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ABSTRACT

The number of features that are supported in modern multi-
media devices is increasing faster than ever. Estimating the
performance of such applications when they are running on
shared resources is becoming increasingly complex. Simu-
lation of all possible use-cases is very time-consuming and
often undesirable. In this paper, a new technique is pro-
posed based on probabilistically estimating the performance
of concurrently executing applications that share resources.
Two different methods of employing this approach are pre-
sented and compared with state-of-the-art technique, and
with achieved performance found through extensive simula-
tions. The results are within 15% of simulation result (con-
sidered as reference case) and up to ten times better than a
worst-case estimation approach. The approach scales very
well with increasing number of applications, and can also be
applied at run-time for admission control.

Categories and Subject Descriptors: C.4 [Perfor-
mance of Systems]: Modeling techniques

General Terms: Algorithms, Performance, Theory

Keywords: Performance Estimation, Probability, Re-
source sharing

1. INTRODUCTION
Modern multi-media systems show a need of integrating a

(potentially large) number of applications on a single device.
Further, these systems are becoming increasingly heteroge-
neous with the use of dedicated IP blocks and application
domain specific processors. To achieve high performance
in such systems, the limited computational resources must
be shared. The concurrent execution of dynamic applica-
tions on shared resources is a potential source of interfer-
ence. Modeling and analyzing this interference is a key to
building cost-effective systems which can deliver the desired
performance of the applications.

This analysis becomes a daunting task with the large num-
ber of possible use-cases. (A use-case is defined as a possible
set of concurrently running applications.) Future multime-
dia platforms may easily run 20 applications in parallel, cor-
responding to an order of 220 possible use-cases. It is clearly
impossible to verify the correct operation of all these situa-

This report is an extended version of the paper "A. Kumar, B. Mesman,
H. Corporaal, B.D.Theelen and Y. Ha. A Probabilistic Approach to Model
Resource Contention for Performance Estimation of Multi-featured Media
Devices. In 44th Design Automation Conference, DAC 2007, Proc ACM
2007". The report provides proofs omitted from the original paper.

tions through testing and simulation. The product divisions
in large companies already report 60% to 70% of their effort
being spent in verifying potential use-cases and this number
will only increase in the near future. This has motivated
researchers to emphasize the ability to analyze and predict
the behavior of applications and platforms without extensive
simulations of every use-case.

Synchronous Data Flow Graphs (SDFGs, see [9]) are often
used for modeling modern DSP applications [13] and for de-
signing concurrent multimedia applications implemented on
multi-processor system-on-chip. Both pipelined streaming
and cyclic dependencies between tasks can be easily mod-
eled in SDFGs. Tasks are modeled by the vertices of an
SDFG, which are called actors. SDFGs allow one to ana-
lyze a system in terms of throughput and other performance
properties, e.g. latency, buffer requirements [15, 19]. How-
ever, when the number of applications increases, the analysis
becomes overly pessimistic or computationally infeasible [7].
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Figure 1: Example of an SDF Graph

Figure 1 shows an example of an SDF Graph. There are
four actors in this graph. An actor can only start execution
when the required number of tokens are present on each of
its incoming edges, and upon completion, the actor produces
the number of tokens specified on the outgoing edge.

Our Contribution. In this paper, we propose an esti-
mation technique to compute application throughput tak-
ing resource contention into account. The main strength
of this approach is the limited information that is needed
from the other applications, thereby making it scalable as
the number of applications increases. Our technique esti-
mates delay using probability of a resource being blocked
by actors. Two methods have been outlined for computing
the effects of multiple actors mapped on a single processing
node. The formulae for computing overall delay for both
methods are presented. Their computational complexity is
analyzed, and they are further optimized to allow for effi-
cient implementation. Simulations with ten random appli-
cation graphs that mimic DSP or multimedia applications
were carried out. For over a thousand use-cases, throughput
obtained using our estimation approach was compared with
the throughput obtained through simulation. The results of



this comparison are also presented in the paper. Further,
our analysis takes about three minutes for each approach as
compared to about 23 hours of simulation, and yet provides
accurate estimates.

