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Abstract— Prediction of rapidly time variant fading channel
conditions enables adaptive data transmission in wireless systems,
which in turn improves the quality of service for end users
and reduces the power consumption for data transmissions. In
this paper, we construct an accurate, low-complexity, on-line
prediction mechanism for the long range prediction of wireless
link quality. Our method is independent of the propagation
environment and distance between user nodes and the access
points. The proposed method uses past measurements of the
received signal strength as its input, and uses a combination
of segmentation, filtering and regression to predict the future
trend in the received signal strength. An adaptive windowing
mechanism is designed to adapt to abrupt changes in the data
trace, which considerably reduces the prediction error. The
algorithm is tested on real life networks in diverse environments.
The prediction results are compared with one of the best existing
channel prediction algorithm. We show that our algorithm can
be used as a robust and comparatively more accurate predictor.

I. INTRODUCTION

Efficiency in data transmission and energy consumption in
wireless systems can be enhanced via adaptive data transmis-
sion based on current and future wireless channel conditions.
Consequently, wireless link quality estimation and prediction
tools are very useful for users or designers of wireless systems.
Prediction methods for fast fading channels have received
considerable attention in the literature and many schemes
exist that can predict fast fading channel coefficients, at
a time horizon of several milliseconds, for wireless nodes
moving at vehicular speeds. However, in many scenarios and
applications, predictions on a longer time scale, such as that
in the order of hundreds of milliseconds may be desirable.
For example, dynamic route selection methods based on link
quality in multi-hop wireless networks require abundant time
to explore and select new paths when the signal to noise ratio
on the previous route degrades. In this paper, we consider the
problem of signal strength prediction for scenarios with such
long range prediction requirements.

The work in this paper specifically addresses the problem
of online, long range prediction of signal strength in wireless
networks. Our work is motivated by the need to develop
real-time and accurate tools that can predict wireless link
quality many hundreds of milliseconds ahead in adaptive data
transmission wireless systems for mobile users. In addition to
aiding MAC, routing and other application layer protocols that
adapt to changing link conditions, the prediction mechanism
developed in this paper is also applicable to scenarios with

slow node movements, such as users walking in a campus or
office environment etc. In our work, we assume that the mobile
node moves with a speed of v = d meters/s where d is much
larger than the radio signal’s wavelength.

The link quality prediction scheme proposed in this paper
uses the received signal strength as the metric for link quality
and uses measurements of the received signal strength as the
input to the prediction scheme. The problem of long range
signal strength prediction is quite challenging due to a number
of reasons. First, the received signal strength trace may not
be ergodic since the wireless medium is time varying in
nature. At a given site, the channel is susceptible to variations
caused by noise, multipath fading (also called small scale
fading) and shadow fading (medium scale fading). Second,
the mobile nodes move along unknown traces. It’s thus hard
to forecast abrupt changes caused by a mobile node moving
into a shadowing area. The impediments in the channel caused
by path loss (large scale fading) change over time in unknown
ways also. To address these challenges, we divide the data
into small segments. We smooth the segment data and filter it
from multipath fading and measurement noise. For purposes
of prediction, instead of using the error prone fixed window
schemes, this paper develops an adaptive window based mech-
anism which dynamically chooses the window size to adapt
to abrupt changes in the data trace to improve the prediction
performance. We then predict future trend of measured data
in segments, which is caused by path loss and shadow fading.
In our work, we are interested in the prediction of large and
medium scale fading only. Although small scale fading is
also difficult to predict, fortunately there already exist many
methods to characterize it [13].

Extensive tests in real life wireless networks with mobile
nodes were used to validate the prediction methodology de-
veloped in this paper. These tests were carried out in a number
of geographical locations, both indoors and outdoors, with
different channel characteristics and user movement patterns.
Our results show that the proposed prediction methodology
successfully predicts the signal strength in all these scenarios
with very low errors and also outperforms existing prediction
methods. We also note that unlike many of the existing
prediction methods that are site specific or based on extensive
ray tracing of a given site, the proposed methodology does not
depend on site specific information.

The rest of the paper is organized as follows: Section II
presents the related work. Section III presents the experimental



setup. Section IV describes the proposed methodology for
signal strength prediction. In Section V we compare our pre-
diction results with predictions from a existing autoregressive
(AR) based wireless channel prediction tool. Finally, Section
VI presents the concluding remarks.

