
Membrane Systems and Distributed Computing

Gabriel Ciobanu�, Rahul Desai, and Akash Kumar

National University of Singapore, School of Computing
Department of Computer Science

gabriel@{comp.nus.edu.sg,info.uaic.ro}

Abstract. This paper presents membrane systems as an appropriate
model for distributed computing, an efficient and natural environment
to present the fundamental distributed algorithms. We support the idea
that P systems can become a primary model for distributed computing,
particularly for message-passing algorithms. We present the core theory,
the fundamental algorithms and problems in distributed computing. We
focus on an example describing an immune response system against virus
attacks. The example is implemented using a P system library created
by the authors to simulate the main functions of a P system, and an
MPI program that takes advantage of the highly parallel features pro-
vided by the model. The program uses distributed leader election and
synchronization algorithms.

1 Membrane and Molecular Computing

Formal language theory has been used as a basis for developing theoretical com-
putational models related to DNA sequences and molecular processes. These de-
velopments reveal some theoretical facets of molecular computing related mainly
to the computational power of the new systems, generative capability, complex-
ity, and universality.

Membrane computing is based on membrane systems or P systems, a new
class of distributed and parallel computing devices introduced in [7]. The ap-
proach is based on hierarchical systems: finite cell-structures consisting of cell-
membranes embedded in a main membrane called the skin. The membranes
determine regions where objects, elements of a finite set, and evolution rules can
be placed. The objects evolve according to given rules associated with a region.
Objects may also move between regions. A computation starts from an initial
configuration of the system, and terminates when no further rule can be applied.
A software simulator of membrane systems is presented in [3].

A membrane structure is usually represented by a Venn diagram, and it can
be mathematically represented by a tree or by a string of matching parentheses.
Hierarchical systems are well-known structures in computer science, and the no-
tion of computation based on evolution rules is common. The interpretation of
the computation is rather new: the result of a computation is a multiset of ob-
jects collected in the output cell or sent out of the system. The behaviour of the
� Corresponding author

G. Păun et al. (Eds.): WMC-CdeA 2002, LNCS 2597, pp. 187–202, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



188 Gabriel Ciobanu, Rahul Desai, and Akash Kumar

whole system is obtained by combining the resulting multisets, or considering
the multiplicity of objects present in a specific output membrane of a final con-
figuration. Păun has introduced initially three alternatives to look at membrane
systems. Starting from these approaches, several variants were considered. Each
of these variants has been shown to generate recursively enumerable sets. All
these results emphasize a new computing paradigm inspired by a basic function
of biomembranes.

2 The Distributed Nature of the Membrane Systems

An interesting aspect of the membrane systems is that they are distributed
and parallel computing devices. To complement the overwhelming majority of
researches in this area dealing with computability results, this paper aims to
show that the membrane systems represent an appropriate model for distributed
computing. We emphasize on the algorithmic aspects related to the distributed
systems computational power provided by membrane systems. The algorithms
are mainly presented in [2]. In this paper we focus on an example describing
an immune response system against virus attacks. The example uses various
distributed algorithms, and it is implemented using a P system library and an
MPI program emphasizing the highly parallel features provided by the model.

Another approach presenting the membrane systems as distributed and par-
allel computing devices is described in [4], where a new version of P systems
called Client–Server P systems is introduced. The new version is devoted to
the interaction between components and is similar to the network client-server
model. The Client–Server P systems are based mainly on the power of communi-
cation between membranes, and they have the same expressive power as Turing
machines.

The link between membrane systems and distributed and parallel computing
is not difficult to comprehend. If we associate each membrane with a host on a
network, then the membrane containing a few such membranes is congruent to
a subnet, and subsequently their parent membranes represent larger networks.
Finally, the skin membrane could represent the World Wide Web. You can imag-
ine that routing in Internet is similarly to message passing within a P system.
Specifically, membranes within the same membrane can directly communicate
with each other (by sending objects within the membrane), while if two mem-
branes in different parent membranes need to pass objects to each other, then
this scenario is congruent to sending the packet to a router which connects the
two networks. Having established the basic premise of the paper, we will con-
clusively show how P systems provide a natural and efficient representation of
distributed systems.

