Multiprocessor Systems Synthesis for
Multiple Use-Cases of Multiple Applications
on FPGA

AKASH KUMAR

National University of Singapore and Eindhoven University of Technology
SHAKITH FERNANDO and YAJUN HA

National University of Singapore

and

BART MESMAN and HENK CORPORAAL

Eindhoven University of Technology

Future applications for embedded systems demand chip multiprocessor designs to meet real-time
deadlines. The large number of applications in these systems generates an exponential number of
use-cases. The key design automation challenges are designing systems for these use-cases and
fast exploration of software and hardware implementation alternatives with accurate performance
evaluation of these use-cases. These challenges cannot be overcome by current design methodologies
which are semiautomated, time consuming, and error prone.

In this article, we present a design methodology to generate multiprocessor systems in a system-
atic and fully automated way for multiple use-cases. Techniques are presented to merge multiple
use-cases into one hardware design to minimize cost and design time, making it well suited for
fast design-space exploration (DSE) in MPSoC systems. Heuristics to partition use-cases are also
presented such that each partition can fit in an FPGA, and all use-cases can be catered for.

The proposed methodology is implemented into a tool for Xilinx FPGAs for evaluation. The
tool is also made available online for the benefit of the research community and is used to
carry out a DSE case study with multiple use-cases of real-life applications: H263 and JPEG
decoders. The generation of the entire design takes about 100 ms, and the whole DSE was com-
pleted in 45 minutes, including FPGA mapping and synthesis. The heuristics used for use-case

Some results of this research were published in Proceedings of the IEEE Conference on Field Pro-
grammable and Logic Applications (FPL) 2007, pp. 92-97.

Authors’ addresses: A. Kumar, Department of Electrical and Computer Engineering, National
University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 and Department of Elec-
trical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven; email:
a.kumar@tue.nl; S. Fernando, Y. Ha, Department of Electrical and Computer Engineering, National
University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077; B. Mesman, H. Corporaal,
Department of Electrical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ
Eindhoven.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2008 ACM 1084-4309/2008/07-ART40 $5.00 DOI 10.1145/1367045.1367049 http:/doi.acm.org/
10.1145/1367045.1367049

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:2 o A. Kumar et al.

partitioning reduce the design-exploration time elevenfold in a case study with mobile-phone
applications.

Categories and Subject Descriptors: J.6 [Computer Applications]: Computer Aided
Engineering—Computer-aided design (CAD)

General Terms: Design, Algorithms, Performance, Experimentation

Additional Key Words and Phrases: FPGA, multiprocessor systems, design exploration, multi-
application, multimedia systems, synchronous data-flow graphs, multiple use-cases

ACM Reference Format:

Kumar, A., Fernando, S., Ha, Y., Mesman, B., and Corporaal, H. 2008. Multiprocessor sys-
tems synthesis for multiple use-cases of multiple applications on FPGA. ACM Trans. Des. Au-
tom. Electron. Syst. 13, 3, Article 40 (July 2008), 27 pages, DOI = 10.1145/1367045.1367049
http://doi.acm.org/10.1145/1367045.1367049

1. INTRODUCTION

New applications for embedded systems demand chip-multiprocessor designs
to meet real-time deadlines while achieving other critical design goals like low-
power consumption and low cost. With high consumer demand, the time-to-
market needs to be significantly reduced [Jerraya and Wolf 2004]. Multiproces-
sor systems-on-Chips (MPSoCs) have been proposed as a promising solution for
all such problems. But one of the key design automation challenges that remain
is that of allowing fast exploration of software and hardware implementation
alternatives with accurate performance evaluation, also known as design-space
exploration (DSE).

Further, the number of features that are supported in modern embedded
systems (e.g., smart phones, PDAs, set-top boxes) is increasing faster than ever.
To achieve high performance while keeping costs low, limited computational
resources must be shared. The fact that these applications do not always run
concurrently only adds a new dimension to the design problem. We define each
such combination of applications that are active simultaneously as a use-case
(also known as a scenario in literature [Paul et al. 2006]). For example, a mobile
phone in one instant may be used to talk on the phone while surfing the Web and
downloading some Java application in the background, and in another instant
be used to listen to MP3 music while browsing JPEG pictures stored in the
phone, and at the same time allowing a remote device to access the files in the
phone over a bluetooth connection.

The number of such potential use-cases is exponential in the number of ap-
plications present in the system. The high demand of functionalities in such
devices is leading to an increasing shift towards developing systems in soft-
ware and programmable hardware in order to increase design flexibility. How-
ever, a single configuration of this programmable hardware may not be able
to support this large number of use-cases with low cost and power. We envi-
sion that future complex embedded systems will be partitioned into several
configurations and that the appropriate configuration will be loaded into the
reconfigurable platform on-the-fly, as and when the use-cases are requested.
This requires two major developments at the research front: (1) a systematic
design methodology for allowing multiple use-cases to be merged on a single

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases J 40:3

hardware configuration, and (2) a mechanism to keep the number of hardware
configurations as small as possible. More hardware configurations imply higher
cost since the configurations have to be stored somewhere in memory, and also
lead to increased switching in the system.

Key Contributions. In this article, we present a solution to the aforementioned
objectives. Following are the key contributions of the work.

—MPSoC Design Flow. We provide a systematic design methodology that gen-
erates multiprocessor systems for the desired use-cases.

—Support for Multiple Use-Cases. We give an algorithm for merging use-cases
onto a single (FPGA) hardware configuration such that multiple use-cases
may be supported in a single configuration, while minimizing hardware
resources.

—Partitioning Use-Cases. When (FPGA) area constraints do not allow mapping
of all use-cases on one configuration, we offer a methodology to partition use-
cases such that the number of partitions (or configurations of FPGAs) is
minimized.

—Reducing Complexity. Use-case partitioning is an instance of the set-covering
problem [Cormen et al. 2001], which is known NP-hard. We propose effi-
cient heuristics to solve this problem and compare their performance and
complexity.

—Area Estimation. This is a technique that accurately predicts the resource
requirements on the target FPGA without going through the entire synthesis
process.

—MPSoC Design Tool for FPGAs. All of the aforesaid methods and algorithms
are implemented such that the entire multiprocessor system can be gener-
ated for the given application and use-case descriptions in a fully automated
way for Xilinx FPGAs. Besides the hardware, the required software for each
processoris also generated. The tool is available at www.es.ele.tue.nl/mamps/.

The preceding contributions are essential to further research in the design
automation community, since embedded devices are increasingly becoming
multifeatured. Our flow allows designers to generate MPSoC designs quickly
for multiple use-cases and to keep the number of hardware configurations
to a minimum. Though the flow is aimed at minimizing the number of par-
titions, it also generates all partitions and allows the designer to study the
performance of all use-cases in an automated way. The designer can then tai-
lor the partitions to achieve better performance of all applications in a use-
case.

Our flow is unique in a number of aspects: (1) It allows fast DSE by automat-
ing the design generation and exploration; (2) it supports multiple applications;
(3) it supports multiple use-cases on one hardware platform; (4) estimates the
area of design before the actual synthesis, allowing the designer to choose the
right device; and (5) merges and partitions the use-cases to minimize the num-
ber of hardware configurations. To the best of our knowledge, there is no other
existing flow to automatically map even multiple applications to an MPSoC

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:4 o A. Kumar et al.

platform, let alone multiple use-cases, except for our previous work [Kumar
et al. 2007a]. The design space increases exponentially with an increasing
number of use-cases, leading to increased time for DSE; our flow provides a
quick solution to this.

While the flow is suitable for both design and evaluation, in this article
we focus on the suitability of our flow for evaluating whether all the applica-
tions can meet their functional requirements in all the use-cases on FPGAs.
We present a number of techniques to minimize the time spent in evaluation
and design-space exploration of the system. We assume that applications are
specified in the form of synchronous data-flow (SDF) graphs [Lee and Messer-
schmitt 1987; Sriram and Bhattacharyya 2000]. SDF graphs are often used for
modeling modern DSP applications and for designing concurrent multimedia
applications. For the back-end design generation on the target FPGA, we use
MAMPS (multiapplication and multiprocessor synthesis), as presented in our
previous work [Kumar et al. 2007a].