The rest of the paper is organized as follows. Section 2
discusses the related work in the area. Section 3 describes
the probabilistic approach, and Section 4 discusses how the
complexity of the approach can be reduced. Section 5 dis-
cusses the results of the proposed technique, and finally,
Section 6 presents the conclusions.

2. RELATED WORK
In [2], the authors propose to analyze performance of a

single application modeled as an SDFG mapped on a multi-
processor system by decomposing it into an HSDFG [13],
and modeling dependencies of resources by adding extra
edges on the nodes. This can result in an exponential num-
ber of vertices [11], after which the throughput is calcu-
lated based on analysing each cycle in the HSDFG [4]. Al-
gorithms that have a polynomial complexity for HSDFGs,
therefore have an exponential complexity for SDFGs. Algo-
rithms have been proposed to reduce average case execution
[5], but it still takes in practice O(n2) time where n is the
number of vertices in the graph. Besides, even for one ap-
plication the number of ways extra edges can be added to
model dependency is exponential [7]. For multiple applica-
tions the number of computations is huge; and if we need
to obtain throughput of the graph, an HSDFG can take too
much time to analyze and provide results [5]. Further, only
static order arbitration can be modeled using this technique
while the best performance of SDFG applications is obtained
when actors are allowed to execute with least contention on
their own [13]. Our approach allows for that behavior since
no ordering is imposed.

For multiple applications, an approach that models re-
source contention by computing worst-case-response-time for
TDMA scheduling (requires preemption) has been analyzed
in [3]. This analysis also requires limited information from
the other SDFGs, but gives a very conservative bound. The
analysis can be very pessimistic. As the number of appli-
cations increases, the bound increases much more than the
average case performance. Further, this approach requires
preemption for analysis. A similar worst-case analysis ap-
proach for round-robin is presented in [6], which also works
on non-preemptive systems, but suffers from the same prob-
lem of lack of scalability. Real-time calculus has also been
used to provide worst-case bounds for multiple applications
[12, 18, 8]. Besides providing a very pessimistic bound, the
analysis is also very intensive and requires a very high de-
sign time effort. Our approach on the other hand is very
simple. However, we should note that above approaches
give a worst-case bound that is targeted at hard-real-time
(RT) systems, while our estimation approach is aimed at
designing soft-RT systems.

A common way to use probabilities for modeling dynamism
in application is using stochastic task execution times [1, 10].
In our case, however, we use probabilities to model the re-
source contention and provide estimates for the throughput
of applications. This approach is orthogonal to the approach
of using stochastic task execution times. In our approach we
assume fixed execution time, though it is easy to extend this
to varying task execution times as well. To the best of our
knowledge, there is no efficient approach of analyzing multi-

ple soft-RT applications on a non-preemptive heterogeneous
multi-processor platform.

3. ANALYZING CONTENTION
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Figure 2: Two application SDFGs A and B

In this section we explain how the contention between
actors for processing resources is analyzed. We start the
analysis by defining some terms.

Definition 1. (Actor Execution Time) Actor execu-
tion time, τ(a) is defined as the time needed to complete
execution of actor a on a specified node. τ(a0) = 100, for
example, in Figure 2.

Definition 2. (Repetition Vector) Repetition Vector
q of an SDFG A is defined as the vector specifying the num-
ber of times an actor in A is executed for one iteration of
A. For example, in Figure 2, q[a0 a1 a2] = [1 2 1] and q[b0
b1 b2] = [2 1 1].

Definition 3. (Application Period) Application Pe-
riod Per(A) is defined as the time SDFG A takes to complete
one iteration on average. Per(A) = 300 in Figure 2. (Note
that actor a1 has to execute twice.) This is also equivalent to
the inverse of throughput. An application with a throughput
of 50 Hz takes 20 ms to complete one iteration.