II. RELATED WORK

Many of the current works on link quality estimation for
wireless networks use the rate of successful reception of pack-
ets as the means for estimation and prediction. Such methods
include temporal trace based approaches such as Exponentially
Weighted Moving Average (EWMA) and Window Mean with
EWMA (WMEWMA) estimators [2]. In [3] the authors de-
velop a more accurate estimator than WMEWMA by exploring
spatial correlation for link quality estimation. However, the
rate of successful reception of packets itself is a crude and
biased (since the probability of successful reception depends
on the transmission rate as well as the coding mechanism used)
measurement for the quality of wireless links. In our work,
we use the more representative and versatile received signal
strength as the metric for link quality.

The deterministic channel model and an AR signal model
with its parameter estimation schemes for predicting the mo-
bile radio channel are compared in [10]. Based on realistic
simulation data and measurements, the authors show that
the AR model performs best. In [1], the authors present
a mechanism for reliable prediction of fast fading channel
coefficients several milliseconds in advance using an AR
model. They assume that the signal is stationary with slowly
varying parameters. In [4] the authors show that the better
performance of the AR based prediction algorithms is due to
their lower sampling rate relative to the conventional (data
rate) methods. However, the prediction for more realistic non-
stationary data is not improved significantly by the lower
sampling rate. What’s more, the iterative AR models used
in their method have the problem of error propagation for
prediction steps larger than one. In [5] an adaptive channel
prediction algorithm using Kalman filtering is proposed. A
mechanism based on Recurrent Least Squares Support Vector
Machines and nonlinear regression for long range prediction
of fading channels is proposed in [7]. However, the prediction
range in all the above methods is only about a wavelength
or few milliseconds ahead and cannot be used in applications
such as dynamic route selection in multi-hop networks where
we need predictions hundreds of milliseconds ahead.

A prediction algorithm based on multi-layer perception
(MLP) is proposed in [6]. However, this requires measured
and pre-processed channel data consisting of up to 6072752
patterns to be first developed for a given site, making it
computationally complex for on-line deployments.

III. SIGNAL STRENGTH MEASUREMENT METHODOLOGY

In this section we outline the methodology applied to obtain
the signal strength traces for the purposes of the prediction
algorithm developed in this paper. We also describe the various
locations in which the measurements were carried out.

It is well known that the performance of a wireless
system depends on the environment in which it operates.
This dependence on the environment mainly comes from the
variation in radio channel behavior in different sites. One
of the main aims of this paper is to develop a non site-
specific prediction mechanism for wireless link quality and
validate its performance in different environments. For this
reason, measurements were carried out in multiple, diverse
locations. Both outdoor and indoor scenarios were considered
in our measurements. The measurements were conducted in
various buildings and locations in the RPI campus. More
specifically, the indoor measurements were carried out in
three different buildings. The first is the Johnsson Engineering
Center which primarily consists of rooms for faculty and
space for laboratories. In the floors of this building where
the measurements were conducted, concrete walls were the
main cause of signal obstruction and attenuation. The second
building was the campus library where the large number of
metallic bookshelves were the primary source of attenuation
and shadowing. The third indoor setting was the Student Union
dining hall where there were lesser obstructions. In addition to
these, outdoor measurements were also conducted at various
locations in the campus. In addition to the measurements
carried out at the university campus, a set of measurements
were also carried in home settings, in an apartment. In all these
measurement scenarios, multiple traces for the signal strength
were collected as the user walked around inside the building
or outside. More than 40 signal strength measurement traces
were collected with the receiver moving at walking speed at
13 different environments.

In each of the measurement scenarios described above,
signal strength measurements were done using the LINKSYS
Wireless-G Broadband Router as the access point (AP) and
IBM T42 laptop, running Linux Feroda core 5, with built in
PH12127-E IBM 802.11a/b/g Wireless LAN Mini PCI adapter
as receiver. The signal strength measurements were directly
provided from the card by the madwifi-0.9.2 driver used
for the card. The driver uses RSSI as the basic measure
for signal strength which is converted to dBm. The driver
assumes a constant noise level of -96dBm since this is the
thermal noise for 20MHz OFDM signals, plus an additional
5dBm noise from the amplifiers. The SNR levels are then
obtained by SNR(dBm)=Signal(dBm)-Noise(dBm). The actual
signal strength measurements were conducted while the laptop
received packets from the AP. The packets were from an UDP
video data stream transmitted at a data rate of 30∼35Kbps. We
collected signal strength measurement every 0.25 seconds.

