
Mapping on Multi/Many-core Systems: Survey of Current
and Emerging Trends

Amit Kumar Singh1, Muhammad Shafique2, Akash Kumar1, Jörg Henkel2
1 Department of Electrical and Computer Engineering, National University of Singapore, Singapore

2 Chair for Embedded Systems (CES), Karlsruhe Institute of Technology, Karlsruhe, Germany
1{eleaks,akash}@nus.edu.sg, 2{muhammad.shafique,henkel}@kit.edu

ABSTRACT
The reliance on multi/many-core systems to satisfy the high
performance requirement of complex embedded software ap-
plications is increasing. This necessitates the need to real-
ize efficient mapping methodologies for such complex com-
puting platforms. This paper provides an extensive survey
and categorization of state-of-the-art mapping methodolo-
gies and highlights the emerging trends for multi/many-core
systems. The methodologies aim at optimizing system’s re-
source usage, performance, power consumption, tempera-
ture distribution and reliability for varying application mod-
els. The methodologies perform design-time and run-time
optimization for static and dynamic workload scenarios, re-
spectively. These optimizations are necessary to fulfill the
end-user demands. Comparison of the methodologies based
on their optimization aim has been provided. The trend
followed by the methodologies and open research challenges
have also been discussed.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time systems and embedded systems

General Terms
Algorithms, Design, Performance, Reliability

Keywords
Multiprocessor Systems-on-Chip, embedded systems, appli-
cation mapping

1. INTRODUCTION
The maximum operational frequency of a single-core pro-

cessor has hit the roof due to power dissipation and radio fre-
quency effects. This has forced chip manufacturers to limit
the maximum frequency of the processor and shifting to-
wards designing chips with multiple cores operating at lower
frequencies [42] [10]. Moreover, the performance demands of
modern complex embedded applications have increased sub-
stantially which cannot be satisfied by simply increasing the
frequency of a single-core processor or by customization of
the processor. Instead, there is a need of multiple proces-
sors that can cohesively communicate and provide increased
parallelism. The underlying concept is to consider applica-
tions as conglomeration of many small tasks which can be
efficiently distributed on multiple processors in order to ex-
ecute them in parallel and thereby meeting the increased
performance demands [3] [46].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’13 May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

t5,t8t2,t4,t7t0

t1 t2

t3 t5

t6 t7 t8

t4

t9

t6,t9t0,t1,t3

GPP
DSP

ASIC1
ASIC2

GPPGPP

GPP

DSPDSP

ASIC1

ASIC2

ASIC2 DSP

Figure 1: Application Mapping on Many-core Sys-
tem.

With the technological advancement and increasing per-
formance demands, the number of cores in the same chip
area has grown exponentially and different types of cores
have been integrated. As nanotechnology evolves, it will
become feasible to integrate thousands of cores on the same
chip [10]. The large number of cores needs to employ Network-
on-Chip (NoC) based interconnection infrastructure for ef-
ficiency and scalability [33] [7]. The distinct features of
different types of cores can be exploited to meet the func-
tional and non-functional requirements. This makes het-
erogeneous multi/many-core systems (consisting of different
types of cores) a formidable computing alternative where
applications witness large improvement over their homoge-
neous (consisting of identical cores) counterpart.

In order to map applications on multi/many-core systems,
the applications need to be partitioned (parallelized) into
multiple tasks that can be executed concurrently on differ-
ent cores. An example of partitioned application is shown
as Application Task Graph in Fig. 1. The application is
partitioned into ten tasks (t0,t1,...,t9). The partitioning job
can be furnished by state-of-the-art application paralleliza-
tion tools [14] [53] and manual analysis, which involves find-
ing the tasks, adding synchronization and inter-task com-
munication in the tasks, management of the memory hier-
archy communication and checking of the parallelized code
to ensure for correct functionality [59]. In case of hetero-
geneous platforms, a task binding process that specifies the
core types on them the task can be mapped along with the
cost of mapping is required [84]. The binding process analy-
ses the implementation costs (e.g., performance, power and
resource utilization) of each task on different supported core
types such as general purpose processor (GPP), digital signal
processor (DSP) and coarse grain re-configurable hardware.

Mapping application tasks on multi/many-core system in-
volves assignment and ordering of the tasks and their com-
munications onto the platform resources in view of some
optimization criteria such as energy consumption and com-
pute performance. Fig. 1 shows mapping of tasks and their
communications on part of a many-core system. The com-
municating tasks are mapped on the same core or close to
each other in order to optimize for the communication delay
and energy. The optimization is necessary to satisfy per-
formance constraints of the applications. This necessitates



the need to develop efficient mapping methodologies that
take application model, platform model, constraints (e.g.,
compute performance and power), performance model of
inter-process communication (e.g., execution time and en-
ergy consumption) and estimate of the worst case execution
time (WCET) of the process implementations on different
cores (e.g., GPP, DSP, ASIC) as input and provide mappings
that satisfy the constraints.

1.1 Mapping Problem and Challenges
Mapping and scheduling problem is similar to Quadratic

Assignment Problem, a well-known NP-hard problem [28].
Therefore, finding optimal solution satisfying all the given
constraints is very difficult and time consuming. Thus, heuris-
tics based on the application domain knowledge need to be
employed to find a nearly optimal solution.

Furthermore, the user demands (e.g., performance and
power constraints) for each application need to be fulfilled.
This necessitates the need to find optimal mapping solutions
for each use-case1 to be supported into the system. The
optimal solutions can be explored by advance design-time
analysis and then can be used at run-time. However, explo-
sion in the number of use-cases with the increasing number
of applications make the analysis unfeasible. For n applica-
tions, the analysis needs to be performed for 2n use-cases.
Additionally, such analysis cannot deal with dynamic sce-
narios such as run-time changing standards and addition of
new applications. Run-time management is required to han-
dle such dynamism albeit optimal mapping solutions are not
found.

The application mapping problem has been identi-
fied as one of the most urgent problem to be solved
for implementing embedded systems [57] [60]. This
problem is being addressed by several researchers who com-
municate their views through various forums. A series of
dedicated workshops on mapping of applications onto multi-
core systems have been started to move beyond state-of-the-
art. The mapping methodologies are developed by targeting
specific application domain (e.g., multimedia and network-
ing) for the most promising multi-core system.

1.2 Classification of Mapping Methodologies
There could be a number of taxonomies to classify the

mapping methodologies, like target architecture based, op-
timization criteria based, workload based, etc. Broadly, the
methodologies can be classified based on workload scenar-
ios and other taxonomies can be included at some hier-
archy in the classification as shown in Fig. 2. For static
and dynamic workload scenarios, the mapping methodolo-
gies perform optimization at design-time and run-time
respectively, which has led them to classify as design-time
and run-time methodologies respectively. The methodolo-
gies target either homogeneous or heterogeneous multi-
core systems. The run-time mapping requires a platform
manager that handles mapping of tasks at run-time. In
addition to mapping, the manager is also responsible for
task scheduling [51], resource control, configuration control
and task migration at run-time. The manager may employ
centralized management, distributed management or
mixture of centralized and distributed management. In cen-
tralized management, one core of the platform is used as the
manager that handles the mapping process. For distributed
management, the platform is divided into regions (clusters)
and one core in each cluster manages the mapping process
inside the cluster. The cluster managers communicate with
each other through a global manager to find the best cluster
for mapping an application.

Design-time mapping methodologies are suitable for static
workload scenarios where a predefined set of applications

1Combination of simultaneously active applications.

Centralized + Distributed  
Management

Design-time
(For Static Workload)

Mapping 
Methodologies

Homogeneous 
Architecture

Centralized 
Management

Run-time
(For Dynamic Workload)

Heterogeneous 
Architecture

Homogeneous 
Architecture

Heterogeneous 
Architecture

Distributed 
Management

Figure 2: A Taxonomy of Mapping Methodologies.

with known computation and communication behavior and
a static platform are considered. They are unable to handle
dynamism in applications incurred at run-time (e.g., multi-
media and networking applications). Examples of such dy-
namism could be adding a new application into the system at
run-time. Since applications are often added to the platform
at run-time (for example, downloading a Java application in
a mobile-phone at run-time), workload variation takes place.
We witness the need of run-time mapping methodologies to
handle such dynamic workloads.

The run-time mapping methodologies face the challenge to
map tasks of new applications on the platform resources to
satisfy their performance requirements while keeping accu-
rate knowledge of resource occupancy. After mapping tasks,
task migration can also be used to revise placement of some
of the already executing tasks if the user requirement is
changed or a new application has entered into the system.

