4-bit duplex
links, and the n parameter of the Clos network is equal to
4. The area requirement is determined analytically by con-
sidering the number of LUTs that needs to be instantiated in

4 16 64 256 1024 4096
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Network size (Number of PEs)

A
re

a
 (

N
u
m

b
e
r 

o
f 

L
U

T
s
)

Single stage crossbar

Clos

Benes

Fig. 8. Area requirement of various network topologies

HDL to build the network. A few observations can be made
from the graph.

For network sizes of 64 and above, the order of the num-
ber of cross points provides a good approximation on how
fast the area requirement on an FPGA increases. As shown
in the graph, the area required by a single stage crossbar
and a Clos network grows much faster than that of a Benes
network, which is consistent with the order of the number of
cross points shown in Table 1. However, for smaller network
sizes, the trend is different.

Although its area complexity is the highest, the single
stage crossbar switch requires the least area for network
sizes of 4 and 16. This is because a single stage crossbar
switch has only a path diversity of one while Benes and Clos
network have higher path diversity. For small networks,
the area overhead of Benes and Clos network at providing
higher path diversity outweighs their smaller area complex-
ity.

A Benes network is built from 2x2 crossbar switches.
However, a LUT in a Virtex-6 FPGA can implement a 6-to-
1 multiplexer, which is larger than the 2-to-1 multiplexers
required in the 2x2 crossbar switch. For small networks,
the area overhead introduced by underutilized LUTs out-
weighs the smaller area complexity of the Benes network.
As a result, the Benes network consumes the largest area at
a network size of 16 as shown in the graph although it is
rearrangeably non-blocking.

5.3. Reconfiguration Delay

Current PR based NoCs [13][14][15][16] rely on Xilinx’s
PR design flow where each of the routers in the NoC is
placed a single PRR. This approach incurs a significant re-
configuration overhead that increases as the area require-
ment of the router decreases. Lower area requirements of
router allows more routers to be placed in a single column
of CLB and configured at the same time. However, a partial
bitstream generated by Xilinx’s PR design flow only recon-
figures a single router regardless of the number of routers in



a single CLB column. To illustrate the difference in terms
of reconfiguration delay between Xilinx’s flow and the re-
configuration process described in Section 4.2, the design
proposed in R2NoC [16] is considered due to its lightweight
router. A single Virtex-6 CLB column with 320 LUTs
can implement up to 40 routers with 1-bit ports based on
R2NoC’s design. However, each partial bitstream modifies
the configuration of a single router while preserving the con-
figuration of others. Therefore, 40 partial bitstreams needs
to be written to the ICAP to reconfigure all the routers in a
single column. In addition, each partial bitstream configures
36 frames because R2NoC’s design requires the switch ma-
trix to be reconfigured as well. As a result, a total of 1440
frames need to be written while the reconfiguration process
described in Section 4.2 requires 8 frames only.

6. CONCLUSION

In this paper, an area-efficient crossbar switch has been pre-
sented with an area saving of up to 84%. In addition, a fast
algorithm for setting up a new connection in the crossbar
switch with a complexity of O(logN) is also proposed. Fi-
nally, reconfiguration delay of the crossbar switch is mini-
mized up to 78% with a custom reconfiguration procedure.

In the future, other network topologies will be built upon
the proposed crossbar switch architecture, and their perfor-
mance will be evaluated. Furthermore, the possibility of har-
nessing the rich routing logic on the switch matrix to build a
more efficient crossbar switch will be explored.

Acknowledgment
The authors would like to thank the Xilinx University Pro-
gram (XUP) for donating the PR license. This work was
supported by Singapore Ministry of Education Academic
Research Fund Tier 1 with grant number R-263-000-655-
133.

7. REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: A new soc
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] Z. Yang, A. Kumar, and Y. Ha, “An area-efficient
dynamically reconfigurable spatial division multiplexing
network-on-chip with static throughput guarantee,” in Field-
Programmable Technology (FPT), 2010 International Con-
ference on. IEEE, 2010, pp. 389–392.