IV. METHODOLOGY

A. Overview

The aim of the proposed methodology is to predict the future
trend in the wireless link quality as indicated by the signal
strength, caused by path loss and shadowing for a prediction
range much longer than a wavelength. Since the prediction
range in this case is in the order of several hundreds of
milliseconds and small scale fading is not of interest here,



we first apply kernel smoothing on the raw measured signal
strength traces in order to remove data variations due to small
scale fading and measurement noise. The smoothing filter is
designed to remove variations caused by multipath fading
while keeping the variations caused by shadowing related
fading. In the next step, we divide the data into small segments
and predict the future trend in the received signal strength,
using a dynamic window scheme. A linear regression model
is then used to model and predict the signal attenuation trend
caused by path loss and shadowing. Before presenting the
details of the proposed methodology, we first describe the
underlying communication model assumed in this paper.

B. Propagation Model

Wireless radio channels experience attenuations due to mul-
tipath fading, shadow fading and path loss fading. Multipath
fading causes changes in the received signal strength within
the order of one wavelength. Shadow fading is influenced by
the spatial movements in the order of tens of wavelengths and
creates random variations in the average power of the received
signal. Path loss is caused by spatial movements in the order of
hundreds of wavelengths making the average power level vary
in power-law fashion with path length. The above three fading
components are mutually independent of each other. In our
work, we use the following commonly used statistical model
from [8]. The ratio of the received and transmitted powers, Pr

and Pu respectively, in dBm is given by

Pr

Pu
(dBm) = 10log10K − 10γlog10

d

d0
+ ϕdBm + φdBm (1)

where 10γlog10
d
d0

models the path loss fading as a linear
function of the distance d between the transmitter and receiver,
with d0 being the reference distance. Also, γ is the path
loss exponent and K is a unitless constant which depends
on the antenna characteristics. The attenuation from shad-
owing, ϕdBm, is normally distributed with zero mean and
variance σ2

ϕ. Finally, φdBm represents the variation caused by
multipath fading and can be modeled as a Raleigh (for non-
LOS channels) or Rician (for LOS channels) distribution with
appropriate parameters.

In our work, we assume that the node is moving with
a walking speed of v = d meters/s. We assume that v is
less than 5 miles/hour (2.22m/seconds). Our sampling interval
for obtaining the measurement traces is 0.25 seconds. At
2.437GHz frequency (channel 6 in IEEE 802.11g), the radio
wavelength λ is 0.1231m. Thus, for example, predicting the
signal strength sample 2 index steps ahead corresponds to 0.5
seconds (1.11m ahead, which is about 10λ). In [1] it is shown
that fast fading is predictable about a wavelength ahead. In our
mechanism, we predict the trend of data caused by large and
medium scale fading including path loss and shadowing. Since
we are not concerned with small scale fading in this paper,
to improve the quality of long range prediction, we remove
the variations in the measurement data caused by small scale
fading. This is the next step in the proposed methodology.

TABLE I
CHOICE OF SMOOTHING KERNELS

kernel normal uniform epanechnikov triangular
MISE 3.8947 3.0078 2.4655 2.1810
NMSE 0.0251 0.0260 0.0241 0.0225
kernel triweight quartic cosinus
MISE 1.9921 2.1759 2.4056
NMSE 0.0223 0.0230 0.0238

C. Data Smoothing

The first step in the proposed prediction methodology is to
smooth the raw signal strength measurement trace in order
to eliminate the variations caused by small scale fading and
measurement noise. While many approaches are possible for
signal smoothing, in this paper we use a kernel-based method.
Kernel-based smoothing methods are the most popular non-
parametric signal estimators and can uncover structural fea-
tures in the data which a parametric approach might not reveal.
The kernel bandwidth h controls the smoothness or roughness
of an estimate and the performance of kernel smoothing is
measured by MISE (mean integrated squared error) or AMISE
(asymptotic MISE) [9].

