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Abstract—Simulation-based Design Space Exploration (DSE)
to evaluate all possible mappings for a given application
and Multiprocessor-System-on-Chip (MPSoC) platform is com-
putationally costly for large problems. Even using efficient
exploration methodologies to evaluate the mappings cannot
overcome the evaluation time bottleneck. This paper presents
a novel DSE methodology that analyzes the execution trace to
prune the vast design space. Simulations are employed only
on the pruned design points (mappings), hence reducing the
number of simulations. The methodology performs iterative
exploration and provides premier mappings requiring different
number of processors, which can be used at run-time subject
to desired performance and available platform processors.
We evaluate our methodology by using models of real-life
multimedia applications and demonstrate that the DSE time is
reduced by 72% while generating high quality mappings.

Keywords-Multiprocessor-System-on-Chip (MPSoC); Design
Space Exploration; Run-time Mapping;

I. INTRODUCTION

Embedded system designers need to handle several new
challenges with the increasing complexity of modern embed-
ded applications. In particular, the applications need efficient
mapping on MPSoC platform in order to satisfy their per-
formance constraints [1] [2]. Moreover, in order to support
dynamism, multiple applications have to run concurrently
on the MPSoC platform with the capability to accept new
applications at run-time [1]. The run-time mapping can
be assisted by DSE results (mappings explored at design-
time) but computational complexity of the DSE needs to be
reduced in order to have an acceptable exploration time. This
necessitates the need to develop novel DSE methodologies
towards performing rapid exploration.

Traditional DSE methodologies fall short as the number
of possible mappings increases exponentially with the com-
plexity (number of tasks) of the applications. For an appli-
cation containing 14 tasks, a total of 190,899,322 mappings
are obtained, which will take approximately 220 days in
evaluation if we assume 100 milliseconds (ms) to evaluate
one mapping. Thus, evaluation of all the possible mappings
is not always feasible. Therefore, there is a challenge to
finish the evaluation within a limited time without missing
the efficient mappings when the number of tasks in the
application is high. As an outcome, recently, there has been
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focus on devising efficient and effective DSE methodologies
to identify the premier mappings'. The mappings contain
allocation of application tasks on the MPSoC resources. The
DSE methodologies can have one or multiple objectives,
like energy consumption, compute performance etc. If the
complete explored space pertaining to an objective is given,
then one can select the candidates that meet the performance
constraints. However, for application with high complexity,
in practice, it might be infeasible to explore the complete
design space within an acceptable (limited) time.

State-of-the-art DSE methodologies explore a finite num-
ber of design points (mappings) and retain the Pareto-
optimal points in terms of performance or power consump-
tion. The best point amongst the Pareto-optimal points can
be selected to design a system depending upon the user
requirements or to facilitate for efficient run-time mapping
depending upon the available system resources. The best
point may refer to the Pareto-optimal point having the
maximum performance. Since only a finite number of design
points are evaluated, there is no guarantee to find the
absolute optimum in the design space. However, the design
space is reduced to a set of design points that are close to the
optimum. Further, most of the current DSE methodologies
use simulation-based approaches that are computationally
costly [3] [4] [5]. The simulation time to evaluate the
design points forms the real bottleneck in the DSE. In
order to accelerate the DSE, analytical estimations can be
considered [6] [7]. However, accuracy of the estimations is
restricted as sufficiently required system behavior cannot be
captured. Therefore, estimation based approaches are fast
but less accurate, whereas simulation based approaches are
accurate but slower. In order to cope with vast design space,
some accuracy can often be traded for performing faster
exploration.

Contribution: This paper addresses the shortcomings of
simulative & analytical approaches and proposes a method-
ology for performing efficient DSE. To evaluate mappings,
the proposed methodology combines simulations and an-
alytical estimations in order to perform accurate and fast
exploration. The methodology performs iterative evaluations.
In each iteration, first analytical estimations are used to
compute throughput of different possible mappings, then
simulation is performed only for the best mapping. The
mapping having maximum throughput has been referred
to as the best mapping. The best mapping in the current



iteration is simulated as it is used to estimate throughput of
mappings in the next iteration. These intermediate simula-
tions facilitate for near accurate estimations. The analytical
estimation step analyzes execution traces of application tasks
and edges for the best mapping and estimates throughput of
mappings that can be generated by allocating tasks from
two different resources to the same resource. Simulative
evaluation is employed on the best generated mapping to
get accurate throughput and to ensure for better estimation
accuracy in the next iteration. Therefore, our flow limits
the number of simulations to the number of iterations and
explores the best mappings accurately. We evaluate the
proposed methodology and demonstrate that by properly
using simulative and analytical estimations, the exploration
time can be greatly reduced while providing similar quality
of mappings as that of simulation-based exploration.