A tool has been written to generate designs targeting Xilinx-based platform
FPGAs. This tool is made available online for use by the research community at
MAMPS [2007]. In addition to a Web site, an easy-to-use GUI tool is also avail-
able for both Windows and Linux. The tool is used to generate several designs
with multiple use-cases that have been tested on the Xilinx University Virtex II
Pro Board (XUPV2P) [Xilinx 2007]. However, the results obtained are equally
valid on other FPGA architectures as well, and the tool can be easily extended
to support other FPGA boards and architectures. We present a case study on
how our methodology can be used for design-space exploration using JPEG and
H263 decoders. We were able to explore 24 design points that tradeoff memory
requirements and performance achieved with both applications running con-
currently on an FPGA in a total of 45 minutes, including synthesis time. We
also compare the execution time and performance of various heuristics that are
used to merge and partition use-cases in a mobile-phone case study, and with
randomly generated graphs.

The rest of the article is organized as follows. Section 2 reviews the related
work for architecture generation and synthesis flows for multiprocessor sys-
tems. Section 3 introduces SDF graphs. Section 4 gives a short summary of the
MAMPS flow. Section 5 describes our approach of merging use-cases in a single
hardware description, while Section 6 explains how our partitioning approach
splits the use-cases when not all can fit in one design. Section 7 describes the
tool implementation, and Section 8 gives an overview of how resource utiliza-
tion is estimated in this tool. Section 9 presents results of experiments done to
evaluate our methodology. Section 10 concludes the article and gives directions
for future work.

2. RELATED WORK

The problem of mapping an application to an architecture has been widely
studied in literature. One of the recent works most related to our research
is ESPAM [Nikolov et al. 2006]. This uses Kahn process networks (KPNs)
[Kahn 1974] for application specification. In our approach, we use SDF [Lee

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases J 40:5

and Messerschmitt 1987] for application specification instead. Further, our
approach supports mapping of multiple applications, while ESPAM is limited
to single applications. This difference is imperative for developing modern
embedded systems which support more than tens of applications on a single
MPSoC. The same difference can be seen between our approach and the one
proposed in Jin et al. [2005], where an exploration framework to build efficient
FPGA multiprocessors is proposed.

The Compaan/Laura design flow presented in Stefanov et al. [2004] also uses
KPN specification for mapping applications to FPGAs. However, their approach
is limited to a processor and coprocessor. Our approach aims at synthesizing
complete MPSoC designs supporting multiple processors. Another approach for
generating application-specific MPSoC architectures is presented in Lyonnard
et al. [2001]. However, most of the steps in their approach are done manually.
Exploring multiple design iterations is therefore not feasible. In our flow, the
entire flow is automated, including the generation of the final bit-file that runs
on the FPGA.

Yet another flow for generating MPSoCs for FPGAs has been presented
in Kumar et al. [2007b]. However, that flow focuses on generic MPSoCs and
not on application-specific architectures. Further, the work in Kumar et al.
[2007b] uses networks-on-chip for communication fabric, while in our approach-
dedicated links are used for communication to remove communication-resource
contention altogether.

Xilinx provides a tool-chain as well to generate designs with multiple proces-
sors and peripherals [Xilinx 2007]. However, most of the features are limited
to designs with a bus-based processor-coprocessor pair with shared memory.
It is very time consuming and error prone to generate an MPSoC architecture
and the corresponding software projects to run on the system. In our flow, an
MPSoC architecture is automatically generated together with the respective
software projects for each core.

The multiple use-case concept is relatively new to MPSoCs and one related
research is presented in Murali et al. [2006]. However, that work focuses on
supporting multiple use-cases for the communication infrastructure, in partic-
ular networks-on-chip. Our flow is mainly targeted towards supporting multiple
use-cases from a computation perspective. In addition, we generate dedicated
point-to-point connections for all the use-cases that are to be supported.

Our definition of a use-case is similar to what is defined as a scenario in Paul
et al. [2006]. The authors in Paul et al. [2006] motivate the use of a scenario-
oriented (or use-case-oriented, in our work) design flow for heterogeneous
MPSoC platforms. Our approach provides one such design flow where designers
can study the performance of all use-cases in an automated way and tune the
architecture to achieve better performance of all applications in a use-case. The
biggest advantage of our approach is that we provide a real synthesized MPSoC
platform for designers to play with and measure performance. Further, for Paul
et al. [2006], architecture is provided as an input and is static, whereas we gen-
erate platforms, given the application and use-case descriptions and provide
the means to change (reconfigure) the architecture dynamically for different
use-cases.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:6 o A. Kumar et al.

Table I. Comparison of Various Approaches for Providing Performance Estimates

SDF? POOSL ESPAM
[Stuijk et al. 2006b] [Kumar et al. 2006b] [Nikolov et al. 2006] | Our Flow

Approach Used Analysis Simulation FPGA FPGA
Model Used SDF SDF KPN SDF
Single Appl Yes Yes Yes Yes
Multiple Appl No Yes No Yes
Multiple Use-cases No No No Yes
Speed Fastest Slow Fast Fast
Accuracy Less High Highest Highest
Dedicated FIFO N. A No No Yes
Arbiter Support N. A Yes N. A Yes

Fig. 1. Example of an SDF graph.

Table I shows various design approaches that provide estimates of applica-
tion performance by various means. The first method uses SDF models and
computes the throughput of the application by analyzing the application graph.
However, it is only able to predict the performance of single applications. The
simulation approach presented in Kumar et al. [2006b] uses POOSL [Theelen
et al. 2007] for providing application performance estimates. This is more ac-
curate than analysis, since more details can be modeled and their effects are
measured using simulations. ESPAM is closest to our approach, as the authors
also use FPGAs, but they do not support multiple applications. Our flow sup-
ports multiple applications and provides quick results. Further, ours is the only
approach that supports multiple use-cases.

3. SYNCHRONOUS DATA-FLOW GRAPHS

Synchronous data-flow graphs (SDFGs; see Lee and Messerschmitt [1987]) are
often used for modeling modern DSP applications [Sriram and Bhattacharyya
2000] and for designing concurrent multimedia applications implemented on
multiprocessor platforms. Both pipelined streaming and cyclic dependencies
between tasks can be easily modeled in SDFGs. Tasks are modeled by the ver-
tices of an SDFG, which are called actors. SDFGs allow analysis of a system
in terms of throughput and other performance properties, such as latency and
buffer requirements [Stuijk et al. 2006a].

Figure 1 shows an example of an SDF graph. There are four actors in this
graph. As in a typical data-flow graph, a directed edge represents the depen-
dency between tasks. Tasks also need some input data (or control information)

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases J 40:7

before they can start and usually also produce some output data; such terms of
information are referred to as ftokens. Actor execution is also called firing. An
actor is called ready when it has sufficient input tokens on all its input edges
and sufficient buffer space on all its output channels; an actor can only fire
when it is ready.

The edges may also contain initial tokens, indicated by bullets on the edges,
as seen on the edge from actor C to actor A in Figure 1. Buffer sizes may
be modeled as comprising a back-edge with initial tokens. In such cases, the
number of tokens on this edge indicates the buffer size available. When an actor
writes data to such channels, the available size reduces; when the receiving
actor consumes this data, the available buffer increases, modeled by an increase
in the number of tokens.

In the previous example, only A can start execution from the initial state,
since the required number of tokens are present on both of its incoming edges.
Once A has finished execution, it will produce three tokens on the edge to B.
Then B can then proceed, as it has enough tokens and upon completion will
produce four tokens on the edge to C. Since there are two initial tokens on the
edge from C to A, hence A can again fire as soon as it has finished the first
execution, without waiting for C to execute.

