Assignment

- 1. Read the setup file and make yourself familiar with Linux environment. The pointers to relevant documentation are also given in this document.
- 2. Complete the cookbook on compiling core and answer the questions given there.
- 3. Complete the cookbook on compiling program and answer the questions given there.
- 4. Read the documentation on basic power estimation, and also in
 - \$HIVEBIN/../doc/power_estimation_tutorial.pdf.
- 5. Start with the application (**fdct_original.c**) available on the project website: http://www.es.ele.tue.nl/~akash/5kk73.php.
 - a) This program can be compiled for a general processor. Make the modifications to make it run on both processors (*pearl* and *pearl_is3*) generated in Step 2. How many cycles does it take on each processor?
 - b) Modify the processor pearl_is3 such that the parallelism in the given application can be exploited. (*Hint: perhaps add more register files and memories.*)
 - c) Optimize the application code of **fdct_original.c** for your target processor. (*Hint: Refer to Chapter 8 of HiveSDK.pdf for tips.*)
 - d) Check the cycle count and power consumption of your application on your processor.
 - e) Iterate over steps (b), (c) and (d) to reduce the cycle count as much as possible.
- 6. When you are finished, make a file called *name.txt* in your home directory containing *your* name and *student number*.

Deliverables

A am all non out in the fall arrive of amount

A sman repor	t in the following for	mat.	
Name:			
Student numb	per:		
Step 2: Comp	oiling the core		
Answer 1:			
Answer 2:			
Answer 3:			
Answer 4:			
Answer 5:			
Step 3: Comp	piling the program		
Answer 1:			
Answer 2:			
Answer 3:			
Answer 4:			
Step 4: Optin	nizing the given applic	cation	
Answer (a):	Cycles: <i>pearl</i> :	cycles, <i>pearl_is3</i> :	cycles.
, ,	•	Joules, <i>pearl_is3</i> :	•
		Watts, <i>pearl_is3</i> :	

Answer (b-d):

- Explain the final processor architecture (include a screen-shot from *corebrowser*).
- Explain the optimizations made to the application.
- How good is your hardware utilization (check the html directory and report results)?
- Report energy, area and T_{execution} of the architectures / mappings you have researched.

- You may add a Pareto curve of these architectures (either one 3-D plot, or several 2-D; in the latter case e..g. Time-Area, and Time-energy)
- Justify your architecture, and explain the trade-offs in processor-area, application cycle count, power and energy consumption.

Bonus

The student or group with the best design will get a bottle of wine.