This paper performs an in-depth survey of the mapping
methodologies reported in literature based on the earlier
mentioned taxonomy. The methodologies have been ana-
lyzed to highlight their strengths and weaknesses. The trend
followed by the methodologies over the decade has been
observed and reported, which provides an insight for the
emerging mapping methodologies. Despite being significant
advancement in the development of mapping methodologies,
some open issues that need to be addressed in the future are
highlighted by analyzing the methodologies reported in the
literature.

Paper Organization: Section 2 discusses mapping method-
ologies that perform design-time optimization while target-
ing homogeneous or heterogeneous architectures. In Section
3, run-time mapping methodologies are analyzed and elab-
orated. Section 4 provides the upcoming trends and open
research challenges. Finally, we conclude the paper high-
lighting the important points of mapping methodologies in
Section 5.

2. DESIGN-TIME MAPPING
Design-time mapping methodologies have a global view of

the system which facilitates in making better decision for
using the system resources. As optimization is performed
at design-time, the methodologies can use more thorough
system information to make decisions. Thus, a better qual-
ity of mapping may be achieved as compared to the run-
time mapping methodologies that are restricted normally
to a local view where only the neighborhood of the task
mapping is considered. Most of the mapping methodologies
reported in the literature fall under design-time mapping.
These methodologies target either homogeneous or hetero-
geneous architectures.

Table 1 classifies recent works in design-time mapping and
shows the target architecture and optimization goal of the
mapping methodologies proposed by different authors. The
target architecture (Arch.) is either homogeneous (Hom.)



Table 1: Classification of design-time mapping
methodologies.
Author Arch. Optimization Goal
Orsila et al. [68] Hom. Execution time
Ruggiero et al. [74] Hom. Execution time
Satish et al. [76] Hom. Execution time
Bonfietti et al. [9] Hom. Mapping time & quality
Lin et al. [50] Hom. Throughput, Resource utilization,
Murali et al. [65] Hom. Energy consumption
Rhee et al. [73] Hom. Energy consumption
Chen et al. [16] Hom. Energy consumption
Hu et al. [36] [37] Hom. Energy consumption, Execution time
Marcon et al. [55] [56] Hom. Energy consumption, Execution time
Ascia et al. [5] Hom. Energy consumption, Execution time
Meyer et al. [62] Hom. Reliability
Thiele et al. [89] Hom. Reliability, Temperature
Thiele et al. [88] Het. Execution time
Choi et al. [18] Het. Execution time
Che et al. [15] Het. Execution time
Castrillon et al. [13] Het. Execution time
Manolache et al. [54] Het. Exploration time, Accuracy
Javaid et al. [41] Het. Exploration time, Accuracy
Wu et al. [94] Het. Energy consumption
Zhu et al. [100] Het. Reliability
Hartman et al. [30] Het. Reliability

or heterogeneous (Het.). The methodologies aim at opti-
mizing for difference performance metrics in order to fulfill
the varying user demands.

Compute Performance: Optimizing for the compute
performance is of paramount importance in order to meet
the timing deadlines or to minimize the time taken to finish
some jobs. The compute performance may refer to total ex-
ecution time, latency, delay, period, throughput, exploration
time, etc., which are related to timing information.

Different well established search approaches have been ex-
tensively used to develop design-time mapping methodolo-
gies in order to find optimal or near-optimal placement of
tasks on platform cores towards improving the compute per-
formance. For example, Simulated Annealing (SA) is used
in [68] [50], Genetic Algorithm (GA) in [18], Tabu Search
in [54] and Integer Linear Programming (ILP) in [41]. Orsila
et al. [68] optimize execution time and memory consump-
tion by claiming that traditional approaches only focus on
the execution time. Lin et al. [50] attempt to find mapping
of tasks such that the overall system throughput is maxi-
mized. They show an improvement of 20% in the system
throughput. Choi et al. [18] propose a GA-based technique
for efficiently executing Synchronous Dataflow (SDF) appli-
cations on a multi-core system where each core has a limited
size of scratchpad memory (SPM). Manolache et al. [54] ad-
dress the problem of task mapping in the context of multi-
processor applications with stochastic execution times and
in the presence of constraints on the percentage of missed
deadlines. Javaid et al. [41] propose a methodology consist-
ing of ILP formulation to explore efficient mappings. These
search based approaches provide efficient mapping solutions,
but they have high computational costs for large scale prob-
lems such as applications with large number of tasks.

Different pruning strategies have been incorporated to
prune the search space, thereby reducing the computational
costs. Ruggiero et al. [74] combine Integer Programming
with Constraint programming to speed up the executions.
They target bus-based architectures that are not scalable
and thus the approach enforces scalability issues. Satish et
al. [76] propose a decomposition based approach to speed
up constraint optimization. They optimize for the schedule
length or make-span. Bonfietti et al. [9] propose an approach
for throughput-maximal mapping of SDF applications. The
approach speeds-up the computation and enhances the ef-
ficiency of the search by jump-starting with a high-quality
bound and quickly tightening it. Thiele et al. [88] propose

a mapping framework called Distributed Operation Layer
(DOL), which optimizes for computation and communica-
tion time. They integrate an analytic performance analysis
strategy into DOL to alleviate the modeling and analysis
of systems. Che et al. [15] consider the number of software
pipeline stages to map streaming applications on SPM-based
embedded multi-core system. The proposed method scales
well over a wide range of cores and SPMs. Castrillon et
al. [13] propose an algorithm that directly addresses map-
ping of tasks and their communications. The algorithm is
executed repeatedly to compute mappings for real-time ap-
plications specified as Kahn Process Network (KPN). These
approaches provide mapping solutions in lesser time than
the approaches performing extensive or complete search, but
might miss high quality mapping solutions due to pruning of
the search space.

Energy Consumption: Optimizing for the energy con-
sumption of modern embedded systems (e.g., mobile phones,
tablets) is important as they are usually operated by stand-
alone power supply like battery. The optimization needs
to be performed during the system design and operation in
order to increase the operational time.

Murali et al. [65] present a methodology that handles map-
ping of multiple use-cases while satisfying their performance
constraints. The methodology shows a power savings of
54%. Rhee et al. [73] propose an ILP based approach that
optimally maps cores onto mesh architecture in order to min-
imize energy consumption or NoC congestion. The approach
achieves 81% energy savings for random benchmarks. Chen
et al. [16] propose a multi-step mapping methodology where
optimization is performed in different steps of the mapping
process. Wu et al. [94] introduce a GA based approach that
use Dynamic Voltage Scaling (DVS) to reduce the energy
consumption by up to 51%. These methodologies show sig-
nificant energy savings.

Some methodologies that perform optimization for both
energy consumption and compute performance are intro-
duced in [37], [56] and [5]. Hu et al. [37] propose a map-
ping methodology that reduces power consumption by de-
creasing the energy consumption in communication while
guaranteeing the required performance. They methodology
provides an energy savings of 51%. Marcon et al. [56] ex-
tend the work in [37] and propose a technique called Com-
munication Dependence and Computation Model (CDCM).
In addition to communication volume as considered in [37],
timing of the communication has been considered. Execu-
tion time is reduced by 98% while achieving a significant
amount of energy savings. Ascia et al. [5] present a GA
based approach that explore Pareto mappings efficiently and
accurately while optimizing for performance and energy con-
sumption. The aforementioned methodologies optimize for
compute performance and energy consumption, but do not
take reliability of the system into account during that opti-
mization. Therefore, the provided mapping solutions might
lead to reduced lifetime of the system.

Reliability: Design-time mapping methodologies target-
ing lifetime improvement of multi-core systems are proposed
in [62], [89], [100] and [30]. Meyer et al. [62] propose an ap-
proach to effectively and efficiently allocate execution and
storage slack in order to jointly optimize system lifetime
and cost. Thiele et al. [89] propose a thermal-aware system
analysis method that produces mappings with lower peak
temperature of the system, leading to reliable system design.
Zhu et al. [100] exploit redundancy and temperature-aware
design planning to produce reliable and compact multi-core
systems. Hartman et al. [30] propose a lifetime-aware task
mapping methodology that produces mappings with higher
lifetimes. These methodologies take preventive measures by
performing reliability-aware mapping in order to reduce oc-
currence of faults in the systems. Such preventive measures



increase lifetime of systems.

2.1 Issues and Limitations of Design-time
Methodologies

Most of the design-time methodologies adopt search based
approaches (e.g., GA, ILP, SA) that incur high computa-
tional costs. Thus, the evaluation time might not be accept-
able for large scale problems. However, they provide efficient
mapping solutions for small scale systems within acceptable
time. The evaluation time can be reduced by efficient prun-
ing of the search space, but at the risk of missing the high
quality mapping solutions. The reliability-aware design-time
methodologies increase the system lifetime but they cannot
overcome the faults incurred in the system.