4. MULTIAPPLICATION-FLOW OVERVIEW

Figure 2 shows an overview of the MAMPS flow that has been published in our
previous work [Kumar et al. 2007a]. This flow generates multiprocessor systems
from specification of multiple applications. Applications are assumed described
in form of SDF graphs in xml format. A snippet of application specification of
Appl0 is shown in Figure 3, corresponding to the application in Figure 2. The
specification file contains details about how many actors are present in the
application and how they are connected to the other actors. The execution time
of the actors and their memory usage on the processing core are also specified.
For each channel present in the graph, the file describes whether there are
any initial tokens present on it. The buffer capacity of a particular channel is
specified as well.

From these application descriptions, a multiprocessor system is generated.
For a single application, each actor is mapped on a separate processor node,
while for multiple applications, nodes are shared among actors of different ap-
plications. The total number of processors in the final architecture corresponds
to the maximum number of actors in any application. For example, in Figure 2,
a total of four processors are used in the design. This may not be the opti-
mal way to allocate actors to processors and many optimizations remain to
be performed.! The scope of this article, however, is to demonstrate how de-
signs can be easily generated even for multiple use-cases and optimized for
them.

For processors that have multiple actors mapped onto them, an arbitration
scheme is generated. The arbitration scheme can be chosen by the designer

IThe simplest choice, for example, would be to allow processor sharing within actors of the same
application. These alternatives will be presented in later research.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:8 A. Kumar et al.

Application Speciﬁcation\|
SDF

~ Platform Description
Software Project | [Hardware| [Design
for Processors Topology) | Project

N
|
I
|
I
|
J

~

MPSoC Platform 1

[}
|
! Proc 0 Proc 1 :
|
| a0,al [~ ™ b0,bl !
| V\ I |
I N | |
I R I |
| AN 2 / !
| Proc 3 |4 Proc 2 AOFIFO—» !
:\ do cO.el | AiFFO--» |

Fig. 2. Design flow.

<application id="ApplO">
<actor name="al0">
<port name="d0" type="in" rate="2"/>
<port name="b0" type="out" rate="1"/>
<executionTime time="1200"/>
</actor>
<actor name="b0">

<port name="alO"
<port name="cO"
<port name="dO"

type="in" rate="1"/>
type="out" rate="1"/>
type="out" rate="2"/>

<executionTime time="9600"/>
</actor>

Fig. 3. Snippet of Appl0 application specification.

as either round-robin or round-robin with skipping [Kumar et al. 2006a]. For
the former, blocking reads and writes are used, while for the latter they are
nonblocking. This allows actors to be skipped over if they are not ready, even if
it is their turn in the list. However, it should be mentioned that strict round-
robin often may lead to a deadlock in the system if the rates of applications are
not properly assigned.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases J 40:9

All the edges in an application are mapped on a unique FIFO channel. This
creates an architecture that mimics the applications directly. Unlike processor
sharing for multiple applications, the FIFO links are dedicated, as can be seen
in Figure 2. As opposed to a network or bus-based infrastructure, the dedicated
links remove the possible sources of contention that can limit performance.
Since we have multiple applications running concurrently, there is often more
than one link between some processors. Even in such cases, multiple FIFO
channels are created. This avoids head-of-line blocking that can occur if one
FIFO is shared for multiple channels [HOL 2007].2

In addition to the hardware topology, the software for each processor is also
generated. The software includes the SDF model of the actor execution and the
arbitration. If the source-code of an actor is available it may also be inserted in
the description. Other miscellaneous files that are necessary for synthesis are
also generated. An example of this in the case of FPGAs is the pin-constraints
file.

5. SUPPORTING MULTIPLE USE-CASES

In this section, we describe how multiple use-cases can be merged into one de-
sign to save precious synthesis time and minimize hardware cost. When multi-
ple use-cases are to be catered for during performance evaluation, time spent on
hardware synthesis forms a bottleneck and limits the number of designs that
can be explored in a typical design-space exploration. When designing systems
this is even more important, as it often reduces the hardware resources needed
in the final platform.
We start by defining a use-case.

Definition 1 (Use-Case). Given a set of n applications Ay, Ay,... A, 1, a
use-case U is defined as a vector of n elements (xg, x1,...x,_1) Where x; €
{0,1} Vi = 0,1,...n — 1, such that x; = 1 implies that application A; is ac-
tive.

In other words, a use-case represents a collection of multiple applications
that are active simultaneously. Each application in the system requires hard-
ware to be generated for simulation. Therefore, each use-case in turn has a
certain hardware topology to be generated, as explained in Section 4. In ad-
dition, software is generated for each hardware processor in the design that
models the set of actors mapped on it. The following two subsections provide
details of how the hardware and software are generated.

5.1 Generating Hardware for Multiple Use-Cases

With different use-cases, since the hardware design is usually different, the
entire new design has to be synthesized. Here we describe how we can merge
the hardware required for different use-cases. Figure 4 shows an example of

2Sharing of links and memory may be possible but is left as a future work, since our ideas of use-
cases merging are equally applicable with this approach as with any other communication fabric,
such as networks-on-chip.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:10 o A. Kumar et al.

Use—case A Use—case B

___________________ ’

|

Proc 1 !

|
| 0123

|
012 v 11 0/0100
0/020 Proc 2 P 10011
11001 ! 210000
21100 0| 3]2000

N = O O
[= el el]

OO = O N
S O = O | W

Fig. 4. An example showing how the combined hardware for different use-cases is computed. The
corresponding communication matrix is also shown for each hardware design.

two use-cases that are merged. The figure shows two use-cases A and B, with
different hardware requirements that are merged to generate the design with
minimal hardware requirements to support both. The combined hardware de-
sign is a superset of all the required resources such that all use-cases can be
supported. The key motivation for the idea comes from the fact that while multi-
ple applications are active concurrently in a given use-case, different use-cases
are active exclusively.

The complete algorithm to obtain the minimal hardware to support all use-
cases is described in Figure 5. The algorithm iterates over all use-cases to
compute their individual resource requirements. This is, in turn, computed by
using the estimates from the application requirements. While the number of
processors needed is updated with a max operation (line 8 in Figure 5), the
number of FIFOs is added for each application (indicated by line 10 in Figure
5). The total FIFO requirement of each application is computed by iterating
over all the channels and adding a unique edge in the communication matrix
for them. The communication matrix for the respective use-cases is also shown
in Figure 4.

To compute minimal hardware requirements for the overall hardware for all
the use-cases, both the number of processors and the number of FIFO channels
are updated by a max operation (lines 13 and 15, respectively, in Figure 5). This
is important because so doing generates only as many FIFO channels between
any two processors as maximally needed during any particular use-case; thus,
the generated hardware stays minimal. Therefore, in Figure 4, while there are
in total three FIFO channels between Proc 0 and Proc 1, only two are used

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases . 40:11

Procedure: GenerateCommunicationMatrix

1: // Let X;; denote the number of FIFO channels needed from processor P; to P; overall
2: X;5=0 // Initialize the communication matrix to 0

3: Nproc =0 // Initialize the number of processors to 0

4: for all Use-cases U} do

5. Y3 =0 // Yij stores the number of FIFO channels needed for Uy,
6: Nproc,UseCase =0 // Initialize processor count for use-case to 0

7: for all Applications A; do

8: Nproc,UseCase = Mmax(Nproc,UseCases Nproce,A;) // Update processor count for Uy
9: for all Channels ¢ in A; do
10: Yeorecgest = Yesrccgese T 1 // Increment FIFO channel count
11: end for
12: end for
13: Nproc = max(Nproc, Nproc,UseCase) // Update overall processor count
14: for all 7 and j do
15: Xij = max(Xij,)/”)
16: end for
17: end for

18: // Nproc is now the total number of processors needed
19: // Xij is now the total number of FIFO channels needed

Fig. 5. Algorithm for determining minimal hardware design that supports multiple use-cases.

(at most) at the same time. Therefore, in the final design only two channels are
produced between them.

