High Speed Video Processing Using Fine-Grained
Processing on FPGA Platform

Zhi Ping Ang, Akash Kumar, Yajun Ha
Department of Electrical & Computer Engineering
National University of Singapore
4 Engineering Drive 3, Singapore 117583
Email: {angzhiping,akash,elehy} @nus.edu.sg

Abstract—This summary paper! proposes an FPGA-based
array processor which performs Laplacian filtering on a 40
by 40 pixel grayscale video. The architecture comprises of bit-
serial pixel processors interconnected to give a two-dimensional
mesh array. This architecture features the novel use of partial
reconfiguration which transfers data to and fro the array. Each
processor occupies a configurable logic block and achieves a
target frame rate of 10000 frames per second, at an operating
frequency of 0.31 MHz on the Virtex-6 ML605 Evaluation Kit.
The detailed correspondence between the contents of slice lookup
tables and the Virtex-6 bitstream format is also documented.

Index Terms—Fine-grained FPGA computing; High speed
video processing; Partial reconfiguration; Bit-serial arithmetic

I. INTRODUCTION

Several scientific and engineering fields use high speed
video capture to investigate physical phenomena that are too
rapid for human perception. Examples include examining
the bio-mechanics of a hummingbird’s in flight [1], and
investigating a projectile’s impact pattern in criminal forensics
[2]. Computational processing often accompanies video capture
to analyse the video.

High frame rate videos require processing power that matches
the high data throughput. Otherwise, a mismatch in data rate
can be accommodated using off-line processing. However,
real-time processing is desirable as the system can analyse
and make situational decisions based on an ongoing event.
Another downside is that off-line processing requires storage
to buffer the incoming data, which is not required by real-time
processing. An alternate way of matching data throughput to
limited processing capability is to drop n — 1 frames for every
frame processed. A reduced frame rate of processing loses
accuracy as discarded data can be used to refine upon the
collected data.

This research proposes a single-chip reconfigurable hardware
architecture which eliminates the use of off-line processing
and frame dropping by accelerating video processing using an
array of pixel processors. Each processor operates on a pixel,
providing a computational speed-up proportional to the input
frame size. This array processor also features the novel use of
partial reconfiguration to distribute data to all the processors.

' An expanded version of this paper is accessible at http://x.co/fccm13p64.

II. HARDWARE-BASED HIGH SPEED VIDEO PROCESSING

To address the disadvantages of off-line processing and frame
dropping, dedicated hardware is used to attain high frame rate
video processing. They are categorised into three classes.

A. Commercial Video Processors

Processing capability is available in most commercial image
sensors. Unfortunately, they are largely primitive forms of
processing. Most image sensors output in either RGB or
YC,C; colour space format. Colour space conversion trivially
transforms the image at the pixel level, therefore no useful
higher level information such as edge features can be obtained.
Another form of processing would be amplification, which
uniformly scales the magnitude of every pixel. Likewise, this
operation occurs at the pixel level and does not perform any
higher-level analysis.

B. ASIC-based Video Processing in Research

Image sensors with built-in high speed processing capabil-
ities are more advanced within the research community as
compared to commercial sensors. This section explores some
of the cutting edge technology realised on application-specific
integrated circuits (ASIC):

1) A Programmable Vision Chip Based on Multiple Levels of
Farallel Processors [3]: Zhang et al. developed a vision chip
which performs edge detection on an input video of 128 by
128 pixel resolution at a rate of 500000 fps. The chip devotes
a processing element for every pixel, therefore, the speed up
achieved is substantial.

2) Switched Current Analogue Matrix Processor (SCAMP-3)
[4]: The SCAMP-3 chip performs Sobel filtering on an input
video of 128 by 128 pixels at a frame rate of 3600 fps. Similar
to the chip mentioned in Section II-B1 speed up is achieved
by devoting dedicated hardware to every image pixel.

3) A Real-Time Motion-Feature-Extraction Image Processor
Employing Digital-Pixel-Sensor-Based Parallel Architecture
[5]: The chip designed by Zhu and Shibata is fabricated on
the 65 nm process. It features a 100 by 100 pixel sensor
integrated with a row parallel processing unit. As this chip
does row parallel as compared to pixel parallel processing in
the previous 2 examples, the effective processing frame rate is
on the order of a few hundred fps.

C. FPGA-based Video Processing in Research

Although ASIC-based chips achieve excellent frame rate
processing, design and fabrication are tedious and expensive.
The design turnaround time for ASIC-based designs can take
several months. Moreover, fabricating ASICs is not cost-
effective unless they are manufactured in high volumes (i.e.
millions of units per fabrication run). Therefore, a more flexible
and cost effective platform such as the field programmable gate
arrays (FPGA) is preferred for low to middle volume usage.
The following discusses cutting edge developments of high
speed video processing on FPGA.