In the context of parallel and distributed systems, the algorithmic issues stud-
ied in the sequential model require a fundamental rethinking. In parallel systems,
a problem is solved by a tightly-coupled set of processors, while in distributed
systems it is solved by a set of communicating (asynchronous) processes. From
the viewpoint of the theory of distributed computing, which is restricted to the



Membrane Systems and Distributed Computing 189

Message Passing and Shared Memory model, the P systems model provides a
different perspective, which is natural and easy to relate to. In P systems the
process of passing objects is similar to message passing; moreover, membranes
in the same biological system could have access to the same DNA, or could
have access to the same blood stream, making it possible to relate the model
to a Shared Memory system as well. Both these extensions are simplistic and
natural, and hence it is not difficult to adapt the already existing theory of dis-
tributed computing to the P systems model, something that this paper aims to
achieve.

We emphasize on the algorithmic aspects related to the distributed systems
computational power provided by membrane systems. In membrane systems the
process of passing objects through membranes in both directions is similar to
message passing. We consider a system of communicating membranes with an-
tiport carriers, and the main meaning regarding this choice is that the mem-
branes send and receive information. We present some basic algorithms of dis-
tributed computing, starting with algorithms for broadcast, convergecast, flood-
ing, leader election, mutual exclusion in distributed systems, the fault tolerant
systems and the consensus problem.

We present the fundamentals of distributed computing, starting with algo-
rithms for broadcast, convergecast, the leader election problem, the mutual ex-
clusion problem in a distributed environment, and finally the consensus problem
and fault tolerance. Some of the presented algorithms are used in an example
describing an immune response system against virus attacks.

3 Basic Algorithms in P Systems

The field of distributed computing is notoriously difficult, mainly due to un-
certainties introduced by limited local knowledge, asynchrony, and failures. The
fundamental issues underlying the design of distributed systems are related to
communication, coordination, synchronization and fault tolerance. Mastering
fundamental algorithmic ideas and techniques, someone is able to design correct
distributed systems and applications. We present here some basic algorithms over
communicating membrane systems, algorithms representing the core theory of
distributed computing. For more information and notation about fundamental
distributed algorithms, see [1].

Collecting and dispersing information is central to any system. Even though
P systems share the same DNA, local information often has to be passed around
in the system. This is where the message passing model becomes relevant. Two
basic algorithms in any message passing model are broadcast and convergecast.
Another common algorithm discussed in a message passing model is flooding.
This algorithm constructs a spanning tree when a graph is given. P systems
themselves essentially have a spanning tree structure. Each membrane of the
tree has exactly one parent, except the skin membrane which represents the
root.



190 Gabriel Ciobanu, Rahul Desai, and Akash Kumar

Broadcast: Consider a system in which a membranemi has to send some object
to all the membranes of the system. Clearly, we have two cases of broadcast here
- one in which mi is the skin membrane or the root node, and secondly when mi

is any node. It is not difficult to see that the second case is a generalization of
the first one. We shall start with the algorithm for the simple case (when mi is
the skin membrane), for easy understanding.

Very often in a distributed computing model, the root node has to broadcast
a certain message, say M . Here is the prose description of the algorithm. The
skin membrane, ms first sends the message to all its children. Upon receiving a
message from its parent, the membrane sends the message to all its children, if
any. Here is the formal pseudocode for this algorithm.
Algorithm: Skin Membrane Broadcast

Initially M is in transit from ms to all its children.

Code for ms:

1. Upon receiving no message:
2. terminate

Code for mi, 0 ≤ i ≤ n− 1, i �= s:

3. Upon receiving M from its parent:
4. send M to all its children
5. terminate

A skin broadcast algorithm for P systems has a message complexity of n−1 and
time complexity l, when l levels of membranes are present.
Message Complexity: As evident from the above algorithm, the message is com-
municated from a parent membrane to a child membrane exactly once. The
algorithm terminates after sending M once to all its children. Thus, the total
number of messages passed is equal to the number of edges in the spanning
tree structure. Since, the number of edges in a spanning tree with n nodes is
n− 1, we obtain the result that n− 1 messages are passed in a P system with n
membranes. Therefore, the message complexity of this algorithm is O(n).
Time Complexity: In every admissible execution of the skin broadcast algorithm,
every membrane at level l, i.e. at a distance of l edges from the root node in the
spanning tree, receives the message M in l time. Thus a P system with l levels
of membranes will have a time complexity of l. This corresponds to a depth of
l in a spanning tree configuration. In the worst case, when the spanning tree is
a chain, there can be at most n− 1 levels for a system with n membranes. This
shows that the time complexity of any P system for skin broadcast is O(n).