5.2 Generating Software for Multiple Use-Cases

Software compilation is a lot faster as compared to hardware synthesis, in the
MAMPS approach. The flow is similar to the one for generating software for
single use-cases. However, we need to ensure that the numbering for FIFO chan-
nels is correct. This is very important in order to ensure that the system does
not go into deadlock. For example, in Figure 4, Proc 0 in the merged hardware
design has three incoming links. If we simply assign the link-ids by looking
at the individual use-case, in Use-case B in the figure, the first link-id will be
assigned to the channel from Proc 3. This will block the system, since the actor
on Proc 3 will keep waiting for data from a link which never receives anything.

To avoid the preceding situation, the communication matrix is first con-
structed even when only the software needs to be generated. Link-ids are then
computed by checking the number of links before the element in the communi-
cation matrix. For the output link-id, the numbers in the row are added, while
for incoming links, the column is summed up. In Figure 4, for example, the
communication matrix of Use-case B suggests that the incoming links to Proc 0
are only from Proc 3, but the actual hardware design synthesized has one extra
link from Proc 2. The incoming link-id should therefore take this into account
in this software.

5.3 Combining the Two Flows

Figure 6 shows how the hardware- and software flows come together to get
quickly results for multiple use-cases. The input to the whole flow is the

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:12 o A. Kumar et al.

l

Generate Analyze All
Communication [Use-C
Matrix se-Lases
vV V¥
A Generate Increment i
Generate Software for | (Go to next
Hardware Use-case i use-case)
Synthesize Compile No
Hardware Software
* * Yes
System Memory
Bit File Print

\
Merge files and .| Get Terminate
Configure FPGA [| Results (>

Fig. 6. The overall flow for analyzing multiple use-cases. Notice how the hardware flow executes
only once, while the software flow is repeated for all the use-cases.

description of all the use-cases. From these descriptions, the communication
matrix is constructed. This is used to generate the entire hardware. The same
matrix is also used when software has to be generated for individual use-cases.
The boxes shown in gray are repeated for each use-case. The flow terminates
when all use-cases are explored. The results of each use-case are fed to the
computer via the serial port and are also written out onto the compact flash
card, as explained in Section 7. As can be seen in the figure, the hardware part
is executed only once, whereas the software part is iterated until results for all
the use-cases are obtained. This flow makes execution of multiple use-cases a
lot faster, since hardware synthesis is no longer a bottleneck in system design
and exploration.

The use-case analysis (see “Analyze All Use-Cases” in Figure 6) is done to find
the maximum number of use-cases that can fit in one hardware design. (This is
done by our ideas of area estimation that are explained in Section 8.) Formally,
given a set S of m use-cases S = {Uy, Uy, ...U,,_1}, we wish to determine the
biggest possible subset of S that is feasible, where feasibility implies that all
the elements of the set can be merged into one hardware design that can fit in
the given FPGA device. The next section explains what happens when not all
use-cases can be merged in one hardware design.

6. USE-CASE PARTITIONING

Resources are always a constraint in an FPGA device. As the number of use-
cases to be supported increases, the minimal hardware design increases as well,

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases o 40:13

Applications Use-cases Feasible-sets Potential Partitions
Ao: H263 Enc Uo = {Ao, A1, As} fo=A{Uo,Ur} {fo, f1, fa, f5}
A1: H263 Dec U1 :{Ao,Al,As} f1 = {U(),Uz} {fo,fg,f4}
A22 JPEG Dec U2 = {AQ,Ag,A4} f2 = {U17U2} {fl,fz,fg}
Asz: MP3 Dec Us = {Ao, As} fs ={U1,Us3,Us {f1, fs}
A4: Modem U4 = {AQ,A4,A5} f4 = {U2,U3}
As: Voice Call fs ={U2,Us}

Fig. 7. Putting applications, use-cases, and feasible partitions in perspective.

and it often becomes difficult to fit all use-cases in a single hardware design.
Here we propose a methodology to divide the use-cases in such a way that all can
be tested, assuming that all use-cases can at least fit in the hardware resources
when they are mapped in isolation.? Further, we wish to have as few a number
of such hardware partitions as possible-since each extra partition implies extra
hardware synthesis time. This is an NP-hard problem, as described next.

Problem 1. We are given S = {Uy, Uy, ...U,,_1}, where each use-case U, is
feasible in itself. Further, let us define set F of all feasible subsets of S. Use-case
partitioning is finding the minimum subset C € F whose members cover all of

S.

Solution 1. This is clearly an instance of the set-covering problem, where
the universe is depicted by S, and the subsets are denoted by F. The set C
we are looking for is the solution of the minimum set-covering problem, and
corresponds to that of the use-case partitioning problem. Each set in C corre-
sponds to a feasible hardware partition. The set-covering problem is known
NP-hard [Garey and Johnson 1979; Cormen et al. 2001]. Use-case partitioning
is therefore also an NP-hard problem.

The cost in both verification and design synthesis is directly proportional to
the number of sets in C. During verification, it is the time spent in synthesis
which increases with partition count, while for system design more partitions
imply a higher hardware cost. Since this is an NP-hard problem, in our tool we
have used an approximation algorithm to solve it, called the greedy algorithm.
The largest feasible subset of use-cases is first selected and a hardware partition
created for it. This is repeated with the remaining use-cases until all use-cases
are covered. As mentioned in Cormen et al. [2001], the maximum approximation
error in using this technique over the minimal cover is In|X | + 1, where X is
the number of elements in the largest feasible set.

Figure 7 helps in better understanding the partitioning problem and provides
a good perspective of the hierarchy of sets. The first box in the figure shows the
applications that need to run on the platform. These are some of the applications
that run on a mobile phone. The next box shows some typical use-cases; for
example, U; represents a video call that requires video encoding, video decoding,
and regular voice-call (as mentioned earlier, a use-case is a set of applications

3If an individual use-case does not fit, a bigger FPGA device is needed.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:14 o A. Kumar et al.

that run concurrently). The next box shows the family of sets F, each of which
is feasible. For simplicity only a part of F is shown in the figure. Clearly, the
subsets of elements of F are also feasible; for example, when f5 is feasible,
so is {Us, Us}. As often the case, no feasible set exists which contains all the
use-cases. Therefore, a subset C C F need be chosen such that all the use-cases
are covered in this subset. Few such possible subsets are shown in the last box.
The last option is preferred over the rest, since it provides only two partitions.

6.1 Hitting the Complexity Wall

In order to be able to implement the greedy algorithm, we still need to be
able to determine the largest feasible set. This poses a big problem in terms
of implementation. The total number of possible sets grows exponentially with
the number of use-cases. Suppose we have 8 applications in the system and that
every combination thereofis possible, we have 255 use-cases overall. Since each
use-case can either be in the set or not, we obtain a total of 225° sets. Each set
has then to be examined as to whether it is feasible; this takes linear time in
size of set, which can in the worst case be the number of applications in the
system. Thus, a system with N applications and their M possible use-cases
has a complexity of O(N.2) to find the largest feasible set. In the worst case
the number of use-cases is also exponential, namely, M = 2. We see how the
design space becomes infeasible to explore. In Section 9 we see some results of
actual execution times.

6.2 Reducing the Execution Time

Here we see some measures to reduce the execution time. The following ap-
proaches do not reduce the complexity of the algorithm, but may provide sig-
nificant reduction in execution time.

(1) Identify Infeasible Use-Cases. Our intention is to be able to analyze all
the use-cases that we can with our given hardware resources. Identifying the
infeasible use-cases reduces the potential set of use-cases. While the execution
time can be significantly affected depending on their number, the worst-case
complexity remains the same.

(2) Reduce Feasible Use-Cases. This method identifies all those use-cases that
are proper subsets of feasible use-cases; such use-cases are defined as trivial,
while those not included in any other feasible use-case are defined as nontrivial.
When a use-case is feasible, all of its subsets are also feasible. Formally, if a use-
case U; is a subset of U, the minimal hardware needed for U is sufficient for U;.
(A proper subset here implies that all the applications executing concurrently
in U; are also executing in U, though the inverse is not necessarily true.) In
other words, any partition that supports use-case U; will also support U;. It
should be noted, however, that the performance of applications in these two
use-cases may not be the same due to different sets of active applications, and
therefore it might be required to evaluate performance of both use-cases.