The remainder of this paper is organized as follows.
Section II provides an overview of state-of-the-art DSE
methodologies. Section III introduces the preliminaries. Sec-
tion IV presents the proposed methodology. The results
to evaluate our methodology are presented in Section V.
Finally, Section VI concludes the paper along with some
future research directions.

II. RELATED WORK

Several DSE flows that explore multiple mappings for an
application have been reported in [4], [5], [8], [9], [10] and
[11]. They perform exploration aiming to optimize some
performance metrics such as compute and energy efficiency.
The explored mappings can be used to design a system
or to handle dynamism in resource availability at run-time
depending upon different throughput requirements. How-
ever, the explored mappings may not be optimal and will
be applicable only to the fixed platform considered during
DSE. In [12], exploration is performed for a set of platforms
and thus the mappings’ applicability gets extended. In [13],
exploration is performed for a generic platform, extending
applicability of mappings to variety of platforms. Most of the
aforementioned DSE flows use pure simulative evaluations
and thus exhibit high exploration time that might not be
acceptable.

The DSE flows that use analytical estimations along with
the simulative evaluations are presented in [6], [7] and [12].
These approaches perform DSE first by using analytical
models to rapidly identify the points of interest in the
design space, then by using simulative evaluations on the
interesting points to find the premier design points more
accurately. Thus, for most of the design points (mappings),
these flows try to use analytical estimations in place of
the simulative evaluations, resulting in acceleration of the
overall DSE process. However, if the analytical estimations
are not accurate enough due to insufficient capturing of the
system behavior, then the best set of mappings will not
get simulated, resulting in wrong set of premier mappings.
In [14], a hybrid approach that integrates estimation and
simulation phases is presented. This approach uses ana-
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Figure 1. Tile-based example multiprocessor platform.

Iytical estimations to compute throughput for majority of
the mappings and interleave the estimations with simulative
evaluations in order to ensure that premier mappings are
explored accurately. The accuracy of the results depends
upon the percentage of simulations in the whole DSE
process.

In contrast to above approaches, our DSE flow uses a fixed
minimum number of simulations for a given application
and explores premier mappings. Our flow performs iterative
evaluations. In each iteration, first analytical estimations are
used to compute throughput of different possible mappings,
then simulation is performed only for the best mapping.
Thus, our flow limits the number of simulations to the
number of iterations and explores the premier mappings
accurately.

III. PRELIMINARIES

In this section, we provide a brief overview of the MPSoC
platform and application models, and the main problems en-
countered during DSE. This overview is necessary for proper
understanding of the contributions presented in Section IV.

A. Multiprocessor Platform Model

The multiprocessor platform used in this work is modeled
as the tile-based platform template described in [15]. Fig. 1
shows an example platform containing four tiles. The tiles
are connected through a network interface (NI) to an inter-
connection network that provides point-to-point connections
between the tiles. These connections can be implemented
through a network-on-chip (NoC) by providing latencies of
connections between tiles according to the NoC [16]. There-
fore, any type of interconnection network can be modeled
so long as the latencies between tiles are provided. Each tile
contains a processor (P), a local memory (M) and the NI that
is accessed by the interconnect and local processor. The NI
has a fixed number of input/output connections that provide
maximum incoming/outgoing bandwidth when used fully.
Multiprocessor systems such as StepNP [17] and PROPHID
[18] fit nicely into this platform model.

B. Application Model

The applications considered are multimedia applications
with timing constraints and they are modeled as Syn-
chronous Dataflow Graphs (SDFGs) [19]. Fig. 2 shows
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Figure 2. SDFG model of an H.263 decoder.