1) 2000 fps Real-time Vision System with High-frame-rate
Video Recording [6]: The paper demonstrates a video capturing
and centroid computation onto a dual-FPGA system. The first
chip performs camera input processing, noise reduction and
interfaces with a workstation; the second chip is responsible
for video processing. The input video has a resolution of 512
by 512 pixels and processes at an effective frame rate of 2000
fps.

2) Development of High-speed and Real-time Vision Plat-
form, H3 Vision [7]: In this research the dual-FPGA setup is
similar to that of [6], except that the system performs optical
flow computation on a 1024 by 1024 pixel input image at a
frame rate of 1000 fps.

In both research, the downside is that two FPGA chips
are required to achieve a high processing frame rate. It is
preferable for a video capture system to be implemented on a
single chip solution as a larger chip count translates to higher
material costs. Moreover, a multi-chip solution would mean
higher developmental effort and a larger power expenditure by
the system compared to single-chip.

III. PROPOSED ARCHITECTURE

Addressing the disadvantages of offline processing or frame
dropping requires hardware processing. The inflexible and
costly ASICs give FPGA-based solutions an upper hand in
terms of implementation flexibility and cost effectiveness.
However, the current state-of-the-art research in high speed
imaging on FPGA is found to be unsatisfactory in terms of
the use of multiple chips to implement a capture-and-process
system. Therefore, this research paper proposes a single-chip
FPGA solution which performs high speed video processing.

A. Specifications

The target frame rate is at least 10000 fps. The input video
is grayscale with a bit-depth of 8 and has a resolution of 40 by
40 pixels. The Laplacian operator, widely used in applications
such as artifact rejection [8] and scene classification [9], is
realised and given by (1). The hardware architecture is a two
dimensional mesh array consisting of interconnecting primitive
pixel processors, whereby each processor processes a single
pixel. A processor assigned to every pixel ensures pixel-level
parallelism. The array is implemented on the Xilinx ML605
Evaluation Board.

1
Vil =1Ioy —~

4 (Ixfl,y + Ix+1,y + Ix,yfl + Ix,erl) (l)

1
|
1
FA, |
:
1
1
1
1

To neighbouring pixel processors

—> Routing fabric
—> Compute/—reset global net
===% Partial reconfiguration fabric

Fig. 1. Bit-serial architecture of a pixel processor

B. Bit-serial Arithmetic

On each pixel processor, the Laplacian operator is imple-
mented using bit-serial arithmetic [10] with the architecture
shown in Fig. 1. Pixel values reside in shift registers imple-
mented using lookup tables (LUT). The registers shift out pixel
values, least significant bit-first, into the bit-serial circuitry
before returning to populate the result back. Bit-serial arithmetic
can also be applied to various image filter kernels, for example,
[11] implements the Sobel and Hough operator on a similar
architecture.

C. Fartial Reconfiguration for Pixel Data Distribution

Distributing pixel data using a bus interface is impractical
when the mesh array occupies a large region. Therefore,
the underlying reconfiguration circuitry is used to populate
shift registers with inputs and readback outputs. Reading and
writing configuration data is achieved by using the internal
configuration access port (ICAP) [12]. The use of partial
reconfiguration to distribute data throughout the FPGA fabric
is novel as reconfiguration is originally intended to swap logic
partitions for multiple use cases. This network is an often
underutilized routing fabric which could potentially free up
routing resources for a larger design. By making full use of
the partial reconfiguration routing, a design requires a smaller
area because less routing and logic is occupied.

IV. XILINX VIRTEX-6 LUT-BITSTREAM CORRESPONDENCE

Knowledge of the bitstream format is required to populate
the logic slices with pixel values. So far, the one-to-one
correspondence between the contents of lookup tables and
the requisite bitstream format has been poorly documented in
both commercial and research literature. Therefore, this section
details the work on deducing the LUT-bitstream correspondence
on Virtex-6 architectures. The Xilinx FPGA Editor is used to
alter the contents within LUTs of a slice and the bitstream
of the modified configuration is generated. The original and
modified bitstreams are then compared using RapidSmith [13].

Four consecutively addressed frames fully configure the LUT
contents of a column of 40 region-aligned slices. The 256-bit

Lookup table contents >

o
Fomms

>

oo}

< Bitstream contents (LSB indexed as 0)

Biz[sis]=]
B EEIE

|

Fig. 2. Bitstream to LUT correspondence of a single slice

LUT contents of a slice consists of 8 words straddling across 4
frames [12]. Fig. 2 shows the detailed correspondence between
LUT content and bitstream. The location within the bitstream
which determines the value of the respective LUT entry is
given by the intersection of both axes at a numbered box, the
number representing the frame index where the bit resides.