These approaches are very effective and may significantly reduce the number
of feasible use-cases left for analysis. With a scenario of 10 randomly generated

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases o 40:15

Procedure: FirstFitSetCoverHeuristic
1: // Let tmp;; and final;; be two communication matrices, both initialized to zero
2: // final;; stores the matrix that includes all the use-cases that fit in the current partition

3: UseCaseDone[] =0 // Initialize all use-cases as not done
4: UseCaseDone[i] = —1 Vi when Uj; is infeasible // Ignore the infeasible use-cases
5: UseCaseDone[i] = j + 2V i when U; is a sub-set of U; // Reduction step

6: Partition[k] stores the use-cases that are assigned to the k-th partition; k = 0

7: while Use-cases left (Translates to UseCaseDone[i]=0 for at least one i) do

8: tmp;; =0 and final;; =0

9: for all UseCases U; when UseCaseDoneli] = 0 do

10: tmp;; = finalij

11: Update tmp;; by adding UseCase U;

12: if tmp;; fits in device then

13: UseCaseDoneli] = 1

14: Add i to Partition[k]

15: final;j = tmpy;

16: end if

17: end for

18 k=k+1 // Advance partition

19: end while
20: // Partition| | stores details of all the partitions
21: // k is the number of partitions created

Fig. 8. Algorithm for partitioning the use-cases, with polynomial complexity.

applications and 1023 use-cases (considering all the possibilities), we found that
only 853 were feasible. The reduction technique further reduced the number
of nontrivial use-cases to 178. The aforesaid approaches reduce the execution
time, but do not help in dealing with complexity. However, the optimality of the
solution (in generation of feasible sets, not in the set-cover) is maintained.

6.3 Reducing the Complexity

In this section, we propose a simple heuristic to compute the partitions. This
heuristic reduces the complexity significantly, albeit at the cost of optimality. As
mentioned earlier, the greedy approach of partitioning requires to compute the
largest feasible set. Since computing the largest optimal set has a high com-
plexity, we have an alternative implementation which simply gives the first
partition that includes the first nonincluded use-case, and simply scans the
whole list to check which use-cases can be added such that the set remains
feasible. The algorithm is as shown in Figure 8. An array is maintained to
check which use-cases are not yet included in any partition (in Figure 8, Use-
CaseDone). Infeasible use-cases are indicated in step 4 in the figure. Use-cases
are then reduced by considering only nontrivial use-cases. Trivial use-cases
are assigned the identifier of its superset (step 5). This reduces the number of
use-cases that are to be analyzed.

Partitions are then created on a first-come-first-serve basis. The order of use-
cases in the input may therefore affect partitioning. As can be seen, once a use-
case fits in a partition, it is not checked whether this is the optimal partition.
In the worst-case, each use-case might result in its own partition, and the
algorithm would then require O(M) iterations of the while-loop, each requiring

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:16 o A. Kumar et al.

—

MB 0 | MBI MB 2 MB 3
VLD > 1Q [mcr [Recon
OPB
Timer UART SysACE DDR
RAM -
CF Card FSL Links

Fig. 9. Hardware topology of the generated design for H263.

M passes in the for-loop. Therefore, the total complexity of this approach is
O(M?) as compared to O(2¥) in the original approach. Section 9 compares the
execution times of the two approaches.

7. TOOL IMPLEMENTATION

In this section, we describe the tool we developed based on our flow to tar-
get Xilinx FPGA architecture. The processors in the MPSoC flow are mapped
to Microblaze processors [Xilinx 2007]. The FIFO links are mapped onto fast
simplex links (FSL). These are unidirectional point-to-point communication
channels used to perform fast communication. The FSL depth is set according
to the buffer size specified in the application description.

Example architecture for the H263 application platform is shown in
Figure 9 according to the specification in Figure 12(a). This consists of several
Microblazes with each actor mapped to a unique processor, with additional
peripherals such as Timer, UART, SysACE, and DDRRAM. While the UART
is useful for debugging the system, the SysACE compact flash card allows
for convenient performance evaluation for multiple use-cases by running
continuously without external user interaction. The timer module and DDR
RAM are used for profiling the application and for external memory access,
respectively.

In our tool, in addition to the hardware topology, the corresponding soft-
ware for each processing core is also generated automatically. For each software
project, appropriate functions are inserted that model the behavior of the task
mapped on the processor. This can be a simple delay function if the behavior
is not specified. If the actual source-code for the function is provided, the same
can be easily inserted into the project. This also allows functional verification
of applications on a real hardware platform. Routines for measuring perfor-
mance, as well as sending results to the serial port and CF card on-board are
also generated for MBO.

Our software generation ensures that the tokens are read from (and written
to) the appropriate FSL link in order to maintain progress and to ensure cor-
rect functionality. Writing data to the wrong link can easily throw the system
in deadlock. XPS project files are also automatically generated to provide the
necessary interface between hardware and software components.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases o 40:17

8. AREA ESTIMATE: DOES IT FIT?

Whenever one talks about FPGA design, resource limitations are a major issue,
and it is always important to know whether the desired design fits in the limited
FPGA resources. Especially because hardware synthesis takes so much time,
if the design finally does not fit on the target architecture, a lot of precious
time is wasted and makes research considerably slower. In this section, we
therefore provide the formulae that can be directly applied to compute how
much area the design takes on the target platform. Our experiments were done
on a Xilinx University Board containing a Virtex II Pro XC2VP30, and the
same methodology can be applied to compute similar formulae for other target
architectures as well. Here ISE 7.1i and EDK 7.1i were used for synthesis;
however, the results are accurate for ISE 8.2i unless otherwise mentioned.

An FSL can be implemented either using block RAMs (BRAMs) or using
LUTs in the FPGA. In the LUT implementation, the FIFO is synthesized using
logic, while in BRAM implementation, embedded dual-port block-RAM blocks
are used to synthesize these channels. Since both are crucial resources, we
did the whole experiment with both these options. The following four sets of
experiments were done.

—Vary FSL, with BRAM. This is the base design of one Microblaze and one FSL,
incrementing FSL count to eight, with FSLs implemented using BRAMs.
—Vary FSL, with Logic. This consists of a base design of one Microblaze and
one FSL, incrementing FSL count to eight, with FSLs implemented using
logic.

—Vary Microblaze, with BRAM FSL. We use a base design of one Microblaze and
eight FSLs, incrementing Microblaze count to eight, with FSLs implemented
using BRAMs.

—Vary Microblaze, with Logic FSL. This has a base design of one Microblaze
and eight FSLs, incrementing Microblaze count to eight, with FSLs imple-
mented using logic.

Each FSL was set to a depth of 128 elements.* For a 32-bit element this trans-
lates to 512-byte memory. A BRAM in this device can hold 2kB of data, trans-
lating to 512 elements per BRAM. The number of slices, LUTs, and BRAMs
utilized were measured for all experiments. Results of the first two sets are
shown in Figure 10 and of the next two are shown in Figure 11. The increase in
the total logic utilized is fairly linear, as expected. In the Virtex II Pro family
each FPGA slice contains 2 LUTSs, but often not both are used. Thus, we need to
take slice utilization also into account. LUT utilization is shown as the measure
of logic utilized in the design.

Table IT shows the resource utilization for different components in the de-
sign obtained by applying a linear regression technique on the results of exper-
iments. The second column shows the total resources present in XC2VP30.
The next column shows the utilization in basic design to implement OPB

41t is also possible to set the FIFO depth in the specification, but we used a constant number for
this study to minimize the number of variables.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:18 o A. Kumar et al.

8000 T T T T T T

Logic FSL: Total LUTs —+—
7000 F Logic FSL: Slices ---%---

BRAM FSL: Total LUTs ------
BRAM FSL: Slices &

6000

Resources used
o (6]
o o
o o
o o

w
o
o
o

1000 [.
O 1 | | Il | 1
1 2 3 4 5 6 7 8

Number of FSLs in the design

Fig. 10. Increase in the number of LUTs and FPGA slices used with changes in the number of
FSLs in design.