SDFG model of H.263 decoder. The nodes (vid, ig, idct
& mc) and edges (dy, do, d3 & d4) model tasks and
dependencies respectively. The nodes are referred to as
actors that communicate with fokens sent from one actor to
another through the edges. An actor has following attributes:
execution time and memory requirement when mapped on
a tile. An edge has following attributes: size of a token,
memory needed when connected actors are allocated to the
same tile, memory needed in source and destination tiles
when connected actors are allocated to different tiles and
respective bandwidth requirements. The edges may contain
initial tokens indicated by a bullet point as in Fig. 2. An
actor fires (executes) when there are sufficient input tokens
on all of its input edges and sufficient buffer space on all
of its output channels. At each firing, the actor consumes a
fixed amount of tokens from the input edges and produces
a fixed amount of tokens on the output edges. These token
amounts are referred to as rates.

The application model specifies a throughput-constraint
as well, which is important for multimedia applications.
Throughput is determined as the inverse of the long term
period, i.e., the average time needed for one iteration of the
application. An iteration is defined as the minimum non-
zero execution such that the original state of the SDFG is
obtained. For the example H.263 decoder, period is equal
to the summation of ExecTime(vid), 2376 xExecTime(ig),
2376 x ExecTime(idct) and ExecTime(mc), where ExecTime
is the execution time of respective actors. This period is
just for demonstration and does not include network and
memory access delays. It should be noted that actors ig
and idct have to execute 2376 times in one iteration and
the number of executions for each actor is referred to as
repetition vector of the actor. The rate 2376 is pertaining
to the used video frames that have a resolution of 348 by
288 pixels. An SDFG with a throughput of 1000 Hz takes
1 millisecond to complete one iteration.

C. Design Space Exploration of Applications

The DSE process evaluates a number of design points
(mappings) for each multimedia application to be supported
on a hardware platform. The evaluation considers finding
different mappings and their throughput. For each mapping,
actors are bound to tiles and edges to memory inside tiles
or to connections in the platform. The binding is considered
valid if memory imposed, allocated input/output connections
and allocated incoming/outgoing bandwidth are less than or
equal to the maximum available on each tile. In the DSE,
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Figure 3. Execution trace of H.263 decoder for one periodic execution.

only valid bindings are considered and throughput for the
same is computed.

An exhaustive DSE flow (e.g., [20]) evaluates all the pos-
sible actors to tiles combinations, i.e. mappings. However,
since the number of mappings increases exponentially with
the complexity of the application, the complete evaluation
might not be feasible within an acceptable time when
employing simulative evaluations. For example, a total of
190,899,322 mappings needs to be evaluated exhaustively
for an application containing 14 tasks and it will take close to
220 days in evaluation if we assume 100 milliseconds (ms)
to evaluate one mapping. Even pruning the design space with
existing DSE strategies does not lead to acceptable evalua-
tion time. This necessitates the need to employ analytical
estimations along with simulative evaluations in order to
provide fast and accurate results.

Further, existing DSE strategies employing simulative
evaluations do not provide premier mappings in some cases.
This can be realized by examining the execution trace of
the H.263 decoder (consisting of 4 actors) mapped on a
4-tile MPSoC platform such that each actor is mapped on
a different processor tile, as shown in Fig. 3. For easier
realization, the execution trace is shown for one period
while considering rates as 5 in places of 2376. Thus, actors
vid, iq, idct & mc fire 1, 5, 5 & 1 times respectively. It
can be observed that actors ig and idct are executing in
parallel. However, when existing DSE strategies are applied
to evaluate mappings using 3 tiles, in some cases, the best
mapping contains actors ig and idct on the same tile while
optimizing for power, resource usage etc. For example,
the same happens when strategy in [5] is applied, which
optimizes for load balancing on three used tiles. This forces
execution of actors ig and idct sequentially, resulting in
reduced throughput. In contrast, the best (maximum through-
put) mapping by our strategy contains sequentially executing
actors like vid and ig on the same tile.

IV. PROPOSED RAPIDITAS METHODOLOGY

This section describes our DSE methodology (RAPIDI-
TAS: RAPId Design-space-exploration Incorporating Trace-
based Analysis and Simulation). In contrast to conventional
existing DSE methodologies, our methodology differs in
following aspects: 1) provides mappings using different
number of tiles for handling run-time resource availability
issues, 2) uses a fixed minimum number of simulations for
faster DSE, and 3) uses iterative estimations on execution
traces and simulation for the best mapping in order to



perform design space pruning and to obtain premier results
accurately.