Further, as the design-time methodologies find placement
of tasks at design-time, they are not suitable for run-time
varying workloads in the systems and run-time changing en-
vironments. Such dynamic workload scenarios require re-
mapping/run-time mapping of applications. Even if these
mapping methodologies are inadequate for the dynamic work-
load scenarios, they might be useful to find the initial task
placement, or be optimized to be working at run-time.

3. RUN-TIME MAPPING
In contrast to the design-time mapping, run-time mapping

needs to account for the time taken to map each task as it
contributes to overall application execution time. Further-
more, the tasks are mapped one by one, unlike the static case
where all the tasks are mapped at once by looking globally at
the system. Therefore, typically greedy heuristic algorithms
are used for efficient run-time mapping in order to optimize
performance metrics such as energy consumption, communi-
cation latency, execution time, etc. The run-time mapping
has several requirements, advantages and issues & research
challenges for different available mapping alternatives.

Requirement: The run-time mapping caters for dynam-
ically workload scenarios where mapping of one or more al-
ready running applications may need to be reconsidered in
case of following requirements:

• Insertion of a new application into the system, which
needs resources from the already executing applica-
tions.

• Modifying parameters of a running application.
• Killing a running application in order to free it’s occu-

pied resources.
• Changing performance requirements of a running ap-

plication. This might need extra resources for perform-
ing extra functionality.

• When current mapping is not sufficiently optimal, it
requires (re-)mapping.

Advantages: In addition to the suitability for dynamic
workload scenarios, run-time mapping also offers a number
of advantages. Some of them are as follows:

• Adaptability to the available resources: The available
resources vary over time as the applications of the dy-
namic workload scenario enter at run-time.

• Ability to enable unforeseeable upgrades: It is possible
to upgrade the system for new applications or chang-
ing standards that are not known at design-time, even
after the delivery of the system to the end-user.

• Ability to avoid defective parts of a SoC : If one or more
processing cores are not working properly after produc-
tion of a SoC, then the defective cores can be disabled
before the mapping process. Aging can lead to defec-
tive cores that are unforeseeable at design-time.

Mapping Alternatives: At run-time, mapping of new
applications to be supported onto a platform can be handled
either by performing all the processing at the same time, i.e.
on-the-fly processing or by using previously analyzed (DSE)

General Purpose Processor 
(GPP)

Reconfigurable Area 
(RA)

MPEG4 decoder

Ap
pl

ic
at

io
n 

Se
t

M
ul

ti-
co

re
 A

rc
hi

te
ct

ur
e

MC

IDCT

IQ

VLD
2376

2376

11

1

1

1

1

d1 d2

d3
d4
2

VLD

IDCT

RC

FD

MC

1

1
11

1 1

1
1

1

199

1
1

1
1

1 1

99

99
99

H.263 decoder JPEG decoder

R

GPP

RRRR

RRRR

RRR

ACCGPPGPPGPP

GPPGPPGPPRA

RAGPPGPP

R

ACC

R

R

GPP

RA

Design-time DSE
(compute intensive analysis)

Mappings using 
different number of PEs

Allocate Tasks 
to PEs

Application
User demands

Accelerator 
(ACC)

col-conv

IDCT

IQ

VLD
6

6

11
1

1
1

1

e1 e2

e4
e6
2

IZZ1

reorder

1

11

e3

e5

Mapping using 
DSE results

On-the-fly Mapping 
(all the processing is 

performed at run-time)

Current System Status

Architecture 
Description

Figure 3: On-the-fly and Hybrid Mapping Flow [81].

results as shown in Fig. 3. The run-time platform manager
handles the mapping of applications by taking the updated
resources’ status (Current System Status) into account.

For on-the-fly mapping, efficient heuristics are required to
assign new arriving tasks on the platform resources. These
heuristics cannot guarantee for schedulability, i.e., for strict
timing deadlines due to lack of any prior analysis and lim-
ited compute power at run-time. However, these heuristics
are platform independent since they do not use any platform
specific analysis results computed in advance. Such heuris-
tics lend well to map unknown applications (not available at
design-time) on any platform.

For mapping using previously analyzed (DSE) results, the
applications to be supported on a platform should be known
at design-time. In such cases, light-weight heuristics are
required to select the most efficient mappings for each ap-
plication from the design-time (offline) analyzed mappings
stored on the system (Mappings using different number of
PEs). The selection is done subject to available system re-
sources (extracted from Current System Status) and desired
performance (User demands). The selected mapping is used
to configure the platform. Compute intensive analysis is
performed at design-time (Design-time DSE), facilitating
for light-weight run-time platform manager that can con-
figure the applications efficiently. In DSE, application and
architecture description are taken as input and a number
of mappings are produced. Such mapping methodologies
have been referred to as hybrid mapping as they take the
advantages of both design-time and run-time. The hybrid
approach maps applications more efficiently than on-the-fly
heuristics. However, flexibility in these approaches is lim-
ited, since all potential applications must be known in en-
tirety at design-time and analysis results will be applicable
only to the analyzed platform. Therefore, design-time anal-
ysis needs to be repeated when the application set or plat-
form changes. Further, storing analysis results introduces
additional memory overhead.

3.1 On-the-fly Mapping
Recent works on on-the-fly mapping are classified accord-

ing to the proposed taxonomy and are listed in Table 2.
The table reveals the target architecture (Arch.), control
mechanism and optimization goal of the mapping method-
ologies. The methodologies target homogeneous (Hom.) or



Table 2: Classification of on-the-fly mapping
methodologies
Author Arch. Control Optimization Goal

Manager
Hong et al. [35] Hom. Centr. Execution time
Shojaei et al. [80] Hom. Centr. Execution time, Solution quality
Moreira et al. [63] Hom. Centr. Execution time, Resource utilization
Chou et al. [19] Hom. Centr. Energy consumption, Communication cost
Mehran et al. [61] Hom. Centr. Energy consumption, Mapping time
Briao et al. [11] Hom. Centr. Energy consumption, Execution time
Qi et al. [72] Hom. Centr. Reliability, Energy consumption
Chou et al. [20] Hom. Centr. Reliability, Energy consumption, Throughput
Coskun et al. [23, 24] Hom. Centr. Reliability, Temperature
Peter et al. [70] Hom. Distr. Execution Time
Theocharides et al. [87] Het. Centr. Execution time
Feng et al. [92] Het. Centr. Execution time
Ahmed et al. [1] Het. Centr. Execution time
Huang et al. [38] Het. Centr. Execution time, Resource utilization
Liang et al. [17] Het. Centr. Execution time, Resource utilization
Nollet et al. [67] Het. Centr. Mapping time & quality
Carvalho et al. [12] Het. Centr. Communication overhead
Smit et al. [84] Het. Centr. Energy consumption, QoS for applications
Braak et al. [86] Het. Centr. Energy consumption, Execution time
Schranzhofer et al. [78] Het. Centr. Energy consumption, Execution time
Singh et al. [83] Het. Centr. Energy consumption, Communication overhead
Hartman et al. [31] Het. Centr. Reliability
Faruque et al. [3] Het. Distr. Execution time, Mapping time, Traffic
Kobbe et al. [46] Het. Distr. Execution time, Traffic
Ebi et al. [27] Het. HDistr. Execution time, Temperature

heterogeneous (Het.) multi-core systems depending upon
the requirement of applications. For controlling the system,
a centralized (Centr.), distributed (Distr.) or mix of central-
ized and distributed, i.e. hierarchical distributed (HDistr.)
resource management strategy is used to allocate tasks on
the resources at run-time. The methodologies aim at opti-
mizing for difference performance metrics.

Compute Performance: The compute performance op-
timization relates to the timing optimization such as overall
execution time and mapping time. Hong et al. [35] change
the thread-to-processor mapping at run-time based on the
workload variation in order to optimize the performance.
An improvement of 29% is achieved in the overall execution
time. In [80], the presented heuristic offers additional ad-
vantage to trade-off execution time versus solution quality.
Moreira et al. [63] present a methodology that first assigns
tasks to virtual cores (VCs) aiming to minimize total number
of VCs and total bandwidth used while meeting the timing
constraints. Thereafter, the VCs are mapped to real cores.
Theocharides et al. [87] demonstrate a system-level bidding-
based task mapping methodology that provides significant
performance improvements when compared to a round robin
allocation. Feng et al. [92] perform workload variation aware
mapping to optimize the system performance. Ahmed et
al. [1] perform adaptive resource management to maintain
QoS requirement of application. Huang et al. [38] introduce
self-adaptability to the run-time task allocation to achieve
high system performance. The adaptability is obtained by
dynamically adjusting a set of key parameters based on cur-
rent resource utilization. Liang et al. [17] take the advan-
tage of shared multi-core reconfigurable fabric to optimize
the performance. Nollet et al. [67] describe a run-time task
assignment heuristic for efficiently mapping the tasks in a
multi-core system containing FPGA fabric tiles. With the
presence of FPGA fabric tiles, the heuristic is capable of
managing a configuration hierarchy and improves the task
assignment success rate and quality of solutions. Carvalho
et al. [12] present heuristics where tasks are mapped accord-
ing to the communication requests and the load in the NoC
links. Such consideration reduces the communication over-
head, leading to reduced execution time.