3.1 Generalised Broadcast

Having seen broadcast for the skin membrane, we shall now move on to a more
general broadcast in which any membrane can broadcast a message. Each mem-
brane mi which needs to broadcast sends the object M to its parent and all



Membrane Systems and Distributed Computing 191

children (if any). A membrane mj , upon receiving a message from its parent,
sends it to its children. If it receives the message from its child, then it sends the
message to all its other children, and parent. The algorithm is given as follows.
Algorithm: Generalised Broadcast

Say, membrane ma, 0 ≤ a ≤ n− 1 needs to send the message
to all the membranes in the system.

Code for ma:

1. if (a �= s)
2. send M to its parent
3. send M to all children

Code for mi, 0 ≤ i ≤ n− 1, i �= a:

4. Upon receiving M from its parent:
5. send M to all children
6. Upon receiving M from its child:
7. if(i �= s)
8. send M to its parent
9. send M to all children

A generalized broadcast algorithm for P systems has a message complexity of
n−1 and a time complexity of l+k, when l levels of membranes are present and
the membrane at kth level broadcast. Message complexity is similar to the skin
broadcast algorithm, and it is O(n). A P system with l levels of membranes will
have a worst case time complexity of 2× l. This means that the time complexity
for generalized broadcast is O(n). More details are presented in [2].

3.2 Convergecast

The broadcast problem mentioned above aims at dispersing information held by
a membrane to other membranes of the system. Convergecast, on the contrary,
aims at collecting information from all the membranes of the system to the skin
membrane. Many variants of the problem are available, for example, forwarding
the sum of all the values held by membranes, or forwarding the maximum value,
etc. In a general convergecast algorithm, instead of the result of a particular
operation, all the values are forwarded. In a generalized convergecast variant,
the size of message can increase as the message progresses to the skin membrane.
For simplicity we shall consider the algorithm of forwarding the sum of all the
values held by membranes.

As it can be seen, unlike broadcast which is initiated by the membrane that
wishes to disseminate information, convergecast is initiated by the leaves, i.e.
membranes which contain no inner membranes. This algorithm is recursive, and
requires each membrane mi to forward the sum of values held by its membrane.
In other words, the sum of the subtree rooted at it. A membrane collects all



192 Gabriel Ciobanu, Rahul Desai, and Akash Kumar

the values held by its inner membranes, and computes the sum including its
own values. This sum si is then forwarded to its parent membrane. Clearly, each
membrane has to receive a sum from each of its children before it can forward
the sum to its parent. The pseudocode for the algorithm is given below.
Algorithm: Convergecast

Code for leaf membranes:

1. Starts the algorithm by sending its value xi to its parent.

Code for non-leaf membranes mi with k children:

2. Waits to receive messages containing sums si1 , si2 , . . . , sik
from its children

mi1 ,mi2 , . . . ,mik
.

3. Computes si = xi + si1 + . . .+ sik

4. if (i �= s)
5. Sends si to its parent.

The analysis of this algorithm is analogous to the skin broadcast algorithm, since
the only difference in the two is the direction of message flow. As for the skin
broadcast algorithm, the message complexity of the algorithm is n−1. The time
complexity of the algorithm is O(n), since at most n−1 levels may be present in
a P system with n membranes. Therefore there is a convergecast algorithm for
P systems with message complexity n − 1 and time complexity l, when l levels
of membranes are present.