An overview of our DSE flow is presented in Fig. 4.
The DSE flow evaluates applications one after another and
provides a number of mappings for each application. The
flow takes an application (Application Model) & a platform
(Platform Model) as input and performs DSE to evaluate the
mappings (Mappings & Throughput). A platform containing
n tiles (same as the number of actors in the application) is
considered as it can exploit all the parallelism present in
the application under evaluation and is capable of covering
all potential mappings. Considering any bigger platform
wouldn’t provide better performance. However, if a small
size platform is considered then all the parallelism cannot
be exploited as tasks executing in parallel may get mapped
on the same tile.

The DSE flow first finds 1_actor-to-1_tile mapping where
n actors of the application are mapped onto n processor
tiles such that each tile contains exactly one actor and the
edges are mapped onto connections. Then, the mapping is
simulated (Simulate Mapping) to compute its throughput
and to capture execution traces of actors and edges of
the application. Thereafter, execution traces are analyzed
(Analyze Execution Trace) to estimate throughput of the
mappings using one lower number of tiles (n — 1 tiles) and
the best mapping is selected (Select Maximum Throughput
Mapping) for further simulation. The simulation and analysis
process is repeated until the number of used tiles in the
current simulated mapping is equal to one (p = 17). The best
mapping using p tiles is simulated to capture its throughput
and execution traces that is used to estimate throughput
of mappings using (p — 1) tiles. Further, such intermediate
simulation guarantees for accurate execution traces, which
facilitates for more accurate estimations. The flow stores
each simulated mapping into the mapping database MTDB.
Thus, the database MTDB contains maximum throughput
mappings using different number of tiles ranging from 1
tile to n tiles. Now, we discuss the simulation and analytical
estimation strategy that is used for simulation and execution
trace analysis of the mapping, respectively.

A. Simulation Strategy

The simulation of a mapping involves its throughput
computation and execution trace capturing, which are briefed
subsequently.

1) Throughput Computation: The throughput for a map-
ping is computed by taking the resource allocations of
the application on the platform into account. The resource
allocations are derived by the binding of actors and edges
of the application to the tiles and connections between two
tiles or the memory inside a tile in the platform.

In order to compute the throughput, first, static-order
schedule for each tile is constructed, which orders the
execution of bound actors. A scheduling function using a
list-scheduler is used to construct the static-order schedules
for all the tiles at once. Thereafter, all the binding and
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Figure 4. Proposed RAPIDITAS flow.

scheduling decisions are modeled in a graph called binding-
aware SDFG. Lastly, the throughput is computed by self-
timed state-space exploration of the binding-aware SDFG
[21]. Towards this, states visited during self-timed execution
are examined and stored until a recurrent state is found.
Then, throughput is computed from the periodic part of the
state-space.

2) Execution Trace Capturing: The execution traces of
actors and edges of the application are captured based on
their execution pattern for a given mapping during one
periodic execution. For example, Fig. 3 shows execution
pattern of actors and edges of H.263 decoder mapped on
a 4-tile MPSoC platform such that each actor and edge is
mapped on a different tile and connection between tiles,
respectively. The execution traces for each actor and edge is
captured as the start and end time of their active executions
(firings) in the whole period. For example, in Fig. 3, actor ig
has five active executions with different start and end times,
which will get captured. The captured execution traces are
used for analytical estimations as described subsequently.

B. Analytical Estimation Strategy

The analytical estimation strategy is presented in Algo-
rithm 1. The strategy takes captured execution traces of
actors/edges for the best mapping « using p tiles as input and
estimates throughput of mappings using (p — 1) tiles. First, p
tiles containing actor(s) are selected. Then, for each unique
pair of selected tiles, actors of one tile are moved to another
to generate a new mapping that uses (p — 1) tiles. For each
generated mapping, its throughput (1/period) is estimated
and the mapping with its throughput is added to mapping
set M. Period of the mapping using (p — 1) tiles (periodg)
is estimated by utilizing period of the mapping using p tiles
(period,,) as follows:

periodg = perioda + gaing g + 10ssqa g (1)

In Equation 1, gaing, g and loss, g are the increase and
decrease in the period of the mapping « using p tiles when