We now refer to SDFGs A and B in Figure 2. Say a0

and b0 are mapped on a processor Proc0 and others have
dedicated resources. a0 is active for time τ(a0) every Per(A)
time units (since its repetition entry is 1). In the example
shown above, τ(a0) = 100 time units and Per(A) = 300
time units, which can be computed using MCM analysis
techniques [4] or state-space exploration technique [5].

The probability that Proc0 is used by a0 at any given time
is 100

300
= 1

3
, since a0 is active for 100 cycles out of every 300

cycles. Since arrival of a0 and b0 are independent, this is also
the probability of Proc0 being occupied when b0 arrives at
it. Further, since b0 can arrive at any arbitrary point during
execution of a0, the time a0 takes to finish after b0 arrives on
the node is uniformly distributed from [0, 100]. Therefore,
b0 has to wait for 50 time units on average if Proc0 is found
blocked. Since the probability that the resource is occupied
is 1

3
, the average time actor b0 has to wait is given by 50

3
≈ 17

time units. The response time (defined as sum of execution
time and waiting time) of b0 will therefore be ≈ 67 time
units.

3.1 Generalizing the Analysis
This sub-section generalizes the analysis presented before

by means of an example. As we can see in the above analy-
sis, each actor has two attributes associated with it: 1) the



probability that it blocks the resource and 2) the average
time it takes before freeing up the resource it is blocking. In
view of this we define the following terms before proceeding:

Definition 4. (Blocking Probability) Blocking Prob-
ability, P (a) is defined as the probability that actor a of ap-
plication A blocks the resource it is mapped on. P (a) =
τ(a).q(a)/Per(A). P (a0) = 1

3
in Figure 2. P (a) is also

represented as Pa interchangeably.

Definition 5. (Average Blocking Time) Average Block-
ing Time, µ(a) is defined as the average time before the re-
source blocked by actor a is freed given the resource is found
to be blocked. Again, µ(a) is also represented as µa inter-
changeably. µ(a) = τ(a)/2 for constant execution time. In
Figure 2, µ(a0) = 50.

If X is defined as the random variable that denotes how
long an actor b has to wait if the resource it is requesting is
being blocked by actor a, the probability density function,
w(x) of X can be defined as follows.

w(x) =

8

>

<

>

:

0, x ≤ 0
1

τ(a)
, 0 < x ≤ τ(a)

0, x > τ(a)

(1)

The average time b has to wait, or µa is therefore,

twait(b) = µa =

Z ∞

−∞

x w(x) dx

=

Z τ(a)

0
x

1

τ(a)
dx

=
1

τ(a)

»

x2

2

–τ(a)

0

=
τ(a)

2

(2)

Let us revisit our example in Figure 2. Let us now assume
actors ai and bi are mapped on Proci for i = 0, 1, 2. The
blocking probabilities for actors ai and bi for i = 0, 1, 2 is

P (ai) =
τ(ai).q(ai)

Per(A)
=

1

3
for i = 0, 1, 2.

P (bi) =
τ(bi).q(bi)

Per(B)
=

1

3
for i = 0, 1, 2.

The average blocking time of actors in Figure 2 is

[µa0
µa1

µa2
] = [50 25 50] and [µb0 µb1 µb2 ] = [25 50 50]

In this case, since only one other actor is mapped on every
node, the waiting time for each actor is easily derived.

twait(bi) = µ(ai).P (ai) and twait(ai) = µ(bi).P (bi)

twait[b0 b1 b2] = [
50

3

25

3

50

3
] and twait[a0 a1 a2] = [

25

3

50

3

50

3
]

Figure 3 shows the response time of all actors taking wait-
ing times into account. The new period of SDFG A and B
is computed as 359 time units for both. Clearly, the pe-
riod that these application graphs would achieve in practice
is only 300 time units. However, it must be noted that in
our entire analysis we have ignored the inter-graph actor de-
pendency. For example, if the cyclic dependency of SDFG
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Figure 3: SDFGs A and B with response times