4 Leader Election in P Systems

The existence of a leader in a P system can often simplify the task of co-
ordination among the membranes. It might often be useful to have a leader
(other than the skin-membrane as the default). It might also be the case that
the criterion for leadership may not always be met by the skin-membrane. The
leadership election problem, generally refers to the general class of symmetry
breaking problems. The most general variant of it requires exactly one node
from a system of many initially similar nodes to declare itself the leader, while
the others recognize the leader and declare themselves not-elected.

Theorem 1. It is impossible to solve the leadership election problem in a system
where the membranes are anonymous.

The idea behind this impossibility result is that the symmetry between the mem-
branes can be maintained forever if the membranes are anonymous (they are very
similar). Without some initial asymmetry provided by unique identifiers, sym-
metry cannot be broken and it is impossible to elect a single leader: if one mem-
brane is elected, then so are all the membranes. Therefore, we assume that every
membrane in the system has one unique identifier id. An algorithm is said to
be uniform, if it does not depend on the number of membranes. And conversely,
non-uniform algorithms rely on the knowledge of the number of membranes.



Membrane Systems and Distributed Computing 193

4.1 A Simple Leader Election Algorithm

The most straightforward way to solve the problem is that every membrane
sends a message with the maximum id among all its children (and itself) to its
parent, and waits for a response from its parent. The skin membrane in turn,
would reply to all its children with a message containing the maximum id that
it received. Ultimately, one membrane (which receives its own id back) will be
elected leader.
Algorithm: Leader Election

Initially: elected = false, children = set of children membrane,
and parent = the parent membrane.

For every membrane mi

1. If children = empty, send id to parent
2. Upon receiving idj from all children,

winner = max(id1, id2, . . . , idn, id)
3. If parent �= null

then send winner to parent
else (it is the skin membrane)

send winner as leader to all children
4. Upon receiving message leader from parent

if leader = id then elected = true
5. If children = empty, terminate

else send leader to all children and terminate.

The message complexity of the above algorithm is O(n), since every link be-
tween the parent and the child is used to exchange 2 messages. In a system with
n membranes, there are n− 1 such links. Thus, the message complexity is O(n).
The leadership algorithms in asynchronous rings have a lower bound ofO(n logn).
Whereas, in the synchronous case, a message complexity of O(n) can be achieved
at the cost of the time-complexity [1]. Generally, the P systems are structured
like a tree, already providing a sufficient edge to break-symmetry as compared
to a ring, where every substructure of the ring is symmetrical.

5 Mutual Exclusion in Shared Memory

Shared memory is another major communication model and we shall see how
P systems can be used effectively to model this as well. In a shared memory,
processors communicate via a common memory area that contains a set of shared
variables, which are also referred to as registers. In natural computing using P
systems, as said above, membranes have access to the same blood stream and
mutual exclusion can thus be easily modelled.



194 Gabriel Ciobanu, Rahul Desai, and Akash Kumar

5.1 Formal Model of Shared Memory Systems

Before we proceed to understand mutual exclusion algorithms, we need to de-
fine the formal model for a shared memory system. We assume we have a sys-
tem with n membranes m0,m1, . . . ,mn−1 and m registers or shared variables
R0, . . . , Rm−1. Each register (shared variable) has a type which can specify the
values which a register can take, the operations that can be performed on it,
the value returned by each operation, and the updated value of the register as
a result of the operation. Beside this, an initial value for the register has to
be specified. Another important distinction in shared memory systems comes
when analyzing algorithms. Unlike in object passing models, object complex-
ity is meaningless. On the other hand, space complexity becomes relevant in this
model. Space complexity can be measured in two ways: number of registers used,
and number of distinct values the register can take. Measuring time complexity
of shared memory algorithms is still a current research area and we only focus
on whether the number of steps in the worst case running of the algorithm is
infinite, finite, or bounded.

5.2 The Mutual Exclusion Problem

The mutual exclusion problem is one where different membranes need access to
a shared resource that cannot be used simultaneously. Some relevant terms in
the section are given below:

– Critical Section: Code segment that has to be executed by at most one
membrane at any time.

– Deadlock: A situation in which when one or more membranes are trying to
gain access to a critical section, and none of them succeeds.

– Lockout: When lockout occurs, a membrane trying to enter its critical section
never succeeds.