The dotted boxes labelled by matching letters succinctly
represents the recursive pattern of the bit correspondences. To
give an example, given the 4 frame addresses which configure
a slice as X, ..., X+3, the bit value in the entry AS50 is
determined by the 2"¢ bit of the bitstream which configures
the frame addressed at X+3.

V. SYSTEM CONFIGURATION

Fig. 3 shows the system configuration used to interface the
array processor on the ML605 board. Peripherals and memories
are connected together to a MicroBlaze processor using the
AMBA AXI4 protocol. Peripheral control signals go through
the slower AXI4-Lite bus, whereas high throughput traffic, such
as DMA transfers, goes through the AXI4 bus. The following
sections highlight pertinent details of the configuration.

A. User Constraints File (UCF)

Since data within the shift registers are exchanged using
partial reconfiguration, LOC and BEL constraints [14] are used
to place these registers at predetermined locations within the
FPGA fabric. Assuming the ICAP is configured using a 32-bit
interface at 100 MHz with 10% overhead, the array processor
requires a minimum clock frequency of 0.31 MHz to reach the
target 10000 frames per second. Therefore the clock net can

be constrained to run at any frequency higher than 0.31 MHz.

Lastly, the SAVE NET FLAG constraint prevents the removal
of shift registers since they have no effect on external logic.
B. Operation

A computer passes video frames to the FPGA via a 1 GbE
interface. The GbE hardware IP, programatically controlled

T TR
1
1
* ‘ Glgablt e
Ethernet =
> [
DMA [2 4 Y
72} e
=5 ot
DDR3 =2 .‘g
]
SDRAM < ’i < > [CAP |e----- B
< Interrupt T x
<} ITay processor
(> Micro3laze «» T

<«+— AXI4 bus connection .
.................. > Interrupt line

< - == Direct memory access <« — > Gioabit cth "
* - > Configuration interface lgabit etherne
Fig. 3. System configuration

using the Lightweight IP (LwIP) library [15], intercepts the data
packets and populates a memory buffer using the DMA IP. The
DMA interrupts MicroBlaze upon completion, which in turn
starts transferring data from the memory to the ICAP. After the
ICAP finishes populating the array, the MicroBlaze issues a start
command to the array processor. The array processor interrupts
the MicroBlaze when Laplacian filtering has completed, which
then initiates a DMA transfer to pull configuration data out
of the array through the ICAP to the memory. Processed data
residing in the memory is then transferred out of the FPGA
through the GbE interface to the computer.

VI. METHODOLOGY

Test video clips are obtained from the UCF-Lockheed-Martin
UAV Data Set, courtesy of the Center for Research in Computer
Vision at University of Central Florida?. The array processor
is first simulated on ModelSim for functional correctness. On
the ML605 hardware, test inputs are passed into the array
processor through a workstation connected to the FPGA via
a 1 GbE interface. The processed results are relayed to the
computer for analysis. MATLAB is used to measure the amount
of truncation error incurred by taking in the original grayscale
images and computing the ideal Laplacian image using floating
point precision. The MATLAB, simulated and actual outputs
are compared on a pixel-to-pixel basis.

VII. RESULTS

Fig. 4 shows the post-routed layout of the entire system
on the ML605. The array processor (highlighted in green) is
neatly sited in a rectangular region at the top left corner as a
result of the UCF placement constraints.

A. Resource Utilization

The resource utilization of the array processor is shown in
Table 1. This agrees well with the model of the pixel processor
shown in Fig. 1, where 4 slice flip-flops and 4 LUTs are

2The data set is accessible at http://crev.ucf.edu/data/UCF_Aerial_Action.
php.

Fig. 4. Post routed layout on the XC6VLX240T. Coloured regions correspond
to the following modules: light green — array processor, yellow — ethernet,
blue — ICAP, cyan — DDR3 SDRAM bus interface, white — MicroBlaze, purple
— AXI4 bus interface

required to implement a single processor. On average, a pixel
processor consumes one configurable logic block. The figures
under the occupied slice column gradually decreases as the
size of the array processor increases, due to the fixed overhead
involved in implementing the AXI4-Lite bus logic.

Table 1
RESOURCE UTILIZATION OF ARRAY PROCESSOR PERIPHERAL
Size of array Average resource per pixel

processor Occupied slices | Flip-flop | LUT | LUTRAM

2 x2 4.000 3.500 4.000 4.000

4 x4 2.813 3.875 4.000 4.000

8 x 8 2.328 3.969 4.000 4.000
16 x 16 2.145 3.992 4.000 4.000
32 x 32 2.061 3.998 4.000 4.000
40 x 40 2.063 3.999 4.000 4.000
60 x 60 2.080 3.999 4.000 4.000

B. Comparison Between MATLAB, Simulation and Implemen-
tation Outputs

The output images of the simulation and ML605 implemen-
tation are identical, whereas the outputs between the MATLAB
model and the other two slightly differ due to truncation error
in computing the quarter pixel value. The pixel-to-pixel error
approximately follows that of the multinomial distribution
function given by the coefficients of P(z) in (2), where the
term ax” means that the probability of the pixel-to-pixel error
being b is a.