1: aij is actor j of application Ai

2: for all actors aij do
3: P (aij) = GetBlockingProb(τ(aij), q(aij), Per(Ai))
4: end for
5: //Now use this to compute waiting time
6: for all Applications Ai do
7: for all Actors aij of Ai do
8: twait(aij) = ComputeWaitingTime(τ , P )
9: τ(aij) = τ(aij) + twait(aij)

10: end for
11: Per(Ai) = ComputeNewPeriod(Ai)
12: end for

Figure 4: Algorithm for estimating Period using
blocking probabilities

B was changed to clockwise, all the values computed above
would remain the same while the period of the graphs would
change. The new period as measured through simulation is
400 time units. The probabilistic estimate we have now ob-
tained in this simple graph is roughly equal to the mean of
period obtained in either of the cases.

Further, in this analysis we have assumed that arrival of
actors on a node is independent. In practice, this assump-
tion is not always valid. Resource contention will inevitably
make the independent actors dependent on each other. The
assumption becomes even weaker, when actors within an
application are considered. Even so, the approach we have
works well, as we see in Section 5.

A rough sketch of the algorithm used in our approach is
outlined in Figure 4. Blocking probability of all the actors
is first computed (Steps 2-4). This is used to compute the
waiting time for each actor which is then added to its own
execution time (Steps 7-10). The function ComputeWait-
ingTime takes blocking probability and execution time of all
the other actors mapped on the same node. The new execu-
tion times are used to compute new period of the application
(Step 11). The procedure is done for each application.

Computing the waiting time (Step 8) when there is only
one other actor mapped on the node is rather trivial as
demonstrated in the example. In the next subsection, we
extend the same for an arbitrary number of actors.

3.2 Extending to N Actors
Let us assume actors a, b and c are mapped on the same

node, and that we need to compute the waiting time for
c. c may be blocked by either a or b or both. Analyzing
the case of c being blocked by both a and b is slightly more



complicated. There are two sub-cases for it - one in which
a is being served and b is queued, and another in which b
is being served and a is queued. We therefore have four
possible cases.

Blocking only by a

twait(c1) = µa.Pa.(1 − Pb)

Blocking only by b

twait(c2) = µb.Pb.(1 − Pa)

a being served, b queued

twait(c3) =
1

2
.Pa.Pb.(

τ(a)

2
+ τ(b)) =

1

2
.Pa.Pb.(µa + 2µb)

b being served, a queued

twait(c4) =
1

2
.Pa.Pb.(

τ(b)

2
+ τ(a)) =

1

2
.Pa.Pb.(2µa + µb)

The total probability of both actors requesting the resource
when c arrives is Pa.Pb. The individual probability is taken
as half of that, since it is equally probable for either of them
to be ahead in the queue. The time that c may need to wait,
however, varies depending on which actor is being served.
For example, if a is ahead in the queue, c has to wait for
τ(ai)

2
due to a, since a is being served. However, since the

entire b remains to be served after a is finished, c needs to
wait τ(bi) for b. One can also observe that the waiting time
due to actor a is µa.Pa when it is in front, and 2.µa.Pa when
behind. Adding all the above equations, we get

twait(c) =
1

2
.Pa.Pb.(µa + µb) + µa.Pa + µb.Pb

= µa.Pa.(1 +
1

2
Pb) + µb.Pb.(1 +

1

2
Pa)

The above can be also computed by observing that when-
ever an actor a is in the queue, the waiting time is simply
µa.Pa, i.e. the probability of a being in the queue (regardless
of other actors) and the waiting time due to it. However,
when it is behind some other actor, there is an extra waiting
time µa, since the whole of a has to be executed. The prob-
ability of a being behind b is 1

2
.Pa.Pb and hence the total

waiting time due to a is µa.Pa.(1 + 1
2
Pb). The same follows

for the contribution due to b.

