
A Dynamic Query-tree Energy Balancing Protocol
for Sensor Networks

H. Yang, F. Ye and B. Sikdar
Department of Electrical, Computer and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY 12180

Email: {yangh2, yef, sikdab}@rpi.edu

Abstract— Static broadcast tree protocols have been proposed
in literature to optimize the querying procedure in sensor
networks. In this paper we address the issue of how to mitigate
the unevenness of energy distribution and its undesirable effects
like reduced network lifetime and loss of connectivity in a sensor
network that are caused by static broadcast trees. We propose
a “Dynamic Query-tree Energy Balancing” (DQEB) protocol to
dynamically adjust the tree structure and minimize the overall
broadcast cost. The proposed algorithm scales well, is distributed
and does not need any global information. Locally, the broadcast
power consumption is minimized while globally, the broadcast
load and power distribution are balanced across the whole
sensor network. Our simulation results verify that the DQEB
protocol achieves significantly better balance in the battery power
distribution and extends the network’s lifetime considerably.

I. INTRODUCTION

During the past several years advances in the design and de-
velopment of low-cost, low-power-consumption sensors have
led to active research about large scale, self-configurable
wireless sensor networks and its applications. A large fraction
of these applications, such as monitoring and measuring, rely
on “querying” to collect information across the whole sensor
network, wherein a set of sensors is specifically asked to
report information of interest. Due to sensor network’s unique
characteristics like limited power, relatively lower processing
ability of nodes and large scale, querying is usually carried out
by broadcasting or multicasting. However, the constraint of
limited energy in sensor networks makes broadcast/multicast
through flooding for issuing queries impractical because of its
large amount of unnecessary query re-transmissions and the
consequent energy wastage. This paper focuses on developing
techniques to improve the querying procedure to minimize en-
ergy consumption and maximize the sensor network’s lifetime.

The problem of optimizing broadcasting or multicasting
in all-wireless networks, or specifically ad-hoc networks, has
received significant attention over the last few years [13], [8],
[9], [12]. Notable among these are “broadcast tree protocols”
for optimizing the query procedure in sensor network which
have been proposed to mitigate the energy consumption in
sensor networks. In [15] it has been shown that the minimum-
energy broadcast tree problem is NP-complete and the authors
have proposed an approximate algorithm to provide a bounded
performance guarantee for the problem in a general setting.
The authors of [5], [11], [14] propose heuristic solutions to

address the problem of constructing broadcast and multicast
trees. A fault-tolerant, distributed, energy-efficient protocol for
the construction of broadcast trees is proposed in [4]. Protocols
to support querying in sensor networks along with an analysis
for their complexity are presented in [3], [12]. However, these
protocols are useful only for the development of static trees
where the capabilities and constraints of each node is assumed
to stay the same for the lifetime of the network. Furthermore,
these are un-weighted protocols whose assumptions are valid
only when the nodes are first deployed. As the broadcast tree
is used, the remaining energy of the non-leaf nodes of the
tree become substantially less than those of leaf nodes due
to the fact the non-leaf nodes have to re-transmit broadcast
queries, while leaf nodes do not. The fact that the nodes’
remaining energy is not always uniform and the existence of
unequal energy depletion rates is of critical importance for
the performance of the sensor network. A static query tree
will cause the whole sensor network’s energy distribution to
become unbalanced, and further, cause the sensor network to
become disconnected. To the best of our knowledge, it remains
an unaddressed issue as how to distribute the broadcast load
evenly on nodes so that the energy distribution is balanced
and the lifetime of the sensor network is maximized. In this
paper, we develop a protocol to address this issue.

The construction of a query tree using the existing proposals
involves a fairly large number of messages that need to be
exchanged between nodes. Thus periodically re-constructing
the whole query tree is not acceptable due to energy constraints
and scalability issues. In this paper we propose a Dynamic
Query-tree Energy Balancing protocol to distributively update
the query tree structure in order to avoid uneven energy de-
pletion and the associated problems of disconnected networks
and shortened network lifetime. The DQEB protocol scales
well in that all of its operations are conducted locally and
do not require any global information for each update. It is
an energy-aware protocol that dynamically and distributively
updates the query tree. The key contribution of this paper
is that the proposed algorithm globally balances the energy
distribution across the sensor network, and locally minimizes
the energy depletion rate. Thus both nodes and the sensor
network’s lifetime is prolonged. The paper also presents a
model for a sensor network’s energy consumption rate, which
facilitates the analysis on the cost of broadcasting.