Algorithm 1: Analytical Estimation

Input: Execution trace for the best mapping « using p
tiles.
Output: Mappings & their throughput, using (p — 1)
tiles.
Initialize the mapping set M, i.e., M = { };
Select p tiles containing actor(s);
for each unique pair of selected tiles do
Move actor(s) from one tile to another to generate
a new mapping B using (p — 1) tiles;
Estimate throughput of j3;
Add g with its throughput to set M;
end

the new mapping [ is generated by moving actors from
one tile to another in a.. The period increases when parallel
executing actors mapped on selected pair of tiles in mapping
« are forced to execute sequentially by mapping the actors
on the same tile in mapping [. For example, in Fig. 3,
period will increase when parallel executing actors ig and
idct are mapped on the same tile. The period decreases when
execution of the edge(s) between the selected pair of tiles is
not in parallel with other actors and edges. For example, in
Fig. 3, period will decrease due to elimination of edge d;
trace in the first firing when actors vid and ig are mapped
on the same tile. The gain, g and loss,, g are calculated by
adhering to the following set of rules:

1) gain, g is calculated by assuming sequential exe-
cution of the actors mapped on the selected pair
of tiles. The non-parallel executions of the actors
(with executions of other actors/edges) contribute to
gaing g.

2) lossa,p is calculated by considering execution traces
of edge(s) mapped between the selected pair of tiles.
The non-parallel executions of the edge(s) (with exe-
cutions of other actors/edges) contribute to l0ssq 3.

In Algorithm 1, for the selected p tiles containing actor(s),
p-choose-2 (PCs) unique pairs are found. Each unique pair
provides a mapping that uses (p — 1) tiles. Out of all the
mappings M using (p — 1) tiles, the DSE flow (Fig. 4)
selects the maximum throughput mapping to perform its
simulation. Similar process is repeated to evaluate mappings
using lower number of tiles until the number of used tiles
reaches one. Thus, the number of simulations is limited
to n (number of actors in the application), where the best
(maximum throughput) mapping using 1 tile to n tiles are
simulated.

Run-time Mapping

The DSE flow stores the maximum throughput mapping
using different number of tiles for all the applications that
are expected to be supported (mapped) on a platform at run-
time. The stored mappings can be used to perform efficient
run-time mapping. A run-time platform manager (RTPM)
that keeps the updated resources status handles the mapping
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Figure 5. Run-time Mapping.

process by assigning the platform resources to the required
applications one after another till all the applications are
mapped. For mapping each application, the RTPM takes its
desired throughput, platform with updated resources status
and the mapping storage MTDB as input and selects a
throughput satisfying mapping using minimum number of
tiles from the MTDB as shown in Fig. 5. The platform
is then configured based on the actors to tiles allocations
provided in the selected mapping. If RTPM does not find
a throughput satisfying mapping then the application cannot
be supported with available platform resources. The run-time
mapping process gets accelerated as the time consuming
throughput computation is avoided (done at design-time).

In the DSE flow, the considered platform contains tiles
that are connected by some fixed latency connections. How-
ever, the hardware platform at run-time may contain a larger
number of tiles and latencies of connections between the
available tiles may be higher than ones considered during
DSE. In order to cope with such scenarios, the DSE flow
can be repeated by considering a similar platform as earlier
but with increased latencies of connections between the tiles
till it reaches to maximum latency of the connection in
the hardware platform to be considered at run-time. The
repeated DSE provides mappings where edges are mapped
to connections having varying latencies. This facilitates us
to cater for the run-time aspects when the available tiles
are connected by varying latency connections. Further, we
have considered generic tile architecture and thus any type
of interconnection network can be modeled.

V. PERFORMANCE EVALUATION

The proposed DSE strategy that uses analytical estima-
tions and simulations has been implemented as an extension
of the publicly available SDF® tool set [22]. In order to
evaluate the execution time and quality of the strategy,
models of real-life multimedia applications H.263 decoder (4
actors), H.263 encoder (5 actors), JPEG decoder (6 actors),
sample rate converter (6 actors) and MP3 decoder (14 actors)
are considered. Experiments are performed on a Quad Core
processor at 2.4 GHz.