Queue Probability (excl Pa) Extra waiting prob
a (1 − Pb)(1 − Pc)
ab Pb(1 − Pc)/2
ba Pb(1 − Pc)/2 Pb(1 − Pc)/2
ac Pc(1 − Pb)/2
ca Pc(1 − Pb)/2 Pc(1 − Pb)/2
abc-acb Pb.Pc/3
bca-cba 2

3
Pb.Pc

2
3
Pb.Pcbac-cab

Total 1
2
(Pb + Pc) −

1
3
Pb.Pc

Table 1: Probabilities of different queues with a

For three actors waiting in the queue, it is best explained
using a table. Table 1 shows all the possibilities of queue
with a in it. The first column contains the ordering of actors
in the queue, where the leftmost actor is the first one in the

queue. All the possibilities are shown in it together with
their probabilities. Please note that since a is in all the
queues, the probability component Pa has been excluded.
For the cases when a is not in front, the waiting time is
increased by µa.Pa, and therefore, those probability terms
are added again. The same can be easily derived for other
actors too. We therefore obtain the following equation.

µabc.Pabc =µa.Pa.
“

1 +
1

2
(Pb + Pc) −

1

3
Pb.Pc

”

+ µb.Pb.
“

1 +
1

2
(Pa + Pc) −

1

3
Pa.Pc

”

+ µc.Pc.
“

1 +
1

2
(Pa + Pb) −

1

3
Pa.Pb

”

(3)

We can also understand intuitively, to an extent, how the
terms in the equation derived above contribute to the delay
(extra waiting time) in the analysis. The first term of each
of the three lines (for instance µa.Pa in first line) denotes
the delay due to the respective actors. The terms that follow
are the probabilities of the actor being in the queue; being
there with at least one more actor but behind; and then with
at least two more actors and so on and so forth. Since the
third probability term (≥ 2 actors) is included in the second
probability term (≥ 1 actor), the last term is subtracted.

Equation 3 is now generalized using the same reasoning
for n actors a1, a2, . . . an mapped on a resource to give

µa1...anPa1...an =
n

X

i=1

µai
Pai

“

1 +

n−1
X

j=1

(−1)j+1

j + 1

Y

j
(Pa1

. . . Pai−1
Pai+1

. . . Pan )
”

(4)

where
Y

j
(x1, ..., xn) is an elementary symmetric poly-

nomial defined in [16]. We observe that as the number of
actors mapped on a node increases, the complexity of anal-
ysis also becomes high. To be exact, the complexity of the
above formula is O(n.nn), where n is the number of actors
mapped on a node. Since this is done for each actor, the
overall complexity becomes O(n2.nn). In the next section
we see how this complexity can be reduced.

4. COMPLEXITY REDUCTION
The complexity of the analysis plays an important role

when putting an idea to practice. In this section we see how
we can reduce the complexity of the proposed approach, and
also present two different approaches of employing our idea.

4.1 Approximating for Implementation
The total complexity for analysis in Equation 4 is O(n2.nn).

Using some clever techniques for implementation, the com-
plexity can be reduced to O(n2+nn) i.e. O(nn), which is still
infeasible and not scalable. An important observation that
can be made is that higher order terms start to appear in
our analysis. The number of these terms in Πj in Equation
4 increases exponentially. Since these terms are products of
probabilities, higher order terms can be neglected. To limit
the computational complexity, we provide a second order
approximation of the formula.

µa1...anPa1...an ≈

n
X

i=1

µai
Pai

“

1 +
1

2

n
X

j=1,j 6=i

(Paj
)
”

(5)



Using this approximation the complexity reduces to O(n2)
(using clever implementation). In general, the complexity
can be reduced to O(nm) for m ≥ 2 by using m-th order
approximation. In Section 5 we present results of second
and fourth order approximations of Equation 4.

