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Abstract

Increasingly more MPSoC platforms are being devel-
oped to meet the rising demands from concurrently exe-
cuting applications. These systems are often heterogeneous
with the use of dedicated IP blocks and application domain
specific processors. While there is a host of research done
to provide good performance guarantees and to analyze ap-
plications for preemptive uniprocessor systems, the field of
heterogeneous, non-preemptive MPSoCs is a mostly unex-
plored territory. In this paper, we propose to use a resource
manager (RM) to improve the resource utilization of these
systems. The basic functionalities of such a component are
introduced. A high-level simulation model of such a system
is developed to study the performance of RM, and a case
study is performed for a system running an H.263 and a
JPEG decoder. The case study illustrates at what control
granularity a resource manager can effectively regulate the
progress of applications such that they meet their perfor-
mance requirements.

1. Introduction

Current developments in set-top box products for me-
dia systems show a need for integrating a (potentially large)
number of applications or functions in a single device. An
increasing number of processors are being integrated into a
single chip to build Multiprocessor Systems-on-chip (MP-
SoC). The heterogeneity of such a system increases with
the use of specialized digital hardware, application domain
processors and other IP (intellectual property) blocks on a
single chip using complex networks. Almost all the major
companies in consumer electronics have already released
heterogeneous multiprocessors e.g. Intel IXP2850, Philips
Nexperia, TI OMAP and ST Nomadik, to name a few.
Non-preemptive operating systems are preferred over

preemptive scheduling for a number of reasons [1]. In
many practical systems, properties of device hardware and
software either make the preemption impossible or pro-
hibitively expensive. For embedded systems in particu-
lar, non-preemptive scheduling algorithms are easier to im-
plement than preemptive algorithms and have dramatically
lower overhead at run-time [1]. It is therefore important to
investigate non-preemptive heterogeneous MPSoCs.

A heterogeneous MPSoC places high demands on the
arbitration of computational resources (among other re-
sources). A need has therefore arisen for a middle-ware
or OS-like component for the MPSoC, as observed in [2].
In this paper, we propose the use of a Resource Manager
(RM) for non-preemptive heterogeneousMPSoCs. We state
the basic functionalities expected from such a component.
While most research only focusses on schedulability anal-
ysis, here we also discuss the required protocol needed to
realize a working system. Further, we present a simula-
tion model developed using the modeling language POOSL
[3] to validate this protocol. POOSL is a very expressive
modeling language with a small set of powerful primitives
and completely formally defined semantics. It furthermore
serves as a basis for performance analysis. This setup can
be used to study various trade-offs in design of an MPSoC.
In this paper, we use the setup to study the trade-off between
control overhead of monitoring and budget enforcement on
the one hand, and performance of applications on the other.
The remainder of this paper is organized as follows. Sec-

tion 2 discusses the relevant research that has been done. In
Section 3 we present an example to highlight the problem in
combining multiple applications’ resource utilization. We
also show how the resource manager can be useful when
desired performance is to be met in multiple applications.
Section 4 discusses the setup of the simulation model, and
goes into the details of RM and the protocol. The results
of a case study done with H263 and JPEG decoder are dis-
cussed in Section 5. Section 6 ends the paper with some
conclusions and direction for future work.

2. Related Work

For traditional systems, with a single general-purpose
processor supporting pre-emption, the analysis of schedu-
lability of task deadlines is well known [4] and widely
used. Non-preemptive scheduling has received consider-
ably less attention. It was shown by Jeffay et al. [1] and
further strengthened by Cai and Kong [8] that the prob-
lem of determining whether a given periodic task system
is non-preemptively feasible even upon a single proces-
sor is already intractable. Also, research on multiproces-
sor real-time scheduling has mainly focused on preemp-
tive systems [9, 10]. Recently, more work has been done
on non-preemptive scheduling for multiprocessors [5]. Al-
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Properties Liu et al [4] Jeffay et al [1] Baruah [5] Richter et al [6] Hoes [7] Our method
1973 1991 2006 2003 2004

Multiprocessor No No Yes Yes Yes Yes
Heterogeneous N. A. N. A. No Yes Yes Yes
Non-preemptive No Yes Yes Yes Yes Yes
Non-Periodic support No Yes No Yes Yes Yes
Utilization High High Low Low Low High
Guarantee Yes Yes Yes Yes Yes No

Table 1. Summary of related work (Heterogeneous property is not applicable for uniprocessor schedulers)

ternative methods have been proposed for analyzing task
performance and resource sharing. A formal approach to
verification of MPSoC performance has been proposed in
[6]. Use of real-time calculus for schedulability analysis
was proposed in [11]. Computing worst-case waiting time
taking resource contention into account for round-robin and
TDMA (requires preemption) scheduling has also been an-
alyzed [7]. However, potential disadvantages of these ap-
proaches are that the analysis can be very pessimistic. This
is best illustrated by means of the example shown in Fig-
ure 1. The example shows 3 application SDF [12] graphs
- A, B, and C, with 3 actors each. Actors Ti are mapped
on processing node Pi where Ti refers to Ai, Bi and Ci for
i = 1, 2, 3. Each actor takes 100 time units to execute as
shown.

