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ABSTRACT

A Brain Computer Interface (BCI) is a system that allows
direct communication between a computer and the human
brain. Though the main application for BCIs is in rehabilita-
tion of disabled patients, they are increasingly being used in
other application scenarios as well. Most of the current BCI
systems are based on personal computers. However, there
is an increased interest in implementing BCIs for portable
platforms as well, such as mobile phones and Field Pro-
grammable Gate Arrays (FPGAs) owing to low cost, power
and portability. This paper proposes a low-cost FPGA based
BCI speller application. The proposed system combines a
stimulation panel, data acquisition and FPGA based real-
time signal processing. The BCI system demonstrated here
is a speller, which allows the user to use his/her brain signals
to communicate directly with the application and spell out
words by merely looking at the screen. The system achieves
an accuracy of 65.37% when utilizing 2 rounds of data per
character and an accuracy of 100% when utilizing 20 rounds
of data per character.

Index Terms–Field-programmable gate array (FPGA), brain
computer interface (BCI), P300, Real-time system.

1. INTRODUCTION
A Brain Computer Interface is a system that bypasses the
body’s normal neuromuscular pathways. Instead of depend-
ing on peripheral nerves and muscles, a BCI directly mea-
sures brain activity associated with the user’s intent and trans-
lates the recorded brain activity into corresponding control
signals for certain applications. A BCI system consists of a
signal acquisition unit which records brain activity such as
electroencephalogram (EEG), a stimuli presentation method
(typically visual stimuli), a signal processing unit, and an
application/prosthetic device. When the user attends to a
stimulus, the intent is “captured” by an EEG recording sys-
tem through electrodes placed on the user’s scalp. The sig-
nals recorded by the system are processed and classified to
recognize the intent of the user.

BCI systems have proven to be a boon for patients suf-
fering from severe neuro-muscular disorders, such as Amy-
otrophic Lateral Scleroses (ALS), Stroke, Spino-Cerebellar
Ataxia (SCA) etc, who have difficulty in communicating
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Fig. 1. Building Blocks of a Brain Computer Interface

vocally or through actions. Developing a system that en-
ables the users to control or communicate with external de-
vices without using their limbs reduces their dependence on
a helper, and enables them to have a better quality of life.

BCI technology is being used in an increasing number
of applications. For instance, Graimann et al. [1] devel-
oped “Roland III”, a system which can help the user au-
tonomously in a room. In another work, Valbuena et al. [2]
demonstrated another robot, “FRIEND II”. Disabled users
could do activities such as pouring beverages into a glass
using only intent and without any muscle movement. How-
ever, such systems require high-speed computers for signal
processing and bulky monitors for displaying the stimulus,
which limits their use and portability. In order to address
these shortcomings, there has been an increased trend to
move towards more portable and less expensive, power effi-
cient and portable platforms such as mobile phones, FPGA’s,
etc [3]. Experiments have also been performed to implement
signal processing algorithms and signal acquisition on mo-
bile phones [4]. Although mobile devices ensure high porta-
bility, implementing these algorithms require use of expen-
sive phones with high processing capability. Furthermore,
mobile phones are usually not scalable and do not support
custom refresh rates required for accurate stimulus presen-
tation. FPGA’s are also being explored as alternate plat-
forms for implementing BCI systems. In [5], all the sub-
systems such as those for stimulus generation, signal acqui-
sition and signal processing algorithms were implemented
successfully on an FPGA. Some of the benefits of using an
FPGA are that it can guarantee a scalable, low-power, stand-
alone and cost effective system.