- | I T T T T
Logic FSL: Total LUTs ——
14000 |- Logic FSL: Slices ---x---
BRAM FSL: Total LUTs ---%---
BRAM FSL: Slices &
12000 |
E 3
=}
w - 7
0] — . —
£ 8000 L
o .
| y*:‘"’ i)
e 6000 |- - -
BT
i B B -
e
2000 &~ |
0 | | | | I I
1 2 3 4 . : 7 |

Number of Microblazes in the design

Fig. 11. Increase in the number of LUTs and FPGA slices used as the number of Microblaze
processors is increased.

(on-chip peripheral bus), the CF card controller, timer, and serial I/O. The next
two columns show the resources used for each dedicated point-to-point channel
in the design. With the 8.2i version we observed that the minimum number of
BRAM used for each FSL was 1, as compared to 2 in 7.1i. In our designs this
translated to being able to accommodate a lot more FIFO channels on the same
device with ISE/EDK 8.2i.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases o 40:19

Table II. Resource Utilization for Different Components in the Design

Each Fast Simplex Link
Total | Base Design | BRAM Impl Logic Impl | Each Microblaze

BRAM 136 0 1(2in 7.1i) 0 4 (32)
LUTs | 27392 1646 60 622 1099
Slices | 13696 1360 32 322 636

The last column in Table II shows the same for Microblaze in the design. In
our design, one Microblaze is assigned the task of communicating with the host
and writing the results to the CF card. This core was designed with a much
bigger memory for instruction and data. It uses 32 BRAMs in total, translating
to 32kB memory each for data and instructions. The other cores have a much
smaller memory at only 4kB each for data and instructions.

It is easy to obtain the total resource count that will be utilized upon syn-
thesis. In our tool we also output the same and use it as a means to estimate
whether the design would fit in the given resources. In all our experiments so far,
our estimates have been very accurate and differ by hardly 1% or 2% when com-
pared to actual resource utilization. For BRAM, the estimate is always exact.

8.1 Packing the Most

In our tool, we first try to assign as many FSL channels to BRAM as possible.
When all the BRAMs on the device are used up, we assign them to LUT. The
BRAM implementation is faster to synthesize, since only the access logic to
memory has to be synthesized, while in LUT implementation the whole FIFO
is constructed using logic. It should be noted, however, that since BRAM im-
plementation assigns the whole memory block in discrete amounts, it might be
a waste of resources to assign the whole block when a FIFO of small depth is
needed. Currently, this tradeoff is not taken into account in our tool.

9. EXPERIMENTS AND RESULTS

In this section, we present some of the results that were obtained by imple-
menting several real and randomly generated application SDF graphs, using
our design flow described in Section 4. Here we show that our flow reduces the
implementation gap between system-level and RTL-level design, and allows for
more accurate performance evaluation using an emulation platform compared
to simulation [Theelen et al. 2007] and analysis. In addition, we present a case
study using JPEG and H263 applications to show how our tool can be used for
efficient design-space exploration by supporting multiple use-cases. Further,
we see how our use-case partitioning approach minimizes the number of hard-
ware designs, by studying an example of applications running in a high-end
mobile phone.

Our implementation platform is the Xilinx XUP Virtex II Pro Development
Board with an xc2vp30 FPGA on-board. Xilinx EDK 8.2i and ISE 8.2i were
used for synthesis and implementation. All tools run on a Pentium Core at
3GHz with 1GB of RAM.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:20 o A. Kumar et al.

Table III. Comparison of Throughput for Different Applications
Obtained on FPGA with Simulation

Appl 0 Appl 1
Use-case | Sim | FPGA | Var % Sim | FPGA | Var %
A 3.96 3.30 —20.05 | 1.99 2.15 7.49
B 3.59 3.31 —-8.63 | 1.80 1.61 -11.90
C 2.64 2.74 3.67 | 1.88 1.60 -17.37
D 0.85 0.77 —10.51 | 3.82 3.59 —6.32
E 1.44 1.35 —-6.80 | 4.31 4.04 —6.82
F 0.51 0.48 -5.79 | 5.10 4.73 -7.75
G 4.45 4.25 —4.55 | 1.11 0.97 —14.66
H 1.16 1.05 —-10.29 | 4.63 4.18 -10.65
I 4.54 4.03 —12.48 | 2.27 2.13 —6.51
dJ 4.33 3.97 -892 | 1.08 1.00 -8.41
Average — - —8.44 - - —8.29

9.1 Generating Multiapplication Systems

In order to verify our design flow, we generated 10 random application graphs
with 8 to 10 actors each, using the tool SDF 2 [Stuijk et al. 2006b], and generated
designs with 2 applications running concurrently. Results of 10 such ran-
dom combinations have been summarized in Table III. The results are com-
pared with those obtained through simulation. We observe that in general, the
application throughput measured on FPGAs is lower than simulation by about
8%. This is because our simulation model does not take into account the commu-
nication overhead. However, in some cases we observe that performance of some
applications improves (shown in bold in Table III). This is rather unexpected,
but easily explained when going into a bit of detail.

Communication overhead leads to the actor execution taking somewhat
longer than expected, thereby delaying the start of the successive actor. This
causes the performance of that application to drop. However, since we are deal-
ing with multiple application use-cases, this late arrival of one actor might
cause the other application to execute earlier than that in simulation. This is
exactly what we see in the results. For the two use-cases in which this happens,
namely A and C, the throughput of the other applications is significantly lower:
20% and 17%, respectively. This also proves that the use-cases of multiple appli-
cations concurrently executing are more complex to analyze and reason about
than a single application.

9.2 Supporting Multiple Use-Cases

Here we present a case study of using our design methodology of supporting
multiple use-cases for doing a design-space exploration and computing the
optimal buffer requirement. Minimizing buffer size is an important objective
when designing embedded systems. We explore the tradeoff between buffer size
used and throughput obtained for multiple applications. For single applica-
tions, the analysis is easier and has been presented earlier [Stuijk et al. 2006al].
For multiple applications, it is nontrivial to predict resource usage and perfor-
mance because multiple applications cause interference when they compete for
resources.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases o 40:21

25 T T T T T
20 B
=)
=4
=
8 15 B
o
el
S
3
S 10 1
[5)
=1
o
= B ® ® ®
) H263: 2, 3 tokens
5 NG B
o
0 | 1 | 1 1
0 1 2 3 4 5 6

Number of initial tokens in JPEG

Fig. 13. Effect of varying initial tokens on JPEG throughput.

The case study is performed for JPEG and H263 decoder applications. The
SDF models of the two applications were obtained from the description in
de Kock [2002] and Hoes [2004], respectively, and the corresponding graphs
are shown in Figures 12(a) and 12(b). In this case study, the buffer size has
been modeled by the initial tokens present on the incoming edge of the first ac-
tor. The higher this initial-token count, the higher the buffer needed to store the
output data. In the case of H263, each token corresponds to an entire decoded
frame, while in the case of JPEG, it is the complete image. This is a special
case of multiple use-case description, where the application structure remains
the same but buffer size varies with each use-case. Therefore, the hardware
remains unchanged, but the software is changed in each iteration.