B2

B3

100

100

100

B

B1A2

A3

100

100

100

A

A1

C2

C3

100

100

100

C

C1

Figure 1. Example of a set of 3 application graphs.

Since 3 actors are mapped on the same node, an actor
may need to wait when it is ready to be executed at a node.
Modeling of worst case waiting time for round-robin ac-
cording to [7] leads to a waiting time of 200 time units
as shown in Figure 2. As can be seen, an extra node has
been added for each ‘real’ node to depict the waiting time
(WT Ai). This suggests that each application will take 900
time units in the worst case to finish execution. A resource
manager approach can nicely interleave the actors and each
application will only require 300 time units, thereby achiev-
ing three times the performance guaranteed by analysis in

[7].
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Figure 2. Modeling worst case waiting time for application

A in Fig. 1.

Table 1 shows a comparison of various analysis tech-
niques that have been presented so far in literature, and
where our approach is different. As can be seen, all of the
research done in multiprocessor domain provides low uti-
lization guarantees. Our approach on the other hand aims at
achieving high utilization by sacrificing hard guarantees.

3. Motivating Example

In this paper, we assume applications to be specified as
a (Homogeneous) Synchronous Data Flow ((H)SDF) graph
[12], where vertices indicate separate tasks (also called ac-
tors) of an application, and edges denote dependencies be-
tween them. SDF is widely used; it is very suitable to ex-
press concurrency in applications, and is therefore useful to
analyze multiprocessor systems. It also allows deriving a
static schedule and timing properties at design time. Two
such SDF graphs are shown in Figure 3. Each graph has
three actors scheduled to run on three different processors
(mapping is same as in Fig 1). However, the flow of applica-
tions A and B is reversed with respect to each other to cre-
ate more resource contention. The execution time of each
actor ofB is reduced to 99 to create a situation where A ex-
periences a worst-case waiting time. If each application is
running in isolation, the achieved period would be 300 and
297 time units for A and B respectively. Clearly, when the
two are running together on the system, due to contention
they may not achieve this performance. In fact, since every
actor of B always finishes just before A, it always gets the
desired resource and A is not able to achieve the required
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performance; while B on the other hand achieves a better
performance than necessary. The corresponding schedule is
shown in Figure 4.
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Figure 3. Two applications running on same platform and
sharing resources.
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Figure 4. Schedule of appls in Fig. 3 running together. Re-
quired performance is one iteration in 450 cycles.

If the applications are allowed to run without interven-
tion from the RM, we observe that it is not possible to meet
the performance requirements; the resulting schedule for
executing A and B, which is highly unpredictable at com-
pile time, yields a throughput ofB that is twice the through-
put ofA. However, if B could be temporarily suspended,A
will be able to achieve the required throughput. A resource
manager can easily provide such a control and ensure that
desired throughput for both A and B is obtained.
We also see in the example that even though each appli-

cation only uses a third of each processing node, thereby
placing a total demand of two-third on each processing
node, the applications are not able to meet their required
performance. A compile-time analysis of all possible use-
cases can alleviate this problem by deriving how applica-
tions would affect each other at run-time. However, the po-
tentially large number of use-cases in a real system makes
such analysis infeasible [13]. A resource manager can shift
the burden of compile-time analysis to run-time monitoring
and intervention when necessary.

4. System Setup
4.1. Model Overview

An MPSoC consists of three kinds of resources - com-
putation, communication and storage. We ignore in this pa-
per the contention for communication and storage resources
as computation resources already demonstrate the complex-
ity of the scheduling problem; and management of other
resources can be added later in a similar fashion. Figure
5 shows an overview of the model. It consists of a user-
interface, local application managers (one for each appli-
cation), a resource manager, and the computation platform.
The user-interface simulates input from and output to the
user; for example, in case of mobile phone, input can come
from a keypad or joystick, while the output can be in the
form of screen display or sound.

Manager 2

Application

Manager 3

Application

Manager 1

Application

Manager

Resource

User Interface

Computation Platform

Figure 5. Overview of the system setup.