In a typical BCI system, certain brain activity patterns
need to be elicited though external stimuli or through self-



modulation, which are then mapped to various commands.
The various activity patterns include P300 (produced by a
surprise stimuli), steady state visual evoked potentials (SSVEP,
produced in response to flickering stimuli), mental imagery,
slow cortical potentials etc [6]. The specific potential/activity
pattern employed by the BCI dictates the hardware and soft-
ware resources as well as the level of training required for
the subject. In this paper, we propose a P300-based BCI
Speller Application system implemented on a Xilinx Spar-
tan 3E FPGA board. The application consists of a 6 x 6 grid
with alphabets and characters. The main contributions of
the proposed system are that the data acquisition, signal pro-
cessing and stimuli generation are done on the same FPGA.
Moreover, this BCI system is, to the best of our knowledge,
the first FPGA-based P300 Speller application. While in the
current setup data is sent from PC to simulate an on-line sce-
nario, there are EEG systems available that are directly able
to supply data over Ethernet.

In Section 2, we discuss some related works. Section 3
gives a short background of P300 event related potentials on
which our system is based. Section 4 gives an overview of
our system such as the experimental setup, system specifica-
tions in terms of resource requirements etc. Section 5 gives
an in-depth view of the implementation of the system on the
FPGA. This section details the basic building blocks of the
system and the results of this experiment in terms of accu-
racy and response time. The paper concludes with Section
6 where we discuss future directions and possible enhance-
ments.

2. RELATED WORK
There is a recent interest in realizing BCI systems which are
more user friendly, cost effective, portable and efficient. In
a study by Wang et al. [3], an SSVEP stimulus was realized
on a mobile phone. The performance was evaluated by com-
paring the effectiveness of the stimulus with that on a tablet
and a laptop. The setup consisted of a Bluetooth-enabled
cell-phone and tablet, a mobile and wireless EEG device (in
the study, a headband), and a computer screen. The stimulus
consisted of a single flickering animation flashing at 11 Hz
for a one-minute duration. The results indicated that though
the tablet and the laptop were better than the cellphone, its
performance was within acceptable norms. In another ex-
periment, Wang et al. [4] explored the use of mobile phones
in order to design truly portable and practical BCI systems.
The study integrated a portable, wireless, low-cost EEG sys-
tem and a cell-phone based signal processing platform to
create a portable and practical SSVEP online BCI system.
A wireless and battery-powered EEG headband was used to
acquire and transmit EEG data of unconstrained subjects in
real-world environments. The acquired EEG data was re-
ceived by a regular cell phone through Bluetooth. The vi-
sual stimuli comprised of a 21 inch cathode ray tube (CRT)
monitor (140 Hz refresh rate, 800 x 600 screen resolution)
with a 4 x 3 stimuli matrix constituting a virtual telephone
keypad which includes digits 0-9, BACKSPACE and EN-

TER. The stimuli frequencies ranged from 9 to 11.75 Hz
with an interval of 0.25 Hz between two consecutive dig-
its. The users were required to make a phone call by dialing
an eleven digit number. Lee et al. [5] implemented a com-
plete BCI on an FPGA. The stimulus consisted of a panel
with four buttons each corresponding to particular tasks like
“Play/Pause”, “Stop”, “Volume Up” and “Volume Down”.
The study tested 7 subjects and required them to execute a
sequence of commands by gazing at the stimuli. Experimen-
tal results verified the effectiveness of the proposed SSVEP-
based BCI multimedia device control system as a low-cost
SSVEP BCI “computer-free” system.

3. THE P300 EVENT RELATED POTENTIAL
P300 is a widely used brain activity pattern for BCIs. The
user is asked to selectively look for the target/odd-ball stim-
ulus amidst randomly sequenced stimuli flashing in succes-
sion. As an example, the subject can be told to look for a
row/column containing the character ‘A’, in a sequence of
randomly appearing rows/columns of alphabets. The occur-
rence of the target/task-relevant stimulus, i.e., the row/column
containing ‘A’, elicits a positive deflection in the EEG after
approximately 300 ms.

The fact that P300 can be evoked in nearly all subjects,
and is relatively easy to elicit and detect simplifies interface
design and permits greater usability [7]. Pattern recogni-
tion algorithms are used to classify the EEG data into rec-
ognizable commands. The classifier we use is FLDA, which
projects the data linearly such that the projected means of
the classes are far apart, while the spread of projected data
is small [8].