Figure 13 shows how the throughput of the JPEG decoder varies with an
increasing number of tokens in the graph. A couple of observations can be made
from this figure. When the number of tokens (i.e., buffer size in real application)
is increased, the throughput also increases until a certain point, after which it
saturates. When the JPEG decoder is the only application running (obtained
by setting the initial tokens in H263 to zero), we observe that its throughput
increases almost linearly until three. We further observe that increasing the

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:22

A. Kumar et al.

Table IV. Throughput of the Two Applications Obtained by Varying Initial
Number of Tokens (i.e., buffer size)

H263 0 1 2 3
JPEG | H263 JPEG | H263 JPEG | H263 JPEG | H263 JPEG
0 - - 458 - 830 - 830 -

1 - 849 453 453 741 371 741 371
2 - 1697 453 906 669 669 669 669
3 - 2226 454 1358 669 669 669 669
4 - 2228 422 1682 669 669 669 669
5 - 2230 422 1682 669 669 669 669
Table V. Time Spent on DSE of JPEG-H263 Combination
Manual Generating Complete
Design Single Design DSE
Hardware Generation | ~ 2 days 40ms 40ms
Software Generation ~ 3 days 60ms 60ms
Hardware Synthesis 35:40 35:40 35:40
Software Synthesis 0:25 0:25 10:00
Total Time ~ 5 days 36:05 45:40
Iterations 1 1 24
Average Time ~ 5 days 36:05 1:54
Speedup - 1 19

initial tokens of H263 worsens the performance of JPEG, but only until a certain
point.

The actual throughput measured for both applications is summarized in
Table IV. Increasing initial tokens for H263 beyond two causes no change, while
for JPEG the performance almost saturates at four initial tokens. This analysis
allows the designer to choose the desired performance-buffer tradeoff for the
combined execution of JPEG and H263.

Design time. The time spent on exploration is an important aspect when
estimating the performance of big designs. The JPEG-H263 MPSoC platform
was also designed by-hand to estimate the time gained by using our tool. The
hardware and software development took about 5 days in total to obtain an
operational system. In contrast, our tool takes a mere 100 milliseconds to gen-
erate the complete design. Table V shows the time spent on various parts of the
flow. The Xilinx tools take about 36 minutes to generate the bit-file, together
with the appropriate instruction and data memories for each core in the design.

Since the software-synthesis step takes only about 25 seconds in our case
study, the entire DSE for 24 design points was carried out in about 45 minutes.
This hardware-software codesign approach results in a speedup of about 19
when compared to generating a new hardware for each iteration. As the num-
ber of design points increases, the cost of generating the hardware becomes
negligible and each iteration takes only 25 seconds. The design occupies about
40% of logic resources on the FPGA and close to 50% of available memory.
This study is only an illustration of the usefulness of our approach for DSE for
multiprocessor systems.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases o 40:23

9.3 Use-Case Partitioning

In this section, we show the effectiveness of our approach to partition use-cases,
and the heuristics to optimize on the execution time. This is demonstrated first
using some random test cases and then with a case study involving applications
in a mobile phone.

Using the 10 applications we generated in the first part of the experiment, we
generated all possible combinations, giving a total of 1023 use-cases. We found
that only 853 of these were feasible; the rest required more resources than were
present on our FPGA device. In general, most use-cases of up to 6 applications
could fit on the FPGA, while only a couple of use-cases with 7 applications were
feasible.

When trying to compute partitions using the greedy method directly on these
853 use-cases, the algorithm terminated after 30 minutes without any result,
since there were too many sets to consider. When using the first-fit heuristic
on these use-cases we obtained a total of 145 partitions in 500 milliseconds.
However, since this approach is dependent on the order of use-cases, another
order gave us a partition count of 126 in about 400 milliseconds. After applying
our reduction technique on feasible use-cases, 178 nontrivial use-cases were
obtained. The greedy approach on these use-cases terminated in 3.3 seconds
and resulted in 112 partitions. The first-fit heuristic on the nontrivial cases
took 300 milliseconds and gave 125 partitions, while another order of use-cases
gave 116 partitions in about the same time.

A couple of observations can be made from this. Our techniques of use-
case reduction are very effective in pruning the search space. Up to 80% of
the use-cases are pruned away as trivial. This is essential in this case, for ex-
ample, when otherwise no results are obtained for greedy. We observe that while
the first-fit heuristic is a lot faster, the results depend heavily on the order of
input use-cases. However, if the search space is large, first-fit may be the only
heuristic for obtaining results.

Mobile-Phone case study. Here we consider 6 applications: video encoding
(H263) [Hoes 2004], video decoding, JPEG decoding [de Kock 2002], mp3 decod-
ing, modem [Bhattacharyya et al. 1999], and regular call. We first constructed
all possible use-cases, giving 63 use-cases in total. Some of these use-cases are
not realistic, for example, JPEG decoding is unlikely to run together with video
encoding or decoding because when a person is recording or watching video,
he/she will not be browsing the pictures. Similarly, listening to mp3 while talk-
ing on the phone is unrealistic. After pruning away such unrealistic use-cases
we were left with 23 use-cases. After reduction to nontrivial use-cases, only 3
remained.

A greedy approach only works on the set after reduction. We observe that
23 use-cases is too many to handle if there are a lot of possible subsets. (In the
previous example with 10 applications, we obtain 178 use-cases after reduction
but since no partition can handle more than 4 use-cases, the total number of
possible sets is limited.) After reduction, however, the greedy algorithm gives
2 partitions in 180 milliseconds. The same results are obtained with the first-
fit heuristic. However, the first-fit heuristic also solves the problem without

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:24 .

A. Kumar et al.

Table VI. Performance Evaluation of Heuristics Used for Use-Case Reduction and Partitioning

Random Graphs Mobile Phone
Partitions Time (ms)| # Partitions Time (ms)

Without Merging 853 - 23 -
Without Reduction | Greedy Out of Memory - Out of Memory -

First-Fit 126 400 2 200

Without Merging 178 100 3 40
With Reduction Greedy 112 3300 2 180

First-Fit 116 300 2 180
Optimal Partitions > 110 - 2 -
Reduction Factor 7 - 11 -

pruning away the use-cases. Here the order only affects which trivial use-cases
are attached to nontrivial use-cases. In total, since we have only 2 partitions,
performance of all the 23 use-cases is measured in about 2 hours. Without this
reduction it would have taken close to 23 hours. The use-case merging and
partitioning approach leads to an elevenfold reduction. The results are fed to
the computer and stored on the CF card for later retrieval.

Table VI shows how well our use-case reduction and partitioning heuristics
perform. The time spent in corresponding steps are also shown. Reduction to
nontrivial use-cases for the mobile-phone case study takes 40 milliseconds,
for example, and leaves us with only 3 use-cases. As mentioned earlier, the
greedy heuristic for partitioning does not terminate with the available memory
resources when applied without reducing the use-cases. The design space is
too large to evaluate the largest feasible set. After reducing to nonfeasible use-
cases for random graphs, we obtain 178 use-cases and at most 4 use-cases fit in
any partition. Since the maximum error in using the greedy approach is given
by In|X| + 1, where X is the number of elements in the largest partition, we
get a maximum error of [n|4| + 1, namely, 2.38. We can therefore be sure that
the minimal number of partitions is at least 110. We see a sevenfold reduction
in the number of hardware configurations in the random-graphs use-case and
about elevenfold in the mobile-phone case study. We can therefore conclude that
our heuristics of use-case reduction and partition are very effective in reducing
the design time and number of partitions.

Reconfiguration time. The time to reconfigure an FPGA varies with the
size of configuration file and the mode of reconfiguration. For Virtex II Pro 30,
the configuration file is about 11Mb. The CF-card controller provides config-
uration bandwidth of 30Mb per second, translating to about 370 milliseconds
for reconfiguration. Configuring through the on-board programmable memory
is a lot faster, since it provides bandwidth of up to 800Mb per second. Thus,
for the aforementioned FPGA device it takes only about 13 milliseconds. The
USB connection is a lot slower, and often takes about 8 seconds. However, for
the end-design, we expect the configurations to be stored in an on-board pro-
grammable memory; these are retrieved as and when use-cases are enabled. A
typical mobile-phone user is unlikely to start a new use-case more than once
every few minutes. Therefore, the reconfiguration overhead of 13 milliseconds
is not significantly large, and is amortized over the period of use-case.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases o 40:25

10. CONCLUSIONS AND DISCUSSION

In this article, we propose a design flow to generate architecture designs for
multiple use-cases. Our approach takes the description of multiple use-cases
and produces the corresponding MPSoC platform. A use-case is defined as a set
of concurrently active applications. This is the first flow that allows mapping of
multiple applications, let alone multiple use-cases on a single platform. We pro-
pose techniques to merge and partition use-cases in order to minimize hardware
requirements. The tool developed using this flow has been made available online
for the benefit of the research community [MAMPS 2007], and a stand-alone
GUI tool is developed for both Windows and Linux. The flow allows designers
to traverse the design space quickly, thus making DSE, even of concurrently
executing applications, feasible. A case study is presented to find the tradeoffs
between buffer size and the performance when JPEG and H263 run together on
a platform. A multiple use-case study for a smart phone is also presented that
requires only two partitions to evaluate the performance of multiple use-cases,
requiring a total of two hours.