A membrane might need to execute some additional code segments before and
after the critical section. This is to ensure mutual exclusion. The relevant sections
of the code are:

– Entry: Code section where the membrane prepares to enter critical section.
– Critical Section: Code section which has to be executed exclusively.
– Exit: Code section executed when a membrane leaves the critical section.
– Remainder: Remainder of the code.

The desired properties are mutual exclusion, no deadlock and no lockout. Mutual
Exclusion is achieved when in every configuration of every execution at most
one membrane gets access to critical section. No Deadlock is achieved in every
admissible execution, when membranes are in the entry section, at a later stage,
a membrane is definitely in the critical section. No Lockout is achieved when
in every admissible execution, a membrane trying to enter the critical section,
eventually gets an entry.



Membrane Systems and Distributed Computing 195

5.3 Achieving Mutual Exclusion

The test-and-set and read-modify-write are powerful primitives used to achieve
mutual exclusion. Another commonly known algorithm is the Bakery algorithm
which uses read/write registers [1]. An appropriate algorithm for P systems would
be the tournament algorithm. The conventional tournament algorithm can be
modified to suit P systems. The tournament algorithm is a bounded mutual
algorithm for n processors. It is based on selecting one among two processors at
every stage, and thus selecting one among n processors in �log2n� stages. The
algorithm is recursive and every processor that succeeds at a stage climbs up the
binary tree. The processor reaching the root gains entry to the critical section.
An example with 8 processors is presented below:

Membranes within a parent membrane can select one among themselves using
the tournament algorithm, and the parent can then forward the request to its
parent in turn. The one membrane that succeeds to reach the skin level gains
entry to the critical section. The number of rounds k in this algorithm will be
equal to the number of levels l of the system. The pseudocode for the algorithm
is mentioned below. The conventional algorithm is used by the term tournament
and the list of membranes list is passed to it. The algorithm returns the id of
the membrane that succeeds in the tournament algorithm.
Algorithm: Tournament

l represents the maximum depth of the system,
mj is the parent membrane of mi.

1. for k = l downto 1
2. 1) all parent membranes mi at depth k:
3. if (list �= φ)
4. w = tournament (list)
5. else
6. w = −1
7. end if
8. send w to its parent, if any.
9. 2) all leaves mi at depth k:
10. if (need access to critical section)
11. w = i
12. else



196 Gabriel Ciobanu, Rahul Desai, and Akash Kumar

13. w = −1
14. end if
15. send w to its parent mj , if any.
16. 3) all parent membranes mi at depth k − 1
17. for p = 0 to c− 1 (c is the number of children membranes)
18. receive wip

from mip

19. if (wip �= −1)
20. add wip to list
21. end for
22. end for

The first step is not executed in the algorithm when k = l. This is because there
are no parent membranes at depth l since that is the maximum depth of the tree.
The above algorithm is good appropriate for P systems and it provides mutual
exclusion with no deadlock and no lockout.

6 Fault Tolerant Consensus

For a system to coordinate effectively, often it is essential that every membrane
within the system agree on a common course of action. With the help of leader-
ship election, and a subsequent broadcast/flooding, it is possible for a consensus
to be reached. This section discusses the consensus problem and fault tolerance
(viz. reaching a consensus despite having failures within parts of the system).

6.1 The Consensus Problem

Consider a system in which each membrane mi needs to coordinate with the rest
of the processors and choose a common course of action, i.e. agree upon a value
for the variable decision. A solution to the consensus problem must guarantee
the following:

– Termination: In every admissible execution, all the non-faulty nodes must
eventually assign some value to decision.

– Agreement: In every admissible execution, all the non-faulty nodes must not
decide on conflicting values.

– Validity: In every admissible execution, all non-faulty nodes must make the
correct decision, i.e. must choose the correct value for decision. In other
words, that if the consensus problem in question is choosing the maximum
value from a certain set of numbers, then the decision must actually be the
maximum value from the given set of input values.

Clearly the consensus problem is an important one, and the process would be
disturbed in the presence of nodes which behave in an undesirable manner.
However, within certain restrictions, it is possible to achieve a fault-tolerant
consensus.