The above mentioned methodologies to optimize compute
performance use centralized management (CM) approach.
The CM approach for large systems (many-core systems
(consist of thousands of cores)) faces the following problems:
1) single point of failure, 2) large volume of monitoring-
traffic by the CM, 3) high computational cost to calculate
mapping inside CM and 4) bottleneck around the CM as

every core sends its status to the CM after every instance
of mapping [3]. Thus, the CM becomes a hot spot. This
necessitates the need of distributed management in order to
reduce the monitoring traffic and computational effort.

For distributed mapping, the entire system is partitioned
into multiple clusters. The resources within each cluster
are managed by an individual cluster manager (agent) that
communicates with a global platform manager in order to
efficiently map an application inside the cluster. The dis-
tributed mapping methodology is better than the state-of-
the-art run-time mapping methodologies using Centralized
Manager (CM) approach when many-core systems are tar-
geted. Peter et al. [70] present a heuristic algorithm that
is distributed over the processor cores, facilitating its appli-
cability to systems of random size. However, as each core
can be considered as a cluster, resource management will
become difficult due to linear increment in the number of
clusters with the system size. Efficient distributed appli-
cation mapping methodologies targeting large architectures
such as 32×32 and 32×64 systems are presented in [3], [46]
and [27]. Faruque et al. [3] consider static applications and
focuses on communication, whereas Kobbe et al. [46] con-
sider malleable applications. Ebi et al. [27] consider hierar-
chical distributed management that targets to trade-off the
effectiveness of a centralize approach using global knowledge
with the scalability of a fully distributed one.

Energy Consumption: Chou et al. [19] propose a method-
ology that incorporates the user behavior information in the
resource allocation process; that allows system to better re-
spond to real-time changes and adapt dynamically to user
needs. This consideration saves 60% communication energy
when compared to an arbitrary task allocation technique.
Mehran et al. [61] present a Dynamic Spiral Mapping (DSM)
heuristic algorithm for 2-D mesh topology where placement
for a task is searched in a spiral path. The task having maxi-
mum degree (connections) is placed at the center of the mesh
to facilitate closer mapping of communicating tasks, thereby
reducing the communication energy. Briao et al. [11] present
strategies where the system turns off idle processors and
applies Dynamic Voltage Scaling (DVS) to processors with
slack to save energy. Smit et al. [84] present an algorithm
that first maps tasks needing scarce resources and then all
other tasks by taking availability of the platform resources
into account. The algorithm minimizes the total amount
of energy consumption while providing adequate Quality of
Service (QoS) for the application. Braak et al. [86] propose a
run-time spatial mapping methodology that spans both the
task graph and the multi-core system to find optimal map-
ping of tasks. Schranzhofer et al. [78] propose a polynomial-
time multiple-step heuristic consisting of initial solutions fol-
lowed by task re-mapping algorithms considering power con-
straints. Singh et al. [83] incorporate energy consumption
measures and multiple tasks per core while mapping tasks
according to the communication requests.

Most of the energy-aware mapping methodologies also
try to optimize compute performance as shown in Table 2.
Thus, they try to fulfill timing constraints while optimizing
for the energy consumption. Such optimization is necessary
for modern embedded systems that need to perform com-
pute intensive operations for a long time within a limited
energy budget. However, these methodologies do not take
reliability of the system into account while performing dif-
ferent kinds of optimization.

Reliability: Some recent methodologies that perform op-
timization for the system reliability are introduced in Table
2. These methodologies take necessary measures to opti-
mize reliability or cure the faults after they have been de-
tected in the system. The detection of faults and their
cure is of paramount importance for many real-time sys-
tems such as safety-critical, automotive, and avionics. Fail-



App1 App2 AppN

Exploration
Engine

Architecture
Model

Exploration
Objectives

App1 Run-time guidelines

Operating
Point

Operating
Point

Operating
Point

AppN Run-time guidelines

Operating
Point

Operating
Point

Operating
Point

Figure 4: Design-time analysis of applications.

ing to achieve fault-tolerance in these systems may lead to
catastrophic consequences. Qi et al. [72] present a technique
that optimizes power while considering the system reliabil-
ity. Chou et al. [20] propose a fault-tolerant application
mapping methodology that optimizes system performance
and energy consumption, while considering occurrence of
different types of faults in the system. Coskun et al. [23,24]
target temperature aware mapping that leads to increased
performance and lifetime. Hartman et al. [31] propose a
run-time task mapping subsystem that mitigates faults us-
ing a wear-based heuristic. The wear-based heuristic is ca-
pable of improving system lifetime over temperature-based
heuristics. The reliability consideration along with other
optimization such as compute performance and energy con-
sumption leads to a better desirable system.

At run-time, some mapping methodologies employ task
migration when performance bottleneck is detected or the
workload needs to be distributed more homogenously in the
whole system [11] [70]. In migration, the tasks are migrated
without completely stopping and restarting the already ex-
ecuting applications. Task migration may also be used in
case user requirement is changed or a new application has
entered into the system in order to revise the placement of
some of the already executing tasks. Issues related to the
task migration such as the cost to interrupt a given task,
saving its context, transmitting all of the data to a new core
and restarting the task in the new core are discussed in [66]
and [8].

3.2 Based on Design-time Analysis Results
Mapping methodologies based on design-time analysis re-

sults perform compute intensive analysis at design-time and
use the analyzed results at run-time. Design-time analy-
sis strategies take application and architecture specifications
as input and explore mappings with some design objectives
(exploration objectives) as shown in Fig. 4. The explored
mappings (operating points) provide guidelines for configur-
ing the application at run-time, which is shown as run-time
guidelines. The mappings represent trade-offs between dif-
ferent performance metrics. The same analysis strategies
can be applied to all the applications (App1, App2, · · · ,
AppN) one after another, which might need to be supported
into the system at run-time, as shown in Fig. 4. Exploring
all the possible mappings for large application and platform
size exhaustively is not feasible within a limited time. There-
fore, faster analysis strategies having some design objectives
are required to explore efficient mappings.

Single Application Single Mapping Analysis: Most
of the design-time analysis techniques reported in literature
provide a single mapping for the application. Design-time
mapping methodologies reported in Section 2 can be used to
find a mapping for an application. Some other such analysis
techniques are presented in [64], [2], [45] and [52].They per-
form exploration in view of some optimization parameters
such as computational performance and energy. The ex-
plored single mapping cannot handle dynamism in resource

availability and performance requirement at run-time.
Single Application Multiple Mappings Analysis:

Design-time analysis strategies that generate multiple map-
pings for the application have recently been reported in [58],
[98], [4], [85], [29], [93], [43] and [71]. The generated map-
pings can be used to handle dynamism in resource avail-
ability and performance requirement at run-time. In [58]
and [98], exploration is performed in view of optimizing for
power consumption and performance in order to identify the
best performance/power trade-offs. Angiolini et al. [4] op-
timize for the performance. Stuijk et al. [85] optimize for
resource usage. Beltrame et al. [29] optimize for energy and
delay. They try to minimize number of simulations required
to identify the mappings providing energy/delay trade-offs.
Wildermann et al. [93] present multi-objective exploration
approach. Jia et al. [43] present an infrastructure called
NASA (Non Ad-hoc Search Algorithm), which uses different
combination of search strategies to explore the mappings.
Piscitelli et al. [71] propose an approach that interleaves the
estimations with simulative evaluations in order to ensure
that optimal mappings are explored accurately. Most of
the analysis strategies use either simulation or an analytical
model to evaluate mappings, where simulative evaluations
are computationally costly and analytical approaches suf-
fer from accuracy issues. In [43] and [71], simulative and
analytical evaluations are combined to perform fast and ac-
curate analysis. These strategies analyze applications one
after another. To support the required applications on the
system at run-time, they are mapped sequentially by using
their analysis results.