4.2. Resource Manager

The resource manager is responsible for two main func-
tions, namely admission control and resource budget en-
forcement, which are explained in the following two sub-
sections.

4.2.1 Admission Control

One of the main uses of a resource manager is admission
control for new applications. In a typical high-end multi-
media system, applications are started at run-time, and de-
termining if there are enough resources in the system to ad-
mit new application is non-trivial. Since applications are
not always composable, it is difficult to predict the resource
utilization when multiple applications are allowed to run in
the system. (Composability is defined as being able to ana-
lyze applications in isolation while still being able to reason
about their overall behavior [13].)
When the resource manager receives a new application

request, it checks if there are enough resources available
for all the applications to achieve their desired performance
using a predictor. The predictor module in this setup sim-
ply adds the processor utilization for each processing node
and checks if it is less than 100%. However, more research
needs to be done for a more intelligent predictor. An idea
could be to reduce the 100% to x% where x is adaptive de-
pending on the number of misses in the past, for example.
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4.2.2 Resource Budget Enforcement

This is one of the most important functions we expect a re-
source manager to do. When multiple applications are run-
ning in a system (often with dynamically changing execu-
tion times), it is quite a challenge to schedule all of them
such that they meet their throughput constraints. Using a
static-order or round-robin approach for scheduling is nei-
ther scalable, nor adaptive to dynamism present in a system
[13]. A resource manager, on the other hand, can monitor
the progress of applications running in the system and en-
force the budgets requested at run-time.
Clearly, the monitoring and enforcement also has an

overhead associated with it. Granularity of control is there-
fore a very important consideration when designing the sys-
tem. We would like to have as little control as possible while
achieving close to desired performance. This is investigated
further in Section 5.

Task migration
Task migration is not considered in this paper, but it could
be useful in cases when a particular actor can be scheduled
on multiple nodes. A technique to achieve low-cost task
migration in heterogeneous MPSoC has been proposed in
[14].

4.3. Protocol for Communication

Figure 6 shows an example interaction diagram between
various modules in the design. The user-interaction module
sends a signal to the respective application manager when
any application is to be started. The resource and applica-
tion managers are responsible for actually running the appli-
cations and interacting with the computation platform. The
platform module can consist of a number of processors and
each processor has a scheduler which can for example be
first-come-first-serve (FCFS), round-robin or round-robin-
with-skipping [13]. Other scheduler types can be easily
added in the model.
In Figure 6, the user-interface module sends a request

to start application X (1). The resource manager checks if
there are enough resources for it, and then admits it in the
system (2). Applications Y and Z are also started respec-
tively soon after as indicated on the figure (3-6). However,
when Z is admitted, Y starts to deteriorate in performance.
The resource manager then sends a signal to suspendX (7)
to the platform because it has slack and Y is then able to
meet the desired performance. When X resumes (10), it is
not able to meet its performance and Y is suspended (13)
because now Y has slack. When the applications are fin-
ished, the result is transmitted back to the user-interface (12,
16 and 18). In streaming applications, the result may need
to be continuously sent to the user-interface. We also see an
example of application A being rejected (9) since the sys-
tem is possibly too busy, and A is of lower priority than
applicationsX , Y and Z .
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Figure 6. Interaction diagram between various modules in
the system-setup.

4.4. Suspending Applications

Suspension of an application is not to be confused with
pre-emption. In our model, we do not allow actors to be pre-
empted, but an application can be suspended after complet-
ing any actor. Performance is specified as a desired through-
put that is to be obtained for each application. The sample
period of the resource manager is also specified. The re-
source manager checks the progress of all applications after
every sample period - defined as sample points. If any ap-
plication is found to be running below the desired through-
put, the application which has the most slack (or the highest
ratio of achieved to desired throughput) is suspended. Sus-
pension and re-activation occur only at these sample points.

5. Performance Evaluation

We have developed a three-phase prototype tool-flow to
automate the analysis of application examples. The first
phase concerns specifying different applications (as SDF
graphs), the processors of the MPSoC platform (including
their scheduler type) and the mapping. For each applica-
tion, desired throughput is specified together with the start-
ing time for the application. After organizing the informa-
tion in an XML specification for all three parts, a POOSL
model of the complete MPSoC system is generated auto-
matically. The second phase relies on the POOSL simulator,
which obtains performance estimations, like the application
throughput and processor utilization. It also allows genera-
tion of trace files that are used in the final phase to generate
schedule diagrams and graphs like those presented in this
paper.
This section presents results of a case study regarding
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the mapping of H263 and JPEG decoder SDF models (de-
scribed in [7] and [15] respectively) on a three-node MP-
SoC. An FCFS scheduling policy was used in all the cases
presented below. Table 2 shows the load on each processing
node due to each application. The throughput requirement
of applications was chosen such that both applications place
equal demands on resources. The results were obtained af-
ter running the simulation for 100M cycles.