Membrane Systems and Distributed Computing 197

6.2 Failures

A failure is said to occur when a membrane behaves abnormally. There are
two basic types of failures. Simple failures are when some membranes within
the membrane system just stop functioning and do not ever recover, but wrong
operations are never performed. The Byzantine failures are when some faulty
membranes may behave in an unpredictable manner, contrary to a process which
would help to reach a consensus.

The Simple Failure Case
The most important parameter which needs to be determined is f , the maximum
number of membranes that can fail so that the consensus may still be achieved.
Such a system is called an f -resilient system. We have the following results:

Lemma 1. In every execution at the end of f + 1 rounds, all non-faulty mem-
branes have the same set of values to base their decision upon.

Theorem 2. It takes an upper bound of f + 1 rounds to solve the consensus
problem with simple failures in an f-resilient system.

Algorithm: Consensus
Initially, every membrane mj has some value xj which it needs to send to all
other membranes and ultimately reach a consensus based on these values.

In every round k, (1 ≤ k ≤ f + 1), mi behaves as follows:

1. Send xi to all membranes within parent’s membrane
2. Receive xj from mj .
3. Add xj to an array (vector) V .
4. If k = f + 1 make decision based on the values stored in V .

The Byzantine Failure Case
This type of failure is more severe. The case is called the Byzantine failure be-
cause of a metaphorical description of a plan of action taken by several divisions
of the Byzantine army (i.e. with traitors) to attack an enemy city [5]. In the
Byzantine case, the faulty membranes behave arbitrarily and even maliciously.
In a f -resilient Byzantine system there exists a subset of at most f “Byzan-
tine faulty” membranes. It becomes difficult to distinguish between a functional
and a Byzantine faulty membrane, because unlike a membrane that crashes and
simply stops sending objects, a Byzantine faulty membrane continues to send
objects which may hamper the consensus process that requires membranes to
agree on a common action based on their possible conflicting inputs. It is known
that a consensus can be reached only if less than a third of the processors are
Byzantine faulty processors [5]. The result is also true for membranes.

Theorem 3. In a system with n membranes, having f Byzantine membrane,
there is no algorithm to solve the consensus problem if n < 3f .

Theorem 4. In order to reach consensus in an f-resilient system, every non-
faulty membrane must send at least f + 1 objects to all other non-faulty mem-
branes to meet the requirements of the consensus problem.



198 Gabriel Ciobanu, Rahul Desai, and Akash Kumar

7 Example and Implementation

In this section we present an example describing an immune response system
against virus attacks. This example is implemented using a membrane system
library to emulate the main functions of a membrane system, and Message Pass-
ing Interface library that takes advantage of the highly parallel features provided
by the model. Message Passing Interface (MPI) is still the most popular envi-
ronment in the field of parallel computing, though many new parallel languages
and tools were introduced.

When a virus enters a cell, it tries to destroy the host cell and all the sur-
rounding cells by periodical replication and propagation. The human immune
system is in charge of producing suitable antibodies which can counter-attack
the virus. In the event that the antibody is not present, it needs to be trans-
ported (through intercellular communication) from the cell producing it to the
place where it is required. The survival of the cell depends on the availability of
these antibodies.

7.1 Terms

– Immune Response: The immune response is the way the body recognizes and
defends itself against microorganisms, viruses, and substances recognized as
foreign and potentially harmful to the body.

– Antibody: Antibodies are special proteins that are part of the body immune
system. White blood cells produce antibodies to neutralize harmful germs
called antigens.

– Virus: An infectious particle composed of a protein capsule and a nucleic
acid core, which is dependent on a host organism for replication.

– Virus Propagation: The process by which the virus multiplies and sends
copies of itself to the inner cells.

– Virus Neutralization: The process by which the virus is deactivated (de-
stroyed) by the corresponding antibody.

– Clean cell: A cell which is free from any antigen.
– Infected cell: A cell which has at least one virus present in it.
– Virus Maturity Period: This is the time duration in which the virus is inac-

tive, after which it regularly replicates.
– Virus Propagation Period: A mature virus regularly replicates after a certain

number of time units, and this period is defined as the virus propagation
period.