4.2 Composability-based Approach
In this approach, two actors are composed into one ac-

tor such that the properties of this new actor can be ap-
proximated by the sum of their individual properties. In
particular, if we have two actors a and b, we would like
to know their combined blocking probability Pab, and com-
bined waiting time due to them µab.Pab. We further define
this composability operation for probability by ⊕ and for
waiting time by ⊗. We therefore get,

Pab = Pa ⊕ Pb = Pa + Pb − Pa.Pb (6)

µab.Pab = µa.Pa⊗µb.Pb = µa.Pa.(1+
Pb

2
)+µb.Pb.(1+

Pa

2
) (7)

(Strictly speaking ⊗ operation also requires individual
probabilities of the actors as inputs, but this has been omit-
ted in the notation for simplicity.) Associativity of ⊕ is
easily proven by showing Pabc = Pab ⊕ Pc = Pa ⊕ Pbc.
Operation ⊗ is associative only to second order approxi-
mation. This can be proven in a similar way by showing
µabcPabc = µabPab ⊗ µcPc = µaPa ⊗ µbcPbc.

Associative property of these operations reduces the com-
plexity even further. Complexity of Equation 6 and 7 is
clearly O(1). If waiting time of a particular actor is to be
computed, all the other actors have to be combined giving
a total complexity of O(n2), which is equivalent to the com-
plexity of second-order approximation approach. However,
in this approach the effect of actors is incrementally added.
Therefore, when a new application has to be added to the
analysis and new actors are added to the nodes, the com-
plexity of the computation is O(n) as compared to O(n2) in
the case of second-order approximation, for which the entire
analysis has to be repeated.

Computing inverse of Formulae

The complexity of this Composability-based approach can
be further reduced when we can compute the inverse of the
formulae in Equation 6 and 7. When the inverse function
is known, all the actors can be composed into one actor by
deriving their total blocking probability and total average
blocking time. To compute the individual waiting time, only
the inverse operation with their own parameters has to be
performed. The total complexity of this approach is O(n)+
n.O(1) = O(n). The inverse is also useful when applications
enter and leave the analysis, since only an incremental add or
subtract has to be done to update the waiting time instead
of computing all the values.

The inverse for both operations are given below.

Pa1...anb = Pa1...an ⊕ Pb

⇒ Pa1...an = Pa1...anb ⊕−1 Pb =
Pa1...anb − Pb

1 − Pb

(Pb 6= 1)
(8)

µa1...anbPa1...anb = µa1...anPa1...an ⊗ µbPb

⇒ µa1...anPa1...an = µa1...anbPa1...anb ⊗−1 µbPb

⇒ µa1...anPa1...an =
µa1...anbPa1...anb − µb.Pb(1 +

Pa1...an

2
)

1 + Pb

2
(9)

It should be mentioned that the inverse formula can only
be applied when Pb 6= 1.

5. PERFORMANCE EVALUATION
In this section we present the results of above analysis

obtained as compared to simulation results for a number of
use-cases. For this purpose, ten random SDFGs were gen-
erated with eight to ten actors each using the SDF 3 tool
[14], mimicking DSP or a multimedia application, and was
a strongly connected component i.e. every actor in the graph
can be reached from every actor. The execution time and
the rates of actors were also set randomly. The SDF 3 tool
was also used to analytically compute period of the graphs.
Using these ten SDFGs, over a thousand use-cases (210)
were generated. Simulations were performed using POOSL
[17] to give actual performance achieved for each use-case.
Three different probabilistic approaches were used - second
order approximation of Equation 4, fourth order approxima-
tion of the same and composability approach using Equation
7. Results of worst-case-response-time analysis [6] for non-
preemptive systems are also presented for comparison.

The simulation of all possible use-cases, each for 500,000
cycles took a total of 23 hours on a Pentium 4 3.4 GHz with
3 GB of RAM. In contrast, analysis for all four approaches
was completed in only about 10 minutes. Computing wait-
ing times due to probabilistic estimates takes negligible time.
The only significant time is spent in computation of through-
put for each use-case. Throughput computation took about
6ms on average for each application for each use-case. Over-
all there were about 5000 (5 applications in each use-case on
average) throughputs to be computed, making it about 30
seconds for each estimation technique. The rest of the time
was spent in file handling by the operating system.