1 1 1 3*
—(1—1—3:4 + 22 +x4) 2)

P@) = 356
The use of truncation to compute the quarter pixel value
leads to an overestimation of the computed Laplacian value
that is at most 3.0. On average, 0.58 bits of precision is lost
in the computed Laplacian. Fig. 5 shows the output results of
frame #1 of the test video clip. Observe that the outputs from
the Verilog and FPGA are grainer than the MATLAB output
due to the noise introduced by truncation error.

Fig. 5.
output and FPGA output

(From left) Original frame #1, MATLAB output, Verilog simulation

VIII. CONCLUSION

In this paper, the LUT-to-bitstream correspondence specific
to Virtex-6 has been fully reversed engineered and documented.
A working implementation of a 40 by 40 pixel has been realized
on the ML605, which has been verified to be functionally
correct with respect to its Verilog model. On average, a pixel
processor requires 1 CLB. The array processor is able to
achieve the target frame rate at a mere 0.31 MHz. To explain
the discrepancy between the MATLAB and Verilog simulation
outputs, a multinomial error distribution adequately models the
truncation incurred.

REFERENCES

[1] D. Warrick, B. Tobalske, and D. Powers, “Aerodynamics of the hovering
hummingbird,” Nature, vol. 435, no. 7045, pp. 1094-1097, 2005.

[2] M. Thali, B. Kneubuehl, P. Vock, G. Allmen, and R. Dirnhofer, “High-
speed documented experimental gunshot to a skull-brain model and
radiologic virtual autopsy,” The American journal of forensic medicine
and pathology, vol. 23, no. 3, pp. 223-228, 2002.

[3] W. Zhang, Q. Fu, and N. Wu, “A programmable vision chip based on
multiple levels of parallel processors,” Solid-State Circuits, IEEE Journal
of, vol. 46, no. 9, pp. 2132-2147, 2011.

[4] P. Dudek and S. Carey, “General-purpose 128 x 128 simd processor
array with integrated image sensor,” Electronics Letters, vol. 42, no. 12,
pp. 678-679, 2006.

[5] H. Zhu and T. Shibata, “A real-time motion-feature-extraction image
processor employing digital-pixel-sensor-based parallel architecture,” in
Circuits and Systems (ISCAS), 2012 IEEE International Symposium on.
IEEE, 2012, pp. 1612-1615.

[6] I. Ishii, T. Tatebe, Q. Gu, Y. Moriue, T. Takaki, and K. Tajima, “2000
fps real-time vision system with high-frame-rate video recording,” in
Robotics and Automation (ICRA), 2010 IEEE International Conference
on. IEEE, 2010, pp. 1536-1541.

[7]1 I Ishii, T. Taniguchi, R. Sukenobe, and K. Yamamoto, “Development of
high-speed and real-time vision platform, h3 vision,” in Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on.
IEEE, 2009, pp. 3671-3678.

[8] P. Van Dokkum, “Cosmic-ray rejection by laplacian edge detection,”
Publications of the Astronomical Society of the Pacific, vol. 113, no. 789,
pp. 1420-1427, 2001.

[9] B. Yousefi, S. Mirhassani, and H. Marvi, “Classification of remote sensing

images from urban areas using laplacian image and bayesian theory,” in

Proceedings of SPIE, vol. 6718, 2007, pp. 1-9.

K. Johansson, “Low power and low complexity constant multiplication

using serial arithmetic,” Ph.D. dissertation, Linkoping, 2006.

C. Nagendra, M. Borah, M. Vishwanath, R. Owens, and M. Irwin, “Edge

detection using fine-grained parallelism in vlsi,” in Acoustics, Speech,

and Signal Processing, 1993. ICASSP-93., 1993 IEEE International

Conference on, vol. 1. 1EEE, 1993, pp. 401-404.

Virtex-6 FPGA Configuration, Xilinx Inc., September 2012, uG360 (v3.5).

C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings, “Rapid

prototyping tools for fpga designs: Rapidsmith,” in Field-Programmable

Technology (FPT), 2010 International Conference on. 1EEE, 2010, pp.

353-356.

Constraints Guide, Xilinx Inc., January 2012, uG625 (v13.4).

A. Dunkels, “lwip—a lightweight tcp/ip stack,” Available from World

Wide Web: http://www. sics. se/ adam/lwip/index. html, 2005.

[10]

(11]

[12]
[13]

[14]
[15]