The same generic platform model consisting of identical
tiles is considered to evaluate different DSE strategies.
Each tile contains ARM7TDMI processor. In particular, we
present results obtained from our DSE strategy referred to as
RAPIDITAS and compare them to that of simulation-based
exhaustive exploration (EDSE) strategy adopted in [20] and



Table 1
NUMBER OF SIMULATED MAPPINGS BY EDSE, REF. [5], REF. [13] AND RAPIDITAS AT DIFFERENT NUMBER OF ACTORS

Number of Actors | EDSE Flow  Ref. [5] Flow Ref. [13] Flow  RAPIDITAS Flow
1 1 1 1 1
2 2 6 2 2
3 5 39 5 3
4 15 100 11 4
5 52 180 21 5
6 203 282 36 6
7 877 406 57 7
8 4,140 552 85 8
9 21,147 720 121 9
10 115,975 910 166 10
14 190,899,322 1,834 456 14

strategies pruning the design space in [5] and [13]. We
implemented the DSE strategies EDSE, in [5] and [13] with
steps similar to our DSE in order to make a fair comparison.
The strategies chosen for comparison with RAPIDITAS also
perform exploration to evaluate mappings using different
number of tiles and providing different throughput values,
which can be used to facilitate efficient run-time mapping.

We have applied DSE strategies EDSE, in [5], in [13]
and RAPIDITAS to find the number of simulated mappings
by them. The EDSE strategy simulates all possible mappings
(using different number of tiles) and the number of mappings
increases exponentially with the number of actors. For n
actors, EDSE considers a platform containing n tiles and
total number of mappings is calculated as the number of
ways of placing n labeled balls (actors) into 7 indistinguish-
able boxes (tiles), which follows bell numbers [23]. The
number of mappings by the DSE strategy in [5] is limited
by the product of X, number of actors and number of tiles,
where X is the maximum number of partial bindings that is
carried over to the next iteration for pruning and simulating
the mappings. The strategy in [13] carries forward with the
maximum throughput mapping in each iteration in order to
prune the design space. The RAPIDITAS performs analytical
estimations for most of the mappings and simulates only n
mappings. Table I shows the number of mappings simulated
by different DSE strategies as the number of actors (nrAc-
tors) increases. The number of mappings (including partial
bindings) by [5] is shown for X equal to 10 and it increases
with X. Thus, increase in X may lead to an explosion in
the number of mappings. Existing strategies simulate large
number of mappings for higher nrActors and thus impose
large evaluation time that might not be acceptable.

Next, we have applied different DSE strategies to compute
the overall exploration time, which consists of simulation
and estimation times. During the exploration, a number
of mappings are evaluated and we have chosen the best
(maximum throughput) mapping to observe the quality of
mappings produced by different exploration strategies. For
an application containing n actors, all the DSE strategies
consider a platform containing n tiles to perform the ex-
ploration. Table II shows exploration time (in milliseconds)
and best mappings’ throughput for multimedia applications
H.263 decoder (4 actors), H.263 encoder (5 actors) and

sample rate converter (6 actors) when different exploration
strategies are employed. Exploration time depends upon the
number of mappings to be evaluated by simulative and
analytical evaluations. The strategies EDSE, [5] and [13]
use simulations. For an application, the number of simulated
mappings by different exploration strategies depends upon
the number of actors in the application and follows Table
I. The approach [5] simulates some duplicate mappings
which differ in only placement of actors on different tiles
providing the same throughput. Therefore, in some cases, it
simulates more number of mappings (including duplicates)
than the EDSE and in turn takes more time in the exploration
as shown in Table II. The EDSE flow evaluates all the
possible mappings without any duplicate ones and the flow
in [13] prunes the exploration space to discard evaluation
of inefficient mappings. The difference in the number of ex-
plored mappings by EDSE and [13] flows increases with the
number of actors in the application and thus the difference
in the exploration time. The RAPIDITAS simulates only n
mappings (evaluates rest by analytical estimations), resulting
in reduced exploration time as shown in Table II. On an
average, RAPIDITAS reduces exploration time by 92% and
72% when compared to [5] and [13], respectively.

Further, the evaluation by existing exploration strategies
is not feasible within a reasonable time for applications with
larger number of actors, whereas RAPIDITAS converges
fast. For example, the EDSE need to simulate 190,899,322
mappings for MP3 decoder (14 actors) (Table I) which will
take more than a year that is unacceptable. The flow of [13]
reduces the number of simulations to 456, but it will take
longer evaluation time for applications with larger number
of actors. In contrast, RAPIDITAS flow performs lesser
simulations, resulting in reduced evaluation time.