4. SYSTEM OVERVIEW
The P300 BCI system is used to implement a speller opera-
tion that enables a user to type without using his hands. The
stimulus is displayed on a monitor and consists of a 6 × 6
grid with alphabets A-Z and numbers 0-9.
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Fig. 2. 6 X 6 Grid

Each row and each column of the grid is highlighted in
a pseudo-random sequence with an ISI (inter-stimulus inter-
val) of around 187 ms. Whenever the character the user is
focusing at is highlighted, a P300 response is evoked in the
brain, which is detected in the EEG. Electrodes are placed
at seven different areas on the scalp, viz, Cz, C3, C4, Pz, P3,
P4 and Oz, according to the International 10-20 system [9].



4.1. System Specification
The system is designed as a triple core system with three Mi-
croblaze processors. All three processors have shared access
to the double data rate synchronous dynamic random-access
memory (DDR SDRAM) and universal asynchronous re-
ceiver/transmitter (UART) peripherals. There are fast sim-
plex links (FSL) for communication between the first Mi-
croblaze (Microblaze 0) and the second Microblaze (Mi-
croblaze 1), as well as the second Microblaze (Microblaze 1)
and the third Microblaze (Microblaze 2).
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Fig. 3. Block diagram of the developed system

The first Microblaze includes the Ethernet Medium Ac-
cess Control (MAC) for high speed communication with the
computer. The second Microblaze has cache memory. This
processor has an FSL link for communication with the For-
ward Filter core. The third Microblaze has a TFT IP and
displays output on a TFT monitor.

Table 1. FPGA UTILISATION
Resource Slices LUTs BRAM

Microblaze 0 953 1823 0

Microblaze 1 1169 2268 4

Microblaze 2 852 1565 0

Filter Core 4019 5377 0

5. IMPLEMENTATION
This section gives the implementation details of the system
and the various building blocks involved.

5.1. Algorithm
One “round” of recording is said to be complete when each
row and each column of the 6 x 6 stimulus grid is highlighted
once. This experiment is conducted for 720 such rounds,
out of which the first 100 rounds are used to train the classi-
fier, while the remaining 620 rounds are used to classify the
subsequent brain signals into classes, or, in our case, predict
which character is being gazed at. Furthermore, every 1 sec-
ond of data recording, sampled at 256 Hz, from each of the
seven EEG channels is marked as one “epoch”. Each epoch
is time stamped by making a note of its start-time from a

fixed reference. The time of highlighting of each row and
column is recorded as well. For all rounds, a target char-
acter is highlighted in white color. The user is supposed to
focus on this character.

On the FPGA side, Microblaze 2 (MB 2) always runs in
parallel and is responsible for the 6 x 6 stimulus. Microb-
laze 0 (MB 0) receives the first block of information from
the PC in the form of TCP/IP packets. It compares the start-
ing time of the epoch and the time for the first highlighting
of the round as shown in Figure 4. If the starting time of the
epoch is found to be less than that of the first highlighting,
the FPGA discards that epoch. Conversely, if the starting
time of the epoch is found to be greater than that of the first
highlighting, MB 0 passes both the strucures, that is, “Sig-
nal Data” and “Order Data” to Microblaze 1 (MB 1) via the
FSL 0 1 Link.
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Fig. 4. Order Data(left) and Signal Data(right) Compari-
son: Epoch Discarded

Hence, after passing the data for the first epoch, MB 0
also passes the data for the next two epochs to MB 1. In
MB 1, this received data is sent to the Forward Filter core
via FSL FILT. The Filter Core returns the filtered values
back to MB 1. MB 1 then down-samples these elements
by a decimation factor of 8, down to 32 Hz from 256 Hz.
Usually, data for a duration of 0.7 seconds from the start is
considered to belong to a particular epoch. Hence, the data
for the last 0.3 seconds is also discarded, further reducing
the sample size by 0.7 times, or down to 23 samples.