In order to choose the right smoothing function, we tested
the performance of a number of kernel-based smoothing meth-
ods on the measured data traces. The performance of seven
kernel functions in terms of their MISE is shown in Table I.
The equations governing each of these seven functions may be
obtained from [9]. Our experimental results showed that the
optimal value of the kernel bandwidth h is 2 for the data traces
that we collected. Note that 2 samples correspond to distances
1.11m apart, which is about length of 10λ. This matches
the results in [12] that on the average, “10λ window length
provides the best compromise between removing multipath
fading without distorting shadow fading patterns”. The results
shown in Table I are for the kernel functions at their optimal
bandwidth. We note that the triweight kernel has the smallest
MISE for our traces and is therefore chosen as smoothing
kernel. The table also shows the error in the final prediction
results (using the method shown the next subsection) when
we use the different kernel functions. We again note that the
triweight kernel leads to the smallest normalized mean square
prediction error (NMSE) in the final results. The triweight
kernel function is given by

K(x, p) =
(1− x2)p

22p+1B(p + 1, p + 1)
, |x| < 1 (2)

with p = 3 and

B(a, b) = Γ(a)Γ(b)/Γ(a + b) (3)

where Γ is the Gamma function.

D. Prediction Algorithm

In this section we describe the details of the prediction
algorithm, an outline of which is given in Algorithm 1. We
first note that even after smoothing, the signal strength trace
may not be easily trackable because of the random movement
of the user and the accompanying abrupt changes such as
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Fig. 1. History window size vs sample sequence in the adaptive windowing
mechanism

when the node moves in and out of a shadowing region etc. In
order to make the data more predictable, a dynamic window is
utilized to deal with abrupt changes. Predictions on the future
values of the signal strength are then made by analyzing the
trend of data within the sliding window. We now describe this
prediction mechanism in detail.

The prediction mechanism is based on observing the trend
in the past measurements. In the proposed mechanism, the
past measurements y1, · · · , yn (after smoothing) are stored in
a sliding history window. A linear regression model, Ŷ =a+bX ,
is used to fit the data y = (y1, . . . , yn) with x = (1, · · · , n).
The parameters of this regression model are given by

b =
S2

xy

Sx
=

Σxy − y · x
Σ2

x − nx2 (4)

a = y − bx (5)

where Σxy is the cross covariance of variable X and Y . x and
y are the means of X and Y respectively. Σ2

x is the variance of
X . The regression model is then used to predict future signal
strength, ŷn+p, according to

ŷn+p = a + bp (6)

where p is the prediction step.
A main feature of the proposed prediction mechanism is

that instead of using a fixed window, we propose a dynamic
windowing scheme to adapt to the abrupt variations in the
signal strength. At initialization, the history window size is set
at a default value. At each prediction step, the prediction errors
are monitored and the window size is modified according to
the observed error. If the prediction error is within an error
threshold, the history window size is additively increased until
it reaches the defined maximum window size. On the other
hand, if the prediction error exceeds the error threshold, the
window size is immediately decreased to its default initial
value. This dynamic window scheme is designed to adapt to
the abrupt change points in data trace. When sudden variations
such as those caused by entering or leaving shadowing areas,
old history data would not reflect the current trend and is
thus discarded by reducing the window size. However, correct
predictions increase our confidence in the trend shown by
the past data, motivating the increase in the window size.
Figure 1 shows the dynamic window size when the prediction
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Fig. 2. Predicted vs measured signal strength

Algorithm 1 Prediction Algorithm
p: prediction step;
ŷi+p: prediction of (i + p)th sample;
w: window size;
wstart: starting window size;
wmax: maximum window size;
e: prediction error;
INITIALIZATION
w = wstart;
prediction lag for w;
i = w;{i is a loop control index}
PREDICTION
while (1) do

read new incoming measurement as input of smoothing
filter and output smoothed data yi;
calculate LR parameters a and b using [yi−w+1, · · · , yi];
ŷi+p = a + bp;
e = |(ŷi − yi)|;
if (e > emax) then

w = wstart;
else if (w < mmax) then

w + +;
else

w = wmax;
end if
i + +;

end while

mechanism is applied to one of the collected data traces while
Figure 2 shows the accuracy of our prediction mechanism
and its ability to closely follow the measured data trace
at a prediction step of p = 2. Our experimental results
show that this dynamic window scheme improves prediction
performance by significantly reducing the prediction error as
compared to fixed window size scheme.