Multiple Applications Multiple Mappings Analy-
sis: There has been quite some research in multiple ap-
plications DSE. Some researchers focus on scenario based
approach where multiple application mapping scenarios are
explored at design-time in order to handle dynamism in the
number of active applications at run-time [85], [90], [69].
A scenario contains a set of simultaneously active applica-
tions referred to as use-case [47] [65] [6]. The scenario based
approaches are not scalable as the number of scenarios in-
creases exponentially with the number of applications, which
might become intractable.
A few strategies that perform mapping using design-time

analysis results are presented in [79], [48], [97], [96], [95],
[39], [81] and [82]. In [79], analysis result includes only a sin-
gle mapping having minimum average power consumption.
In [48], the authors target to minimize application execution
time. In [97] and [96], analysis results include multiple map-
pings having trade-off in terms of target power consumption
and performance. In [95], design-time analysis gives ideal
core count and memory required for current state of the ap-
plication. In [39], a set of process variation-aware schedules
is analyzed at design-time. In [81] and [82], analysis results
include mappings optimized from throughput point of view
for homogeneous and heterogeneous platforms, respectively.
The design-time analysis results have been used by run-time
platform manager in order to map applications on the plat-
form efficiently. The manager invokes run-time selection
strategy to select the best mapping from the design-time
analyzed mappings in order to configure the applications on
the platform resources.

Reliability-aware Analysis: Reliability (fault) aware
design-time analysis can be performed in order to produce
solutions that can be used to cure faults incurred at run-
time or to reduce the chances of system failure. Some ap-
proaches that perform such analysis and use the analysis re-
sults at run-time are presented in [25], [49], [77], [26] and [40].
In [25], design-time analysis is performed while aimed at op-
timizing system’s life-time in terms of mean time to failure.
In [49], an intensive design-time analysis for all possible fail-
ure scenarios is performed. At run-time, tasks are simply



Table 3: Comparison of various approaches for
performing design-time analysis and then run-time
(RT) mapping
Author Plat. Appl. Maps. RT Optimization Goal
Mariani et al. [58] Fix. Hom. Mult. Yes Energy consumption, Execution time
Stuijk et al. [85] Fix. Hom. Mult. No Resource utilization
Beltrame et al. [29] Fix. Hom. Mult. No Energy consumption, delay
Ykman et al. [97] Fix. Hom. Mult. Yes Energy consumption, Execution time
Xue et al. [95] Fix. Hom. Mult. Yes Resource utilization
Anup et al. [25] Fix. Hom. Mult. Yes Reliability
Singh et al. [81] Gen. Hom. Mult. Yes Solution quality, Execution time
Yang et al. [96] Fix. Het. Mult. Yes Energy consumption, Execution time
Angiolini et al. [4] Fix. Het. Mult. No Execution time
Zamora et al. [98] Fix. Het. Mult. No Energy consumption, Execution time
Wildermann et al. [93] Fix. Het. Mult. No Solution quality, Execution time
Schranzhofer et al. [79] Fix. Het. Sing. Yes Energy consumption
Piscitelli et al. [71] Fix. Het. Mult. No Solution quality, Execution time
Kwok et al. [48] Fix. Het. Mult. Yes Execution time
Huang et al. [39] Fix. Het. Mult. Yes Execution time
Lee et al. [49] Fix. Het. Mult. Yes Reliability
Schor et al. [77] Fix. Het. Mult. Yes Reliability
Derin et al. [26] Fix. Het. Mult. Yes Reliability
Huang et al. [40] Fix. Het. Mult. Yes Energy consumption, Reliability
Jia et al. [43] Flex. Het. Mult. No Solution quality, Execution time
Singh et al. [82] Gen. Het. Mult. Yes Energy Consumption, Execution time

remapped using the compile-time decisions. In [77], archi-
tectural failures are handled by allocating spare cores during
design-time analysis in order to include the evaluation of all
the possible failure scenarios. In [26], optimal mappings for
all single-fault scenarios in the processing cores are analyzed,
which are used by an online task remapping heuristic. The
analysis performs optimization to minimize communication
traffic and total execution time. In [40], an initial task sched-
ule for different execution modes is generated at design-time.
Then, run-time adjustment is performed at regular intervals
for optimizing lifetime reliability and energy consumption.

Table 3 shows a comparison of the approaches reported
in literature which consider design-time analysis and then
analyzed results for run-time mapping. As can be seen,
most of the existing approaches perform design-time analy-
sis on fixed (Fix.) or flexible (Flex.) platforms and evalu-
ate mappings that are applicable only to fixed homogeneous
(Hom.), fixed heterogeneous (Het.) or a set of heterogeneous
(Flex. Het.) platforms. A few approaches consider a generic
(Gen.) platform and provide multiple mappings that are
applicable to large set of platforms. Most of the analysis
strategies provide multiple (Mult.) mappings. Some strate-
gies provide support for run-time (RT) mapping that uses
design-time analysis results optimized for different require-
ments.

3.3 Centralized vs. Distributed Management
The run-time mapping methodologies use centralized, dis-

tributed or hierarchical distributed resource management
techniques. For small platforms such as 4x4 grid of cores,
one core can be used as the manager that handles the map-
ping process. This approach is not scalable with the plat-
form size as the monitoring traffic around the centralized
manager increases which may lead to hot-spot resulting in
reduced overall performance.

The distributed management caters for the large platforms
such as 32x64 grid of cores. The distributed approach re-
duces the monitoring traffic around the Centralize Manager
(CM). However, in a relatively smaller architecture, the CM
approach might perform better as the distributed approach
incurs additional communication overhead amongst the clus-
ter agents without offering significant advantages. It should
be noted that the cluster agents in the distributed approach
behave identically to a centralized manager albeit for a small
region. A detailed analysis and comparison of the central-
ized, distributed and hierarchical distributed approaches are
provided in the next section.

4. UPCOMING TRENDS AND OPEN
CHALLENGES

This section addresses some of the upcoming trends and

challenges to be faced to take the mapping methodologies
into the next era.

4.1 Hybrid Mapping
The reported mapping methodologies provide three alter-

natives: design-time mapping, on-the-fly mapping and hy-
brid (design-time analysis and then run-time use) mapping.
Design-time techniques have pre-dominated the reported lit-
erature. However, their inability to handle dynamic work-
load scenarios has led to the formulation of on-the-fly map-
ping methodologies. On-the-fly strategies surmount the lim-
itation of handling dynamic workloads at run-time but with
the fallout of possible non-optimal mapping due to limited
compute power at run-time. Recently, the issues of design-
time and on-the-fly strategies have been addressed by devel-
oping hybrid mapping methodologies that attempt to incor-
porate the advantages of both. Hybrid strategies combine
design space exploration of design-time techniques with the
run-time management in order to select mapping configu-
rations that are best suited to newly arriving applications.
They involve minimum computation at run-time, facilitat-
ing for light-weight run-time manager performing efficient
mapping. Our experimental results have shown that run-
time mapping gets speeded up by 93% when compared to
state-of-the-art on-the-fly mapping methodologies [81]. Al-
though the advantages of hybrid strategy seem promising,
it comes with its own trade-offs due to inherent pseudo-
dynamic nature and inability to handle new applications
without available design-time exploration. With no doubt,
hybrid strategies seem to be followed in the field of map-
ping methodologies but due to their nascent development
and lack of in-depth examination, further development of
design-time and on-the-fly mapping methodologies will con-
tinue hand-in-hand with hybrid strategies.

The hybrid strategies also consider reliability-aware map-
ping as shown in Table 3. The strategies explore mapping
alternatives at design-time for different fault scenarios in-
curred at run-time. Exploration by considering all the possi-
ble fault scenarios while considering different types of faults
takes large time that might not be acceptable. This imposes
challenge to investigate efficient exploration strategies that
should overcome the exploration time bottleneck.

Modern design space exploration (DSE) strategies target
optimization for multiple variables in order to satisfy several
performance demands. The number of optimization vari-
ables is expected to increase with the increasing end user de-
mands. In order to manage the challenges with increased op-
timization variables, an attention to prune the design space
efficiently will be required. Further, heterogeneity of sys-
tems is increasing for better fulfilling the demands. This
will need to be addressed with care due to the potential ex-
plosion in the number of permutations to be considered at
each stage of the exploration. The exploration strategies
might need to establish an upper limit on the heterogeneity
in order to maintain the low complexity.

4.2 Large Scale Architectures
The technological enhancement will enable integration of

hundreds and even thousands of cores [10]. Different large
scale architectures have already been introduced, like Inva-
sive Computing [32], Angstrom [34], and Intel’s TeraFlop
[91]. The many-core architectures impose a big challenge
to manage their resources at run-time in a scalable manner.
To achieve high degree of scalability in many-core architec-
tures, resource management of large number of cores require
distributed management as centralized management is not
scalable with the number of cores. Some distributed man-
agement strategies are introduced in [44], [3], [46] and [27].