Further, we also provide techniques to estimate resource utilization in the
FPGA without carrying out the actual synthesis. While the number of applica-
tions that can be concurrently mapped on the FPGA is limited by the hardware
resources, the number of use-cases that can be merged in one hardware design
depends on the similarity of hardware requirements in the use-cases. When syn-
thesizing designs with applications of eight to ten actors and twelve to fifteen
channels, we found it difficult to map more than six applications simultaneously
due to resource constraints. A bigger FPGA would certainly allow bigger designs
to be tested, and possibly all use-cases could be merged in one description.

Our technique is also capable of minimizing the number of reconfigurations
in the system. The use-case partitioning algorithm can be adapted to consider
the relative frequency of the use of each use-case. The use-cases should be first
sorted in decreasing order of their use, and then the first-fit algorithm pro-
posed in an earlier section should be applied. The algorithm will therefore first
pack all the most frequently used use-cases together in one hardware partition,
thereby reducing the reconfiguration from one frequently used use-case into an-
other. However, for an optimal solution of the partition problem, many other
parameters need to be taken into account, for example, the reconfiguration time
and average duration for each use-case. We would like to extend the use-case
partitioning algorithm to take the exact reconfiguration overhead into account.

Further, we would like to develop and automate more ways of design-space
exploration, for example, trying different partitions of applications, and to sup-
port arbitrary mapping of actors to processors. We would also like to try different
kinds of arbiters in the design to improve fairness and allow for load-balancing
between multiple applications. For the tooling itself, we wish to extend MAMPS
to include support for generating heterogeneous platforms in our flow.

REFERENCES

BHATTACHARYYA, S., MURTHY, P., AND LEE, E. 1999. Synthesis of embedded software from syn-
chronous dataflow Specifications. The J. VLSI Signal Process. 21, 2, 151-166.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

40:26 o A. Kumar et al.

CorMmEN, T., Leiserson, C., Rivest, R., anp StemN, C. 2001. Introduction to Algorithms, 2nd ed. MIT
Press, Cambridge, MA.

pE Kock, E. 2002. Multiprocessor mapping of process networks: A JPEG decoding case study.
In Proceedings of the 15th ISSS Conference, Los, Alamitos, CA. IEEE Computer Society, 68—
73.

GaREY, M. aAND Jonnson, D. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. WH Freeman, New York.

Hogs, R. 2004. Predictable dynamic behavior in NoC-based MPSoC. www.es.ele.tue.nl/epicurus/.

HOL. 2007. Head-of-line blocking. http://en.wikipedia.org/wiki/Head-of-1line_blocking.

JERRAYA, A. AND Worr, W. 2004. Multiprocessor Systems-on-Chips. Morgan Kaufmann, San
Francisco, CA.

JIN, Y., SatisH, N., Ravinpran, K., AND KeUTZER, K. 2005. An automated exploration framework for
FPGA-based soft multiprocessor systems. In Proceedings of the 3Srd CODES+ISSS International
Workshop on Hardware/Software Codesign, Los Alamitos, CA. IEEE Computer Society, 273—
278.

Kann, G. 1974. The semantics of a simple language for parallel programming. Inf. Process. 74,
471-475.

KumAR, A., FERNANDO, S., Ha, Y., MEsMaN, B., aND CorPoraAL, H. 2007a. Multi-Processor system-
level synthesis for multiple applications on platform FPGA. In Proceedings of the 17th Interna-
tional Conference on Field Programmable Logic and Applications, 92-97.

KuMar, A., HanssoN, A., HUISKEN, J., AND CorPORAAL, H. 2007b. An FPGA design flow for reconfig-
urable network-based multi-processor systems on chip. In Proceedings of the Design Automation
and Test in Europe (DATE), Los Alamitos, CA. IEEE Computer Society, 117-122.

KuMAR, A., MESMAN, B., CorroraAL, H., vaAN MEERBERGEN, J., AND YAJUN, H. 2006a. Global analysis
of resource arbitration for MPSoC. In Proceedings of the 9th EUROMICRO Conference on Digital
System Design (DSD). Los Alamitos, CA. IEEE Computer Society, 71-78.

Kumar, A., Mesman, B., THEELEN, B., CorporaaL, H., aND Ha, Y. 2006b. Resource manager for
non-preemptive heterogeneous multiprocessor system-on-chip. In Proceedings of the 4th Work-
shop on Embedded Systems for Real-Time Multimedia (Estimedia). IEEE Computer Society, 33—
38.

LEeE, E. A. aND MEsserscHMITT, D. G. 1987. Static scheduling of synchronous dataflow programs
for digital signal processing. IEEE Trans. Comput. 36, 1 (Feb.), 24-35.

Lyonnarp, D., Yoo, S., BacHDADI, A., AND JERRAYA, A. 2001. Automatic generation of application-
specific architectures for heterogeneous multiprocessor system-on-chip. In Proceedings of the
Design Automation Conference. ACM Press, New York, 518-523.

MAMPS. 2007. Multiple applications mutli-processor synthesis. Username: todaes, Password:
guest. http://www.es.ele.tue.nl/mamps/.

MugraL, S., CoENEN, M., RADULEscU, A., GoosseNs, K., AND DE MicHELL, G. 2006. A methodology for
mapping multiple use-cases onto networks on chips. In Proceedings of Design Automation and
Test in Europe (DATE). IEEE Computer Society, 118-123.

Nikorov, H., Steranov, T., aND DEPRETTERE, E. 2006. Multi-Processor system design with
ESPAM. In Proceedings of the 4th International Workshop on Hardware/Software Codesign
(CODES+ISSS). ACM Press, New York, 211-216.

Paur, J. M., THomas, D. E., AND BoBrek, A. 2006. Scenario-Oriented design for single-chip hetero-
geneous multiprocessors. IEEE Trans. Very Large Scale Integr. Syst. 14, 8 (Aug.), 868-880.

SRIRAM, S. AND BHATTACHARYYA, S. 2000. Embedded Multiprocessors; Scheduling and Synchro-
nization. Marcel Dekker, New York.

SterFanov, T., Z1ssuLescy, C., TurJaN, A., KiENHUTS, B., AND DEPRETTE, E. 2004. System design using
Kahn process networks: The Compaan/Laura approach. In Proceedings of the Design Automation
and Test in Europe (DATE). IEEE Computer Society, 340-345.

STUlIK, S., GEILEN, M., AND BasteN, T. 2006a. Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs. In Proceedings of the Design Automa-
tion Conference. ACM Press, New York, 899-904.

STULK, S., GEILEN, M., AND Basten, T. 2006b. SDF3: SDF for free. In Proceedings of the 6th Inter-
national Conference on Application of Concurrency to System Design (ACSD). IEEE Computer
Society, 276-278.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

Multiprocessor Systems Synthesis for Multiple Use-Cases o 40:27

THEELEN, B., FLorEscy, O., GEILEN, M., HUANG, J., VAN DER PUTTEN, P., AND VOETEN, J. 2007. Software/
Hardware engineering with the parallel object-oriented specification langauge. In Proceedings of

the 5th ACM-IEEE International Conference on Formal Methods and Models for Codesign. IEEE
Computer Society, 139-148.

Xminx. 2007. Xilinx resource page. http://www.xilinx.com.

Received September 2007; revised February 2008; accepted March 2008

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 40, Pub. date: July 2008.