It has been observed that EDSE, [13], and RAPITIDAS
flows provide the same best mapping for H.263 decoder,
H.263 encoder and sample rate converter as shown in
Table II. Therefore, RAPIDITAS flow does not miss the
best throughput mapping despite requiring much lower time
for exploration. However, RAPIDITAS flow might provide
lower quality (throughput value) mappings than EDSE flow
for different applications, i.e., cannot always guarantee for
premier solutions due to its heuristic (hill-climbing) behav-
ior. The chances for missing the best quality mappings is



Table II
EXPLORATION TIME AND BEST MAPPING THROUGHPUT FOR MULTIMEDIA APPLICATIONS WHEN EMPLOYING DIFFERENT DSE STRATEGIES

Exploration Time (milliseconds) Best mappings’ throughput (x 10~ '2/time-units)
Application EDSE Ref. [S] Ref. [13] RAPIDITAS Ref. [5] EDSE & [13] & RAPIDITAS
H.263 decoder 5,138 11,128 3,768 1,379 7396120 9158520
H.263 encoder 11,048 25,481 4,832 1,475 662473 941289
sample rate converter | 242,551 204,072 43,014 7,179 410000000 410000000
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Figure 6. Throughput comparison for the best mappings using different number of tiles.

expected to increase for applications with large number of
actors as the pruning of the exploration space gets increased.

Fig. 6 shows throughput of the best mappings using
different number of tiles when DSE strategies [13], [5]
and RAPIDITAS are employed for different multimedia
applications. It has been observed that [13] and RAPIDITAS
provide the same best mappings using different number of
tiles. The shown throughput values are normalized with
respect to (w.r.t.) the throughput obtained by [13] and
RAPIDITAS flows. At different number of used tiles, it can
be observed that RAPIDITAS provides the same or better
quality of mappings as compared to existing strategies. It
can also be observed that the quality of the best mappings
using one tile and the same as the number of actors in the
application is the same by all the flows for each application.
This is because the same mapping is obtained by all the
flows at these numbers of used tiles.

We also have verified the accuracy of our analytical
estimation step. In analytical estimations, the throughput
values for a number of mappings are estimated and the best
(maximum throughput) mapping is chosen for simulation.
The difference between the throughput of the best mapping
by simulation and estimation has been referred to as error
of the estimation. It has been observed that the quality
(throughput) of best mappings using different number of
tiles by analytical estimations and simulations is almost the
same. One an average, the analytical estimation error is less
than 0.033%, which is calculated based on the difference
between estimated and simulated throughput values.

The DSE results are stored into MTDB to facilitate for
efficient run-time mapping. Our run-time mapping approach
utilizes the MTDB (mappings and their throughput when

utilizing different number of tiles) and has been compared
with existing run-time strategies that start the application
mapping without any previous analysis. Such strategies need
to perform all the compute intensive analysis at run-time [24]
[25]. Fig. 7 shows time required (in milliseconds) to map the
different multimedia applications on a 4 x4 MPSoC platform
when the run-time mapping strategies Nearest Neighbor
(NN) proposed in [25] and ours are employed. The NN strat-
egy tries to map the communicating actors on neighboring
tiles and then throughput for the mapping is computed at
run-time, which is a very time consuming process. These
strategies first consume time to find a mapping and then
in computing throughput for the mapping. Therefore, they
incur large overhead for the run-time mapping. In contrast,
our approach just needs to select the best mapping satisfying
the throughput-constraint from the MTDB. The selected
mapping is used to configure the platform. Therefore, in our
approach the mapping time is contributed from selection and
placement time only, resulting in faster run-time mapping as
shown in the figure.

VI. CONCLUSION

It was observed that most of the existing DSE strate-
gies employ simulations to evaluate the design points. The
simulation-based approaches are computationally costly and
thus impose large evaluation time that might not be ac-
ceptable. Few strategies employ analytical estimations to
accelerate the exploration process but estimations are not
accurate enough. This paper described a DSE methodology
that uses analytical and simulative evaluations iteratively in
order to perform fast and accurate exploration. Analytical
estimations are used to evaluate the design points while per-
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Figure 7. Time required (in milliseconds) to map the applications by
different run-time mapping strategies.

forming simulations only on Pareto-optimal points in order
to reduce the number of simulations. Experimental results
have demonstrated that our methodology provides similar
quality solutions as that of simulation-based approaches
but at a fraction of the exploration time. In future, we
plan to replace required simulations with accurate analytical
estimations in order to further accelerate the exploration
process.
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