Kadin et al. [44] propose a Distributed Dynamic Ther-
mal Management (D2TM) scheme that delivers about 40%
performance improvement over a standard planning scheme



70

72

74

76

78

80

82

84

Only�periodic�tasks All�tasks�started
together

All�tasks�best�effort
tasks�randomly

distributed

Central�proactive Fully�distributed Hierarchical�distributed

0

10

20

30

40

50

60

70

80

Periodic�tasks
one�instance

Periodic�tasks
two�instances

Periodic�tasks
four�instances

Te
m

pe
ra

tu
re

�(C
)

De
ad

lin
e�

m
iss

es

Figure 5: Peak temperatures and missed deadlines
in periodic SPEC2006 tasks [27].

1st Request 2nd Request Resulting Mapping

Figure 6: Three applications (A, B, and C) compet-
ing for cores in a many-core system [32].

for 16-core system without violating the temperature con-
straints. For the same system, an optimal central scheme
delivers about 42% performance improvement. Fig. 5 shows
a comparison of state-of-the-art proactive global centralized
(used in [24]), fully distributed (used in [3]) and hierar-
chical distributed (used in [27]) approaches for peak tem-
perature and deadline misses for applications of SPEC2006
benchmark suite. The temperature and deadline miss val-
ues for different simulations (mentioned on horizontal axis)
are quoted from [27]. It can be observed that centralized
proactive approach provides lower peak temperatures and
hierarchical distributed approach shows minimum deadline
misses. The lower peak temperatures by the centralized ap-
proaches are expected as they have a better view of the sys-
tem and thus more optimization potential. However, they
are limited by their scalability.

A many-core architecture to support invasive computing
is introduced in [32]. The invasive many-core architecture
contains large number of cores and uses distributed resource
management approach [46] to achieve the required degree
of scalability. In such large systems, typically many ap-
plications execute simultaneously [21] and compete for the
available resources. The agent of each application executing
in the system try to increase the speedup of its applica-
tion by acquiring additional cores. Therefore, at run-time,
each agent sends requests for cores to the nearby regions.
The transfer of cores takes place if gain in the speedup is
substantial over the loss for the giving application. Fig. 6
shows an example of three applications A, B, and C compet-
ing for resources. In the 1st request, application A requests
additional cores and some cores are taken away from appli-
cation B. In the 2nd request, application C requests more
cores and the agents decide to take away some core from ap-
plications A and B. The initial mapping gets changed to a
more balanced share of resources after the two optimization
requests. Additionally, the mappings of applications are op-
timized over time as new resources might become available
due to finishing of tasks of another application.

Fig. 7 shows a comparison of distributed [46] and central-
ized [75] resource management approaches for various sys-
tem sizes. The shown results are from CES, KIT, Germany.
The centralized scheme in [75] produces competitive and
near-optimal schedules. Fig. 7.(a) shows average applica-
tion speedup, which is computed as the total workload of all
applications divided by the sum of the turnaround times of
all applications. The results show that DistRM scheme per-

forms better for larger number of cores and achieves about
84% of the mapping quality of the centralized scheme. The
centralized scheme always aims at the globally best solu-
tion, whereas DistRM scheme performs local changes. Fig.
7.(b) compares accumulated computational effort. In cen-
tralize scheme, all computations are performed in a single
core and the computational effort increases with the sys-
tem size. However, in the DistRM scheme, the effort is
distributed over the system on different agents and stays
constantly low. Fig. 7.(c) plots network utilization, which is
calculated by multiplying the amount of messages, the aver-
age message size, and the average communication distance.
The resulting communication volume required by the Dis-
tRM scheme is less for large system sizes. The messages in
DistRM scheme are scattered over the NoC, which avoids
communication bottlenecks that might encounter in cen-
tralized scheme. It can be observed that DistRM scheme
requires lower communication volume over the centralize
scheme for higher number of applications on large systems
such as 32×32. Thus, DistRM scheme is more beneficial for
more concurrent applications or larger systems.

Efficient exploitation of the abundant processing power
of the available cores is challenging. This is one of the im-
portant problem and still needs to be investigated. The
investigations need to address how applications from differ-
ent domain can efficiently utilize large number of processor
cores to jointly optimize compute performance, energy con-
sumption and temperature for many-core systems.

4.3 3D Integration of Cores
Integration of multiple layers of processor cores into a sin-

gle device leads to reduced area, power and signal trans-
mission delay. These advantages make 3D multi-core archi-
tectures a potential alternative to be used in future high
performance computing systems. Despite having several ad-
vantages, the 3D high integration density brings major con-
cern in the temperature increase that causes thermal hot
spots and high temperature gradients. This might lead to
an unreliable system and degraded performance. Efficient
thermal management of 3D architectures is challenging and
requires investigation of efficient methodologies.

Thermal management techniques for 2D and 3D architec-
tures are reported in [23, 24, 27, 89, 100] and [22, 99], respec-
tively. However, development of efficient mapping method-
ologies taking thermal issues into account for 3D architec-
tures will continue in foreseeable future. Further, 3D het-
erogeneous architectures will need to be considered for bet-
ter fulfilling the increasing functional and non-functional
demands. Heterogeneity imposes additional challenges for
managing different types of cores.

Some additional challenges also need to be addressed to
take the mapping methodologies into the next era. For
example, development of efficient programming models for
large scale and 3D architectures, efficient synchronization
and control of concurrently executing tasks on such archi-
tectures and debugging of several concurrent executions if
results are not as expected.

5. CONCLUSION
This paper provides a survey of the mapping methodolo-

gies targeting multi-core systems. In order to fully utilize
the capabilities of multiple cores, the mapping methodolo-
gies are inevitably required to efficiently map complex ap-
plications onto them. The methodologies reported in the lit-
erature target homogeneous or heterogeneous architectures.
Heterogeneous architectures provide better performance by
exploiting the distinct features of the different type of cores
but they are difficult to program as compared to their ho-
mogeneous counterpart. These multi-core systems employ
NoC-based interconnection infrastructure for efficiency and
scalability. The methodologies are classified as design-time



(a) Average application speedup for 
various system sizes

5x5      8x8     12x12  16x16  20x20  24x24  28x28  32x32 5x5      8x8     12x12    16x16  20x20   24x24   28x28   32x32 5x5        8x8      12x12    16x16  20x20   24x24   28x28   32x32

System Size System Size System Size

Av
er

ag
e 

Ap
pl

ic
at

io
n 

Sp
ee

du
p

Ca
lc

ul
at

io
n 

of
 th

e 
m

os
t i

nn
er

 L
oo

p 

Co
m

m
un

ic
at

io
n 

Vo
lu

m
e 

(B
yt

es
)

DistRM Scheme                          
Central Scheme

(b) Accumulated computational effort of both 
schemes for a workload consisting of 16, 32, 
and 64 applications on various system sizes

(c) The network utilization of both the 
schemes on a 2D mesh network for 16, 32, 
and 64 applications for various system sizes

Figure 7: Comparison of Distributed Resource Management (DistRM) [46] and Centralized [75] scheme.

or run-time methodologies. Their advantages and disadvan-
tages for different type of workload scenarios are described.
For dynamic workload scenarios, run-time techniques are
proven to be more prevalent and useful. Additionally, they
offer several other advantages over design-time techniques
such as ability to enable unforeseeable upgrades, ability to
avoid defective parts of a system, etc. Based on the analysis
of the mapping methodologies, upcoming trends and open
challenges are addressed.

6. ACKNOWLEDGMENTS
We also wish to mention that this work is partly sup-

ported by Singapore Ministry of Education Academic Re-
search Fund Tier 1 under grant No. R-263-000-655-133 and
German Research Foundation (DFG) as part of the Transre-
gional Collaborative Research Centre “Invasive Computing”
(SFB/TR 89); http://invasic.de.

7. REFERENCES
[1] W. Ahmed, M. Shafique, L. Bauer, and J. Henkel. Adaptive

resource management for simultaneous multitasking in
mixed-grained reconfigurable multi-core processors. In
CODES+ISSS, pages 365–374, 2011.

[2] Y. Ahn, K. Han, G. Lee, H. Song, J. Yoo, K. Choi, and
X. Feng. SoCDAL: System-on-chip design AcceLerator. ACM
Trans. Des. Autom. Electron. Syst., pages 1–38, 2008.

[3] M. A. Al Faruque, R. Krist, and J. Henkel. ADAM: run-time
agent-based distributed application mapping for on-chip
communication. In DAC, pages 760–765, 2008.

[4] F. Angiolini, J. Ceng, R. Leupers, F. Ferrari, C. Ferri, and
L. Benini. An Integrated Open Framework for Heterogeneous
MPSoC Design Space Exploration. In DATE, pages 1 –6, 2006.