Figure 5 shows a comparison between periods computed
analytically using different approaches as described in the
paper, and the simulation result. The use-case for this fig-
ure is the one in which all applications are executing con-
currently. This is the case with maximum contention. The
period shown in the figure is normalized to the original pe-
riod of each application that is achieved in isolation. The
worst case observed in simulation is also shown.

A number of observations can be made from the figure.
We see how the period is much higher when multiple applica-
tions are run. For application C, the period is six times the
original period, while for application H, it is only three-fold
(simulation results). The analytical estimates computed us-
ing different approaches are also shown in the same graph.
The estimates using the worst-case-response-time [3] is much
higher than that achieved in practice and therefore, overly
pessimistic. The estimates of all the three probabilistic ap-
proaches are very close to the observed performance.

We further notice that the second order estimate is always
more conservative than the fourth order estimate, which is
expected, since it overestimates the contention for resources.
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Figure 5: Comparison of period computed using dif-
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Inaccuracy in Percent
Method Throughput Period Complexity
Worst Case 49.0 112.1 O(n)
Composability 4.0 13.8 O(n)
Fourth Order 0.7 13.1 O(n4)
Second Order 2.8 11.2 O(n2)

Table 2: Measured inaccuracy for throughput and
period as compared with simulation results. The
complexity of all the algorithms is also shown.

The fourth order estimates of probability is the closest to the
simulation results except in applications C and H.

Table 2 shows a summary of the measured inaccuracy
using different estimation techniques as compared to sim-
ulated case. These results are taken as the mean absolute
difference between the estimated and measured results, and
averaged over all the use-cases. The corresponding com-
plexity of the approach is also shown. As can be seen,
the worst-case approach provides estimates that are much
higher than those found through our approaches. Estimates
of the fourth-order approximation are the best in terms of
throughput. However, the inaccuracy of the other two prob-
abilistic approaches is also negligible. The complexity of
the worst-case based approach is indeed the least. How-
ever, the composability-based approach can also achieve the
same complexity if none of the probabilities are 1. The com-
plexity of the the other two approaches is higher, but that
comes with the advantage of much better accuracy over the
worst-case approach.

Figure 6 shows the variation in period that is estimated
and observed as the number of applications simultaneously
executing in the system increases. The metric displayed in
the figure is the mean of absolute differences between esti-
mated and observed period. When there is only one appli-
cation active in the system, the inaccuracy is zero for all
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Figure 6: Inaccuracy in application periods obtained
through simulation and different analysis techniques

the approaches, since there is no contention. As the num-
ber of applications increases, the worst-case-response-time
estimate deviates a lot from the simulation result. This in-
dicates why this approach is not scalable with number of
applications in the system. For the other three approaches,
we observe that the variation is usually within 20% of simu-
lation result. We also notice that the second order estimate
is almost exactly equal to the composability-based approach
- both of which are more conservative than the fourth-order
approximation. The maximum deviation in the fourth order
approximation is about 14% as compared to about 160% in
the worst-case approach - a ten-fold improvement.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a novel mechanism to an-

alytically derive throughput of concurrently running appli-
cations. Two different approaches based on that mechanism
are presented, which offer trade-offs between accuracy and
efficiency in implementation. These mechanisms are com-
pared with the worst-case estimation technique - the state
of the art in performance estimation for mapping multiple
applications on a multi-processor platform. The approach is
verified with real performance achieved during simulation.
The approach is scalable with the number of applications -
it is extremely fast, yet accurate for a large number of ap-
plications, and up to ten times better than the worst-case
estimation approach.

Since the approach is fast, it is feasible to employ this
technique for run-time admission control. The approach can
benefit even more by using the run-time throughput of the
applications to better estimate the effect of incoming appli-
cations. The application, for example, can be admitted only
if its expected throughput is above the desired throughput.
Further, the approach can be easily extended to varying ex-
ecution times, for example, in data dependent executions
where execution times are not fixed but follow a probabilis-
tic distribution. In future, we intend to extend our approach
to take task dependencies in a graph into consideration.
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