V. PERFORMANCE EVALUATION

In this section we design and report on a set of measure-
ment based experiments to validate our proposed prediction
methodology. The parameters used in our mechanism are the
experiment factors and we estimate the contribution of each
factor and its values on the performance. We also compare our



TABLE II
2K FACTORIAL DESIGN

A1 A2

B1 B2 B1 B2

C1 2.8076 2.8076 4.8599 4.8599
C2 3.5337 3.4534 4.3783 4.4543

methodology with one of the most popular schemes that have
been proposed in the literature. The performance metrics used
are prediction accuracy and computational complexity. We use
the normalized mean square error (NMSE), defined as

NMSE =
1
M

M∑

j=1

∑N
i=1(yi − ŷi)2∑N

i=1(y
2
i )

(7)

to measure the prediction accuracy. In Equation (7) N is the
sample size and yi and ŷi for i = 1 . . . N are the measured
and predicted data, respectively. M represents the number of
traces collected at a given location with the user following the
same path and M = 3 in our experiments.

A. Parameter Optimization

For a given signal strength trace, the performance metric
NMSE depends on three parameter settings including the
starting window size, the maximum window size, the error
threshold and the interactions between these three factors.
The smoothing window size is optimized to be 10λ for all
data trace as an independent parameter shown in Section IV-
C and is not discussed here. Each of these factors and their
interactions has a range of values and can be optimized to
achieve the best performance metrics. Optimizing the parame-
ters by full factorial design is impractical since it requires too
many experiments. Thus 2K factorial designs, where the K
factors (K = 3 in our case) each have 2 levels with extreme
values, were used to obtain the optimal parameter settings.
The allocation of variations of the 2K factors were then used
to estimate the contribution of each factor on the performance
variation and then adjust the most important factors and ignore
the trivial ones to achieve the “best” prediction performance.

We first set the range for each of the three factors with
the window size A ⊆ [3, 10], maximum window size B ⊆
[10, 100], error threshold C ⊆ [0.5, 5]. For a signal strength
trace, 2K = 8 factorial designs experiments are then conducted
with the parameters set as extreme values in their range. The
output NMSE of the eight experiments are shown in Table II.
where

A1: start window size = 3
A2: start window size = 10
B1: maximum window size = 10
B2: maximum window size = 100
C1: error threshold = 0.5
C2: error threshold = 5

The performance metric NMSE has a variation, which is
caused by the varying values of factors and their interactions.
Importance of factor is explained as the proportion of variation
caused by that factor. From Table II we can calculate that
the variation caused by start window size (A), maximum

window size (B) and error threshold (C) is 48.92%, 43.64%
and 0.32% respectively. The interaction between start window
size and error threshold (AC) explains 7.05% for the variation.
The interaction between maximum window size and start
window size (AB) counts for only 0.3% for the variation. The
interaction between maximum window size and error threshold
(BC) causes almost 0% variation. The interaction of the three
factors together (ABC) causes 0.3% variation. Therefore we
can conclude that start window size and maximum window
size are the major factors. Although error threshold itself is not
an important factor, its interaction with start window size has
some influence on the prediction accuracy. Maximum window
size can be optimized independently since its interaction
between the other two factors has little or no contribution
on the results. So for each data trace, first we search for
the optimal value of the maximum window size by method
of exhaustion, since the range of this parameter is discrete
and limited. Then, similarly we search for the optimal value
of start window size and its combination with proper error
threshold. In our experiments, for each of the 13 wireless
environments, we use one signal strength trace as training
data and get the optimal parameters for that environment.
We then use the other traces collected in that environment as
testing data. Our experimental results show that the optimized
parameters achieve minimum NMSE on the testing data also.

The assumption of 2K factorial design is that errors are
statistically independent, additive and normally distributed.
To prove the validity of our experimental design, we use
D’Agostino-Pearson’s K2 test [11] for assessing normality of
prediction. The hypothesis test is given in as follows:
• H0[null]: Z is normal with unknown mean and variance.
• H1[alternate]: Z is not normal.

where Z represents the prediction error. If H0 is true, the
Pearson statistic χ2 for the tested data Z has Chi Square
distribution with 2 degrees of freedom. For the prediction error
obtained from our data trace in Figure 2, χ2 = 11.5712, p-
value (probability that Chi Square random value with 2 degrees
of freedom is greater than χ2) is 0.1156 while significance
level α is chosen to be 0.05. Since p-value is larger than α, the
Null Hypothesis H0 is taken, which assumes that prediction
error is normal.