[5] G. Ascia, V. Catania, and M. Palesi. Multi-objective mapping
for mesh-based noc architectures. In CODES+ISSS, pages
182–187, 2004.

[6] L. Benini, D. Bertozzi, and M. Milano. Resource Management
Policy Handling Multiple Use-Cases in MPSoC Platforms
Using Constraint Programming. In ICLP, pages 470–484, 2008.

[7] L. Benini and G. De Micheli. Networks on chips: a new SoC
paradigm. Computer, (1):70–78, 2002.

[8] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali.
Supporting task migration in multi-processor systems-on-chip:
a feasibility study. In DATE, pages 15–20, 2006.

[9] A. Bonfietti, L. Benini, M. Lombardi, and M. Milano. An
efficient and complete approach for throughput-maximal sdf
allocation and scheduling on multi-core platforms. In DATE,
pages 897–902, 2010.

[10] S. Borkar. Thousand core chips: a technology perspective. In
DAC, pages 746–749, 2007.

[11] E. W. Briáo, D. Barcelos, and F. R. Wagner. Dynamic task
allocation strategies in MPSoC for soft real-time applications.
In DATE, pages 1386–1389, 2008.

[12] E. L. d. S. Carvalho, N. L. V. Calazans, and F. G. Moraes.
Dynamic task mapping for mpsocs. IEEE Des. Test, pages
26–35, 2010.

[13] J. Castrillon, A. Tretter, R. Leupers, and G. Ascheid.
Communication-aware mapping of kpn applications onto
heterogeneous mpsocs. In DAC, pages 1266–1271, 2012.

[14] J. Ceng et al. MAPS: an integrated framework for MPSoC
application parallelization. In DAC, pages 754–759, 2008.

[15] W. Che and K. S. Chatha. Unrolling and retiming of stream
applications onto embedded multicore processors. In DAC,
pages 1272–1277, 2012.

[16] G. Chen, F. Li, S. Son, and M. Kandemir. Application
mapping for chip multiprocessors. In DAC, pages 620–625,
2008.

[17] L. Chen, T. Marconi, and T. Mitra. Online scheduling for
multi-core shared reconfigurable fabric. In DATE, pages 582
–585, 2012.

[18] J. Choi, H. Oh, S. Kim, and S. Ha. Executing synchronous
dataflow graphs on a spm-based multicore architecture. In
DAC, pages 664–671, 2012.

[19] C.-L. Chou and R. Marculescu. User-aware dynamic task
allocation in networks-on-chip. In DATE, pages 1232–1237,
2008.

[20] C.-L. Chou and R. Marculescu. Farm: Fault-aware resource
management in noc-based multiprocessor platforms. In DATE,
pages 1 –6, 2011.

[21] C.-L. Chou, U. Y. Ogras, and R. Marculescu. Energy- and
performance-aware incremental mapping for networks on chip
with multiple voltage levels. Trans. Comp.-Aided Des. Integ.
Cir. Sys., pages 1866–1879, Oct. 2008.

[22] A. K. Coskun, J. L. Ayala, D. Atienza, T. S. Rosing, and
Y. Leblebici. Dynamic thermal management in 3d multicore
architectures. In DATE, pages 1410–1415, 2009.

[23] A. K. Coskun, T. S. Rosing, and K. C. Gross. Temperature
management in multiprocessor socs using online learning. In
DAC, pages 890–893, 2008.

[24] A. K. Coskun, T. v. Rosing, and K. C. Gross. Utilizing
predictors for efficient thermal management in multiprocessor
socs. Trans. Comp.-Aided Des. Integ. Cir. Sys., pages
1503–1516, 2009.

[25] A. Das, A. Kumar, and B. Veeravalli. Reliability-Driven Task
Mapping for Lifetime Extension of Networks-on-Chip Based
Multiprocessor Systems. In DATE, 2013.

[26] O. Derin, D. Kabakci, and L. Fiorin. Online task remapping
strategies for fault-tolerant Network-on-Chip multiprocessors.
In NOCS, pages 129 –136, 2011.

[27] T. Ebi, D. Kramer, W. Karl, and J. Henkel. Economic learning
for thermal-aware power budgeting in many-core architectures.
In CODES+ISSS, pages 189–196, 2011.

[28] M. R. Garey and D. S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. 1979.

[29] B. Giovanni, L. Fossati, and D. Sciuto. Decision-theoretic
design space exploration of multiprocessor platforms. Trans.
Comp.-Aided Des. Integ. Cir. Sys., pages 1083–1095, 2010.

[30] A. Hartman, D. Thomas, and B. Meyer. A case for
lifetime-aware task mapping in embedded chip
multiprocessors. In CODES+ISSS, pages 145 –154, 2010.

[31] A. S. Hartman and D. E. Thomas. Lifetime improvement
through runtime wear-based task mapping. In CODES+ISSS,
pages 13–22, 2012.

[32] J. Henkel et al. Invasive manycore architectures. In ASP-DAC,
pages 193 –200, 2012.

[33] J. Henkel, W. Wolf, and S. Chakradhar. On-chip networks: A
scalable, communication-centric embedded system design
paradigm. In VLSID, pages 845 – 851, 2004.

[34] H. Hoffmann et al. Self-aware computing in the angstrom
processor. In DAC, pages 259–264, 2012.

[35] S. Hong, S. H. K. Narayanan, M. Kandemir, and O. Özturk.
Process variation aware thread mapping for chip
multiprocessors. In DATE, pages 821–826, 2009.

[36] J. Hu and R. Marculescu. Energy-aware mapping for
tile-based noc architectures under performance constraints. In
ASP-DAC, pages 233–239, 2003.

[37] J. Hu and R. Marculescu. Energy- and performance-aware
mapping for regular NoC architectures. IEEE Trans.
Comp.-Aided Des. Integ. Cir. Sys., (4):551–562, 2005.

[38] J. Huang, A. Raabe, C. Buckl, and A. Knoll. A workflow for
runtime adaptive task allocation on heterogeneous MPSoCs.
In DATE, pages 1 –6, 2011.

[39] L. Huang and Q. Xu. Performance yield-driven task allocation
and scheduling for MPSoCs under process variation. In DAC,
pages 326 –331, 2010.

[40] L. Huang, R. Ye, and Q. Xu. Customer-aware task allocation
and scheduling for multi-mode MPSoCs. In DAC, pages 387
–392, 2011.



[41] H. Javaid and S. Parameswaran. A design flow for application
specific heterogeneous pipelined multiprocessor systems. In
DAC, pages 250–253, 2009.

[42] A. Jerraya, H. Tenhunen, and W. Wolf. Guest Editors’
Introduction: Multiprocessor Systems-on-Chips. Computer,
(7):36–40, 2005.

[43] Z. J. Jia et al. NASA: A generic infrastructure for system-level
MP-SoC design space exploration. In ESTIMedia, pages 41
–50, 2010.

[44] M. Kadin, S. Reda, and A. Uht. Central vs. distributed
dynamic thermal management for multi-core processors: which
one is better? In GLSVLSI, pages 137–140, 2009.

[45] J. Keinert et al. SystemCoDesigner Ůan automatic ESL
synthesis approach by design space exploration and behavioral
synthesis for streaming applications. ACM Trans. Des. Autom.
Electron. Syst., pages 1–23, 2009.

[46] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat,
and J. Henkel. Distrm: distributed resource management for
on-chip many-core systems. In CODES+ISSS, pages 119–128,
2011.

[47] A. Kumar et al. Multiprocessor systems synthesis for multiple
use-cases of multiple applications on FPGA. ACM Trans. Des.
Autom. Electron. Syst., pages 1–27, 2008.

[48] Y.-K. Kwok et al. A semi-static approach to mapping dynamic
iterative tasks onto heterogeneous computing systems. J.
Parallel Distrib. Comput., 66(1):77–98, 2006.

[49] C. Lee, H. Kim, H.-w. Park, S. Kim, H. Oh, and S. Ha. A task
remapping technique for reliable multi-core embedded
systems. In CODES+ISSS, pages 307–316, 2010.

[50] L.-Y. Lin et al. Communication-driven task binding for
multiprocessor with latency insensitive network-on-chip. In
ASP-DAC, pages 39–44, 2005.

[51] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
pages 46–61, 1973.

[52] W. Liu and other. Efficient SAT-Based Mapping and
Scheduling of Homogeneous Synchronous Dataflow Graphs for
Throughput Optimization. In RTSS, pages 492–504, 2008.

[53] A. Mallik et al. MNEMEE - An Automated Toolflow for
Parallelization and Memory Management in MPSoC
Platforms. In DAC, 2011.