H263 JPEG Total
Proc 1 0.164 0.360 0.524
Proc 2 0.4 0.144 0.544
Proc 3 0.192 0.252 0.444
Total 0.756 0.756 1.512
Throughput Required 3.33e-6 5.00e-6

Table 2. Load (in proportion to total available cycles) on

processing nodes due to each application
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Figure 7. Progress of H263 and JPEG when they run on the

same platform — in isolation and executing concurrently.

Figure 7 shows performance of the two applications
when they are run in isolation on the platform and also when
they are run concurrently. In this figure, the resource man-
ager does not interfere at all, and the applications compete
with each other for resources. As can be seen, while the
performance of H263 drops only marginally (depicted by
the small arrow in the graph), a huge drop is observed in
JPEG performance (big arrow in the graph). In fact, we see
that even though the total load on each processing node is
close to 50%, JPEG throughput is much lower than desired.
Figure 8 shows how a resource manager interferes and en-
sures that both are able to meet their minimum specified
throughput. In this figure the resource manager checks ev-

ery 5 million cycles whether applications are performing as
desired. Every time it finds that either JPEG or H263 is per-
forming below the desired throughput, it suspends the other
application. Once the desired throughput is reached, the
suspended application is re-activated. We observe that the
RM effectively interleaves three infeasible schedules (JPEG
Alone, H263 Alone, and H263/JPEG Together, in Fig. 7)
that yields a feasible overall throughput for each applica-
tion. (InAlone, only one application is active and therefore,
those schedules are infeasible for the other application.)

Specified No RM
RM sampling period
5,000k 2,500k 500k

JPEG 500 133 541 520 620
H263 333 800 554 574 504
Proc 1 0.524 1.00 0.83 0.85 0.90
Proc 2 0.544 0.56 0.71 0.71 0.72
Proc 3 0.444 0.46 0.55 0.55 0.56
Total 1.512 2.02 2.09 2.11 2.18

Table 3. Iteration count of applications and utilization of
processors for different sampling periods for 100M cycles.

Figure 9 shows applications’ performancewhen the sam-
ple period of resource manager is reduced to 500,000 cy-
cles. We observe that progress of applications is ‘smoother’
as compared to Figure 8. The ‘transition phase’ of the sys-
tem is also shorter, and the applications soon settle into a
‘long-term average throughput’, and do not vary signifi-
cantly from this average. This can be concluded from the
almost horizontal curve of achieved throughput. It should
be mentioned that this benefit comes at the cost of increas-
ing monitoring from the resource manager, and extra over-
head in reconfiguration (suspension and reactivation).
Table 3 shows the iteration count for each application

specified, achieved without and with intervention from the
RM. The first two columns clearly indicate that JPEG exe-
cutes only about one-fourth of the required number of iter-
ations, whereas H263 executes twice the required iteration
count. The next three columns demonstrate the use of our
RM to satisfy the required throughput for both the applica-
tions. The last row indicates that the utilization of resources
increases with finer grain of control from the RM.

6. Conclusions and Future Work

In this paper, we propose a resource manager (RM)
for non-preemptive heterogeneous MPSoCs. Although the
scheduling of these systems has been considered in the
literature, the actual resource management in the context
of concurrently executing applications is still unexplored
area. Theoretically, compile-time analysis of all possible
use-cases can provide performance guarantees, but the po-
tentially large number of use-cases in a real system makes
such analysis infeasible [13]. Our resource manager shifts
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Figure 8. With a resource manager, the progress of applica-
tions is closer to desired performance.

the burden of compile-time analysis to run-time monitoring
and intervention when necessary.
A high-level simulation model has been developed using

POOSL methodology to realize RM. A case study with an
H263 and a JPEG decoder demonstrates that RM interven-
tion is essential to ensure that both applications are able to
meet their throughput requirements. Further, a finer grain
of control increases the utilization of processor resources,
and leads to a more reactive and stable system.
Future research will focus on incorporating more intelli-

gent prediction schemes for admission control. An FPGA
implementation of an MPSoC is already realized, and we
will use it to run our proposed RM on, to handle more real-
istic cases and to measure the overhead. Further, we would
like to extend the model to include the communication and
storage resources as well.
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