5.2. Data Transfer
The transfer of data between the PC and the Spartan 3E is
managed by using the TCP/IP protocol. The PC is running
an Intel i5 Processor at 2.3 GHz. A C# program makes use
of the socket programming library ‘System.Net.Sockets’ to
send/receive data. On the Spartan 3E board, the lightweight
internet protocol (LWIP) stack is used for communication
with the PC. The PC uses a flow control strategy of waiting
for one acknowledgment between successive transmissions,
to ensure that it does not overwhelm the FPGA.

5.3. Forward Filter
The filter being used here is a forward Butterworth filter of
order 3. The band-pass frequency range is between 0.5 Hz
and 12 Hz. The data path for the VHDL filter is shown
in Figure 5. Our implementation of this filter utilizes the
FloPoCo [10] floating point arithmetic cores compliant with
the single-precision IEEE-754 standard. The process of fil-
tering begins with MB 1 sending the epoch data to the filter
core via the FSL FILT link. The filter’s transfer function



consists of 7 coefficients in both the numerator and the de-
nominator.
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Fig. 5. Forward Filter Data Flow

5.4. Matrix Inverse
The computation of FLDA involves the inverse of a 161 X
161 matrix. Due to low memory bandwidth and the recur-
sive nature of the Determinant-Adjoint method, we have im-
plemented the inverse using the Gauss-Jordan Algorithm. In
this algorithm, the concerned square matrix is augmented
with an identity matrix of the same dimension and then re-
duced to its ‘row echelon form’ yielding its inverse. This
algorithm, for a large input square matrix, reduces the com-
plexity of the operation from O(n!) to O(n3).

5.5. Video Output
The TFT monitor displays a grid of 205 x 205 pixels with
all characters displayed in black and the target character dis-
played in white. The rows are highlighted in pink color.
Double buffering is implemented to tackle the problem of
flickering when the rows or columns are being highlighted.
The user is supposed to focus on the target character (the
character which is highlighted in white color). This target
is pre-determined for all the rounds. This setup is done in
order to determine the accuracy of the system. The char-
acter predicted by the system is compared with the actual
pre-determined target. Thereafter, the number of characters
correctly identified are taken note of.

Table 2. Accuracy results for the P300 speller application
Matlab
Offline

Rounds/Char 2 4 5 10 20
Accuracy 65.37% 83.88% 93.66% 97.76% 100%

Matlab
Online

Rounds/Char 2 4 5 10 20
Accuracy 58.06% 69.03% 73.39% 82.26% 87.10%

FPGA
Online

Rounds/Char 2 4 5 10 20
Accuracy 58.06% 69.03% 73.39% 82.26% 87.10%

5.6. Experimental Results
The classifier is tested for 1340 rounds, which implies that
the classifier scores for 1340 characters are computed. In
the experiment, the target character is same for 2 consecutive
rounds and hence, 670 characters are detected by the system.
By decreasing the number of rounds required to identify
each character, the classification accuracy decreases. Con-
versely, on increasing the number of rounds, the accuracy

increases however, the time taken to predict each charac-
ter increases. This is an unavoidable trade-off of this BCI
system. The accuracy obtained by varying the number of
rounds is tabulated in Table 2.

6. CONCLUSIONS AND FUTURE WORK
In this experiment, we implement a FPGA-based low-cost
P300 speller. The system integrates the generation of a stim-
ulus on a TFT monitor, signal acquisition and signal pro-
cessing, all on an FPGA. The design allows online real-
time processing of the P300 signal without a bulky personal
computer. Finally, experimental results verify the effective-
ness of the proposed P300-based BCI system through imple-
menting the P300-based Speller application. The proposed
system allows disabled patients to communicate more effec-
tively with a computer/prosthetic device. Future directions
include (1) getting the brain signals directly onto the FPGA
from the EEG amplifier, and (2) offloading more pieces of
code from C to VHDL to take advantage of the hardware ac-
celeration. Certain computationally intensive functions like
the matrix inverse and matrix multiplication may be exe-
cuted more efficiently. This will reduce the time required
for the system to detect and display the predicted character.

7. REFERENCES
[1] B. Graimann, B. Allison, C. Mandel, T. Lüth, D. Valbuena, and
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