[54] S. Manolache, P. Eles, and Z. Peng. Task mapping and
priority assignment for soft real-time applications under
deadline miss ratio constraints. ACM Trans. Embed. Comput.
Syst., (2):19:1–19:35, 2008.

[55] C. Marcon, A. Borin, A. Susin, L. Carro, and F. Wagner.
Time and energy efficient mapping of embedded applications
onto NoCs. In ASP-DAC, pages 33–38, 2005.

[56] C. Marcon, E. Moreno, N. Calazans, and F. Moraes.
Comparison of network-on-chip mapping algorithms targeting
low energy consumption. Computers Digital Techniques, IET,
pages 471 –482, 2008.

[57] R. Marculescu, U. Ogras, L.-S. Peh, N. Jerger, and
Y. Hoskote. Outstanding Research Problems in NoC Design:
System, Microarchitecture, and Circuit Perspectives. IEEE
TCAD, (1):3–21, 2009.

[58] G. Mariani et al. An industrial design space exploration
framework for supporting run-time resource management on
multi-core systems. In DATE, pages 196–201, 2010.

[59] G. Martin. Overview of the mpsoc design challenge. In DAC,
pages 274 –279, 2006.

[60] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele,
S. Ha, C. Lee, Q. Xu, and L. Huang. Mapping of applications
to MPSoCs. In CODES+ISSS, pages 109–118, 2011.

[61] A. Mehran, A. Khademzadeh, and S. Saeidi. DSM: A Heuristic
Dynamic Spiral Mapping algorithm for network on chip.
IEICE Electronics Express, (13):464–471, 2008.

[62] B. H. Meyer, A. S. Hartman, and D. E. Thomas. Cost-effective
slack allocation for lifetime improvement in noc-based mpsocs.
In DATE, pages 1596–1601, 2010.

[63] O. Moreira, J. J.-D. Mol, and M. Bekooij. Online resource
management in a multiprocessor with a network-on-chip. In
SAC, pages 1557–1564, 2007.

[64] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple
independent hard-real-time jobs on a heterogeneous
multiprocessor. In EMSOFT, pages 57–66, 2007.

[65] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and
G. De Micheli. A methodology for mapping multiple use-cases
onto networks on chips. In DATE, pages 118–123, 2006.

[66] V. Nollet et al. Centralized Run-Time Resource Management
in a Network-on-Chip Containing Reconfigurable Hardware
Tiles. In DATE, pages 234–239, 2005.

[67] V. Nollet et al. Run-time management of a MPSoC containing
FPGA fabric tiles. IEEE Trans. Very Large Scale Integr. Syst.,
pages 24–33, 2008.

[68] H. Orsila et al. Automated memory-aware application
distribution for Multi-processor System-on-Chips. J. Syst.
Archit., (11):795–815, 2007.

[69] G. Palermo, C. Silvano, and V. Zaccaria. Robust optimization
of SoC architectures: A multi-scenario approach. In
ESTIMedia, pages 7 –12, 2008.

[70] Z. Peter et al. A Decentralised Task Mapping Approach for
Homogeneous Multiprocessor Network-On-Chips. International
Journal of Reconfigurable Computing, 2009.

[71] R. Piscitelli and A. Pimentel. Design space pruning through
hybrid analysis in system-level design space exploration. In
DATE, pages 781 –786, 2012.

[72] X. Qi, D. Zhu, and H. Aydin. Global Reliability-Aware Power
Management for Multiprocessor Real-Time Systems. In
ERTCSA, pages 183–192, 2010.

[73] C.-E. Rhee, H.-Y. Jeong, and S. Ha. Many-to-Many
Core-Switch Mapping in 2-D Mesh NoC Architectures. In
ICCD, pages 438–443, 2004.

[74] M. Ruggiero et al. Communication-aware allocation and
scheduling framework for stream-oriented multi-processor
systems-on-chip. In DATE, pages 3–8, 2006.

[75] G. Sabin, M. Lang, and P. Sadayappan. Moldable parallel job
scheduling using job efficiency: an iterative approach. In
JSSPP, pages 94–114, 2007.

[76] N. Satish, K. Ravindran, and K. Keutzer. A
decomposition-based constraint optimization approach for
statically scheduling task graphs with communication delays
to multiprocessors. In DATE, pages 57–62, 2007.

[77] L. Schor et al. Scenario-based design flow for mapping
streaming applications onto on-chip many-core systems. In
CASES, pages 71–80, 2012.

[78] A. Schranzhofer, J.-J. Chen, and L. Thiele. Power-Aware
Mapping of Probabilistic Applications onto Heterogeneous
MPSoC Platforms. In RTAS, pages 151–160, 2009.

[79] A. Schranzhofer, J.-J. Chen, and L. Thiele. Dynamic
Power-Aware Mapping of Applications onto Heterogeneous
MPSoC Platforms. IEEE Transactions on Industrial
Informatics, (4):692 –707, 2010.

[80] H. Shojaei et al. A parameterized compositional
multi-dimensional multiple-choice knapsack heuristic for CMP
run-time management. In DAC, pages 917–922, 2009.

[81] A. K. Singh, A. Kumar, and T. Srikanthan. A Hybrid Strategy
for Mapping Multiple Throughput-constrained Applications on
MPSoCs. In CASES, pages 175–184, 2011.

[82] A. K. Singh, A. Kumar, and T. Srikanthan. Accelerating
throughput-aware runtime mapping for heterogeneous mpsocs.
ACM Trans. Des. Autom. Electron. Syst., pages 1–29, 2013.

[83] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang.
Communication-aware heuristics for run-time task mapping on
NoC-based MPSoC platforms. J. Syst. Archit., pages 242–255,
2010.

[84] L. Smit et al. Run-time mapping of applications to a
heterogeneous reconfigurable tiled system on chip architecture.
In FPT, pages 421–424, 2004.

[85] S. Stuijk, M. Geilen, and T. Basten. A Predictable
Multiprocessor Design Flow for Streaming Applications with
Dynamic Behaviour. In DSD, pages 548–555, 2010.

[86] T. D. ter Braak et al. Run-time spatial resource management
for real-time applications on heterogeneous MPSoCs. In
DATE, pages 357–362, 2010.

[87] T. Theocharides et al. Towards embedded runtime system
level optimization for MPSoCs: on-chip task allocation. In
GLSVLSI, pages 121–124, 2009.

[88] L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping
Applications to Tiled Multiprocessor Embedded Systems. In
ACSD, pages 29–40, 2007.

[89] L. Thiele, L. Schor, H. Yang, and I. Bacivarov. Thermal-aware
system analysis and software synthesis for embedded
multi-processors. In DAC, pages 268–273, 2011.

[90] P. van Stralen and A. Pimentel. Scenario-based design space
exploration of MPSoCs. In ICCD, pages 305 –312, 2010.

[91] S. Vangal et al. An 80-Tile 1.28TFLOPS Network-on-Chip in
65nm CMOS. In ISSCC, pages 98–589, 2007.

[92] F. Wang et al. Variation-aware task and communication
mapping for mpsoc architecture. IEEE TCAD, (2):295 –307,
2011.

[93] S. Wildermann, F. Reimann, D. Ziener, and J. Teich.
Symbolic design space exploration for multi-mode
reconfigurable systems. In CODES+ISSS, pages 129–138, 2011.

[94] D. Wu, B. M. Al-Hashimi, and P. Eles. Scheduling and
Mapping of Conditional Task Graphs for the Synthesis of Low
Power Embedded Systems. In DATE, page 10090, 2003.

[95] L. Xue, O. ozturk, F. Li, M. Kandemir, and I. Kolcu. Dynamic
partitioning of processing and memory resources in embedded
MPSoC architectures. In DATE, pages 690–695, 2006.

[96] P. Yang et al. Managing dynamic concurrent tasks in
embedded real-time multimedia systems. In ISSS, pages
112–119, 2002.

[97] C. Ykman-Couvreur et al. Linking run-time resource
management of embedded multi-core platforms with
automated design-time exploration. IET Comp. Dig. Techn.,
(2):123 –135, 2011.

[98] N. H. Zamora, X. Hu, and R. Marculescu. System-level
performance/power analysis for platform-based design of
multimedia applications. ACM Trans. Des. Autom. Electron.
Syst., pages 2:1–2:29, 2007.

[99] X. Zhou, J. Yang, Y. Xu, Y. Zhang, and J. Zhao.
Thermal-aware task scheduling for 3d multicore processors.
IEEE Trans. Parallel Distrib. Syst., pages 60–71, 2010.

[100] C. Zhu, Z. P. Gu, R. P. Dick, and L. Shang. Reliable
multiprocessor system-on-chip synthesis. In CODES+ISSS,
pages 239–244, 2007.