[3] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and
F. Catthoor, “Concepts and implementation of spatial divi-
sion multiplexing for guaranteed throughput in networks-on-
chip,” Computers, IEEE Transactions on, vol. 57, no. 9, pp.
1182–1195, 2008.

[4] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal net-
work on chip: concepts, architectures, and implementations,”
Design & Test of Computers, IEEE, vol. 22, no. 5, pp. 414–
421, 2005.

[5] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaran-
teed bandwidth using looped containers in temporally disjoint
networks within the nostrum network on chip,” in Design,
Automation and Test in Europe Conference and Exhibition,
2004. Proceedings, vol. 2. IEEE, 2004, pp. 890–895.

[6] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal,
“Multiprocessor systems synthesis for multiple use-cases of
multiple applications on fpga,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 13, no. 3,
p. 40, 2008.

[7] L. Devaux, S. Sassi, S. Pillement, D. Chillet, and
D. Demigny, “Flexible interconnection network for dynam-
ically and partially reconfigurable architectures,” Interna-
tional Journal of Reconfigurable Computing, vol. 2010, p. 6,
2010.

[8] M. Modarressi, H. Sarbazi-Azad, and A. Tavakkol, “An ef-
ficient dynamically reconfigurable on-chip network architec-
ture,” in Design Automation Conference (DAC), 2010 47th
ACM/IEEE. IEEE, 2010, pp. 166–169.

[9] B. Ahmad, A. Erdogan, and S. Khawam, “Architecture of a
dynamically reconfigurable NoC for adaptive reconfigurable
mpsoc,” in Adaptive Hardware and Systems, 2006. AHS
2006. First NASA/ESA Conference on. IEEE, 2006, pp. 405–
411.

[10] Partial Reconfiguration User Guide, Xilinx, Inc., 2012,
v13.4. [Online]. Available: http://www.xilinx.com/

[11] C. Clos, “A study of non-blocking switching networks,” Bell
System Technical Journal, pp. 406–424, 1953.

[12] V. E. Benes, “Optimal rearrangeable multistage connecting
networks,” Bell System Technical Journal, pp. 1641–1656,
1964.

[13] C. Bobda, M. Majer, D. Koch, A. Ahmadinia, and J. Teich,
“A dynamic NoC approach for communication in reconfig-
urable devices,” Field Programmable Logic and Application,
pp. 1032–1036, 2004.

[14] S. Jovanovic, C. Tanougast, S. Weber, and C. Bobda, “Cunoc:
A scalable dynamic NoC for dynamically reconfigurable fp-
gas,” in Field Programmable Logic and Applications, 2007.
FPL 2007. International Conference on. IEEE, pp. 753–756.

[15] T. Pionteck, R. Koch, and C. Albrecht, “Applying partial re-
configuration to networks-on-chips,” in Field Programmable
Logic and Applications, 2006. FPL’06. International Confer-
ence on. IEEE, pp. 1–6.

[16] L. Devaux, S. Pillement, D. Chillet, and D. Demigny,
“R2noc: dynamically reconfigurable routers for flexible net-
works on chip,” in 2010 International Conference on Recon-
figurable Computing and FPGAs. IEEE, 2010, pp. 376–381.

[17] J. Hur, S. Wong, and S. Vassiliadis, “Partially reconfigurable
point-to-point interconnects in virtex-ii pro fpgas,” Recon-
figurable Computing: Architectures, Tools and Applications,
pp. 49–60, 2007.

[18] S. Young, P. Alfke, C. Fewer, S. McMillan, B. Blodget, and
D. Levi, “A high i/o reconfigurable crossbar switch,” in Proc.
of the 11th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM 03), 2003, pp. 3–10.

[19] A. Brant and G. Lemieux, “Zuma: An open fpga overlay ar-
chitecture,” in 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines. IEEE,
2012, pp. 93–96.