7.2 Problem Definition

Given an initial membrane structure with the viruses and antibodies, it is useful
to know that when an equilibrium is reached, whether all the cells are clean
or some cells remain infected. From a pharmaceutical perspective, this tells us
whether or not the membrane requires any external medicinal supply (or whether
it is strong enough to resist the virus). Certain configurations worsen at every



Membrane Systems and Distributed Computing 199

subsequent phases i.e. more viruses survive and antibodies slowly get depleted.
The detection of such patterns in early stages would increase the chances of
cleaning the cells.

7.3 P System Perspective

The organism which the virus infects is represented as a skin membrane in the P
system. The cellular hierarchy of the organism is modelled as the tree structure
of the membranes. The virus and antibodies are the objects in the system. The
virus and antibody properties (e.g. the type and life) are the symbols of the
objects. We use the following rules:

1. The skin membrane has unlimited supply of antibodies of all types.
2. An antibody of type ai is required to neutralize the virus vi.
3. For virus propagation:

– each virus has a maturity period, after which it can reproduce,
– thereafter, it reproduces regularly after a fixed propagation period,
– the virus child thus created may be sent to any one of the children

membranes in a random manner.
4. A membrane requiring an antibody sends a request to its parent for that

particular antibody.

For this problem, a distributed computing approach is given by the following
algorithms:

– Leadership Election: Identifying whether a cell is clean or infected is analo-
gous to whether the virus wins or not in an leader election algorithm;

– Synchronization: Communication between membranes to maintain the re-
quired balance of antibodies in order to reach a clean state.

7.4 Equilibrium State Determination

Determining whether the virus will survive or not is not a trivial problem. The
sufficient condition for the equilibrium state can be written as M > 2D, where
M is the maturity period of the virus, and D is the maximum distance between
a virus and the skin. This is easy to see as it will take exactly 2 × D time
for a membrane to receive the antibody after it has requested for it. If the
above condition is satisfied, the virus will be destroyed before it reproduces.
This condition has to be true for all the membranes. However, the necessary
condition is more complicated. Since, some antibodies may be present in earlier
stages as well (e.g. one of the membranes other than the skin membrane) the
membrane can receive the antibody earlier. Thus, in practice a precise analysis
is required. Moreover, each child virus will have its own life-cycle of maturing
and reproducing simultaneously, making the mathematical formulation rather
complicated.

The following table shows the number n of viruses at different times t. In
this example M = 3 and the virus propagation period P = 1.



200 Gabriel Ciobanu, Rahul Desai, and Akash Kumar

Time Total New Mature
0 1 1 0
1 1 0 0
2 1 0 0
3 2 1 1
4 3 1 1
5 4 1 1
6 6 2 2
7 9 3 3
8 13 4 4
9 19 6 6
10 28 9 9

From the table we can observe that n(t) = n(t− 1) + n(t− 3); generalizing, we
get n(t) = n(t − P ) + n(t − M). It is possible to express n(t) as a polynomial
function of t. The coefficients of the polynomial expression are provided by the
the roots of the equation tM − tM−P −1 = 0. It is difficult to solve this equation
manually; a recursive algorithm can easily be implemented at the start of the
simulation to decide the state.

7.5 Algorithm: Immune Response

In each round we have

1. An exchange of antibodies:
(a) every parent sends its antibodies to its children as requested in the pre-

vious round;
(b) every child receives antibodies as sent by parent;

2. a virus propagation:
(a) increment virus life and check for reproduction;
(b) send virus to children if required;
(c) receive virus from parent (if not skin).

3. Compute leader: for each round, check if virus dominates or is destroyed.
4. Synchronization: send antibody requests to all parents.