B. Prediction Accuracy

The results from our prediction mechanism are compared
with an AR based channel estimator provided and imple-
mented in [13]. The authors of [13] also provide a SALP
(Spectral Analysis and Linear Prediction)-Toolbox, which is
a collection of MATLAB m-files developed for analyzing
stationary and non-stationary signals. Linear prediction meth-
ods are investigated for adaptive transmission techniques in
mobile communications in [13]. But since our data has trend,
the AR model estimator has very poor performance when
directly applied on our data. In order to make the comparison
fair, we removed the trend of the data before it is input to
the AR model by removing the average of the segment data
along the sliding window. This average value is then added to



TABLE III
PREDICTION PERFORMANCE AND COMPARISON WITH AR MODEL

NMSE × 10−5 for trace 1 (RPI JEC Building)
prediction step 1 2 3 4 5

AR 0.1945 0.3213 0.4425 0.5030 0.5764
line fit 0.1810 0.2189 0.2552 0.2977 0.3341

prediction step 6 7 8 9 10
AR 0.664 0.812 1.065 1.564 2.432

line fit 0.3693 0.3979 0.4407 0.4783 0.5049

NMSE × 10−5 for trace 2 (RPI Library)
prediction step 1 2 3 4 5

AR 0.23 0.4019 0.5558 0.6195 0.6838
line fit 0.2137 0.2794 0.3198 0.3621 0.3805

prediction step 6 7 8 9 10
AR 0.726 0.781 0.828 0.929 1.066

line fit 0.4415 0.4625 0.4897 0.4888 0.4842

NMSE × 10−5 for trace 3 (RPI Student Union Dinning Hall)
prediction step 1 2 3 4 5

AR 0.292 0.45 0.58 0.68 0.85
line fit 0.2756 0.3376 0.3800 0.3925 0.4170

prediction step 6 7 8 9 10
AR 1.13 1.84 3.07 5.65 11.59

line fit 0.4321 0.4344 0.4577 0.4938 0.5094

NMSE × 10−5 for trace 4 (Home)
prediction step 1 2 3 4 5

AR 0.271 0.437 0.530 0.567 0.644
line fit 0.2138 0.2819 0.3522 0.4116 0.4185

prediction step 6 7 8 9 10
AR 0.698 0.811 0.925 1.138 1.441

line fit 0.4452 0.4688 0.4794 0.5800 0.5953

NMSE × 10−5 for trace 5 (Outdoor RPI Campus Road)
prediction step 1 2 3 4 5

AR 0.2710 0.4368 0.5302 0.5669 0.6437
line fit 0.2705 0.3506 0.3920 0.4225 0.4597

prediction step 6 7 8 9 10
AR 0.698 0.811 0.925 1.138 1.441

line fit 0.4805 0.5170 0.5693 0.6226 0.6632

the prediction result obtained from the AR model. Prediction
results generated by [13] and our algorithm for ten different
prediction steps p = 1, · · · , 10 are shown in Table III. The
NMSE for the two methods is tabulated for five different
locations, both indoors and outdoors, and the methodology
of this paper is labeled “line fit”. Parameters for both methods
were optimized using the 2K factorial design. We note that
the proposed method has very good prediction accuracy and
outperforms the AR based model. We also see that in the
AR model, the prediction error increases quickly when the
prediction step increases. This is because [13] uses iterative
AR model for multiple steps prediction, which lead to error
propagation. In our methodology, the increase in the error is
much smaller, especially for longer prediction horizons. Our
experimental results show that above observations are true for
all the data collected in 13 environments, where different floors
of JEC building, library and student union are also included.
This indicates that although AR model is a good predictor
for small scale fading [10], it’s not the best one for large and
medium scale fading prediction.

C. Computational Complexity
The proposed prediction methodology has significantly

lower computational complexity as compared to the AR based
model of [13]. The AR model parameters require large matrix
inverse calculations if the AR order is large. Also, its compu-
tational complexity increases as the prediction step increases.
In the proposed method, the computational complexity is
independent of the prediction step, since our prediction is only
dependent on the calculations of the regression parameters
a and b. Also, the computations involved in determining the
values of a and b is much lower that the calculations required
for the matrix inversion in the AR based model.

VI. CONCLUSIONS

We proposed an accurate, on-line prediction mechanism for
link quality in wireless networks. The prediction mechanism is
based on a regression model of smoothed past measurements
of the received signal strength and has the advantage of being
location-independent. Experimental results were conducted
in a number of settings, both indoors and outdoors. Our
method can predict at long ranges (up to a few seconds) at
walking speeds and outperforms AR based channel prediction
models in terms of both the accuracy and the computational
complexity. Our predictor can be used in adaptive transmission
applications such as dynamic route selection in multi-hop
networks, where predictions are needed many hundreds of
milliseconds in advance.
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