7.6 Implementation

For implementing this example, we have used the Message Passing Interface
(MPI). MPI is a standard developed to enable portable message passing ap-
plications, and though many new parallel languages and environments are in-
troduced, it is still very popular in the field of parallel computing. MPI is a
library of functions and macros that can be used in the Fortran, C, C++ and
Java programs. MPI programming means that you write your program in C,
C++ or Java, and when the time comes for parallel processes to communication
or synchronize, you should explicitly call the MPI send or receive function to



Membrane Systems and Distributed Computing 201

help. MPI send function sends a message to the named target process, while in
the target process, a correspondent receive function must be set to make the
corresponding work. MPI is quite easy to use. You need to master around six
commands to write simple programs; they are MPI Init(), MPI Comm rank(),
MPI Comm size(), MPI Send(), MPI Recv() and MPI Finalize(). To use the
MPI system and functions, the header file mpi.h should be included. Different
processes are identified with their task ID’s; the MPI system assigns each pro-
cess a unique integer called as its rank (beginning with 0). The rank is used
to identify a process and communicate with it. Each process is a member of a
communicator; a communicator can be thought of as a group of processes that
may exchange messages with each other. By default, every process is a member
of a generic communicator environment (it could be interpreted as the skin in a
membrane system). Although we can create new communicators, this leads to an
unnecessary increase in complexity. The processes can be essentially identical,
i.e. there is no inherent master-slave relationship between them. So it is up to us
to decide who will be the master and who will be the slaves. A master process
can distribute data among the slaves. Once the data is distributed among the
slaves, the master must wait for the slaves to send the results and then collect
their messages. Packing and decoding is handled by MPI internally. The code
for the master as well as the slaves could be in the same executable file. More
details can be found in [6,8]. Our implementation is written in C and uses the
parallel environment provided by the MPI library.

Fig. 1. Example of an output diagram



202 Gabriel Ciobanu, Rahul Desai, and Akash Kumar

The implementation steps were:

1. A P system library was written to emulate the functions of a P system. We
assume that each membrane is a processor.

2. An MPI program was written for the simulation of the various rounds of the
system, implementing the algorithm presented above.

3. An interface was written to create an additional level of abstraction between
the library and the MPI program, in order to hide the implementation details
of the P system library.

4. An automated graphical output is generated at the end of the simulation
making use of XFig and LATEX. The output at the end of each round is used
to encode an XFig diagram, and these are included in a LATEXpresentation.

References

1. H. Attiya, J. Welch. Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics, McGraw-Hill, 1998.

2. G. Ciobanu. Distributed algorithms over communicating membrane systems,
BioSystems, Elsevier, to appear.

3. G. Ciobanu, D. Paraschiv. P System Software Simulator, Fundamenta Informati-
cae vol.49 (1-3), 61-66, 2002.

4. G. Ciobanu, D. Dumitriu, D. Huzum, G. Moruz, B. Tanasă. Client-Server P Sys-
tems in modeling molecular interaction. In Gh. Păun, G. Rozenberg, A. Salomaa,
C. Zandron (Eds.): Membrane Computing 2002, Lecture Notes in Computer Sci-
ence - this volume, Springer, 2002.

5. L. Lamport, R. Shostak, M. Pease. The Byzantine generals problems. ACM Trans.
Program. Lang. Syst. vol.4(3), 382-401, 1982.

6. P. Pacheco. Parallel Programming with MPI, Morgan Kaufmann Publishers, 1997.
7. Gh. Păun. Computing with membranes, Journal of Computer and System Sci-

ences, vol.61, 108-143, 2000.
8. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra. MPI–The Complete

Reference vol.1, The MPI Core, 2nd edition, MIT Press, 1998.


	1 Membrane and Molecular Computing
	2 The Distributed Nature of the Membrane Systems
	3 Basic Algorithms in P Systems
	3.1 Generalised Broadcast
	3.2 Convergecast

	4 Leader Election in P Systems
	4.1 A Simple Leader Election Algorithm

	5 Mutual Exclusion in Shared Memory
	5.1 Formal Model of Shared Memory Systems
	5.2 The Mutual Exclusion Problem
	5.3 Achieving Mutual Exclusion

	6 Fault Tolerant Consensus
	6.1 The Consensus Problem
	6.2 Failures

	7 Example and Implementation
	7.1 Terms
	7.2 Problem Definition
	7.3 P System Perspective
	7.4 Equilibrium State Determination
	7.5 Algorithm: Immune Response
	7.6 Implementation

	References