The rest of this paper is organized as follows. Section II
presents the necessary assumptions for our algorithm and a
model for the energy consumption rate of the query tree, which
forms the groundwork of our algorithm. Section III presents
and analyzes the proposed Dynamic Query-tree Energy Bal-
ancing Algorithm. In Section IV we develop the algorithm and
evaluate the effectiveness of the algorithm. In the last section
we present the concluding remarks.

II. BACKGROUND AND ENERGY CONSUMPTION MODEL

While many architectures and protocols have been devel-
oped for sensor networks, for a majority of their applications,
these networks share certain characteristics which affect the
design of querying mechanisms. First, querying and reporting
is the primary working mechanism in sensor networks and
the energy cost of these protocols is a critical measure to
evaluate their performance. Second, attribute based naming is
specially important for sensor networks where, owing to the
large number or sensors, it is typically impractical to address
an individual sensor. In fact, in many application scenarios
users are more interested in event information in a given area,
instead of that from a specific sensor. Finally, it is generally
assumed that there exists a sink node that acts as the interface
between the sensor network itself and any external control unit
and thus usually initiates the queries. We now enumerate the
specific assumptions made in this paper.

A. Assumptions

We develop our distributive query tree energy balancing
algorithm based on following assumptions and definitions:

• A Cluster Based Structure is assumed for the sensor
network. However, we do not make any assumptions on
the cluster forming algorithm. Each cluster is managed
by its own cluster head and our algorithm only involves
the cluster heads, which contributes to its scalability.

• Nodes have uniform hardware, software and battery ca-
pacity. The term “node” in this paper will mean a cluster
head. Each node has a unique ID obtained during the
sensor network’s initialization period.

• Leaf and Non-leaf Nodes are respectively defined as
nodes that forward and do not forward query messages.
A special non-leaf node is the sink node that initiates the
queries.

• A Query Tree is assumed to exist with the sink node
as the root and all nodes in the network being either
leaf or non-leaf nodes of the tree. All queries are first
broadcasted to the cluster heads who are then respon-
sible for forwarding the queries to the sensors in their
cluster. Restricting the query tree to only cluster heads
simplifies the querying process and contributes greatly to
the algorithm’s scalability.

• Weight of a Node represents the remaining lifetime of
a node’s battery and is numbered between 0 and 1. The
weight of a node is inversely proportional to its remaining
battery life. When a node is first deployed and has a fully
charged battery, its weight is initialized to 0.

• Broadcasting is the means of disseminating the query
and forms the communication pattern under study in this
paper.

B. Model for Energy Consumption with Query Broadcast

There are three types of nodes in a sensor network query
tree, namely, sink node, leaf nodes and non-leaf nodes. Leaf
nodes only receive broadcast or multicast queries, while non-
leaf nodes have to receive and forward them. From our
assumptions, the sink node is not power constrained and stays
on for the lifetime of the network. Thus, it does not have any
effect on the power consumption characteristics of the network
within the scope of this paper. The energy of non-leaf nodes is
depleted faster than that of leaf nodes since they also forward
the queries they receive. Based on this observation and the
assumption that all nodes are uniform initially, we can see
that the energy distribution across the whole sensor network
will become unbalanced if the query tree is static.

As we mentioned earlier, every node is associated with a
weight in the range [0, 1], denoted by ω. A node’s weight is
function of its remaining battery lifetime P (also within [0,1]),
and is given by:

ω = (1 − P )β (1)

where β is the power attenuation factor and determines the
rate at which depleting power affects the weight of a node.
The choice of Equation (1) to calculate the node weight is
motivated by the desire to increase the weight faster as the
remaining battery becomes lower. This allows us to avoid
overly using an “aging” node by identifying the nodes with
critically low powers and designating them as leaf nodes. We
do note that there are many other functions possible which
have similar characteristics. Our algorithm is not dependent
on the choice of the function to represent ω as long as the
weight of a node is an increasing function of the drainage of
the node battery.

The energy cost of broadcast depends on the number of leaf
and non-leaf nodes in the query tree as well as the amount of
remaining battery power at a node. For instance, the cost of
broadcasting a query is higher for a node when it has very
little power remaining than when its battery is fully charged,
specially when extending the network lifetime is an objective.
Let L denote the set of all leaf nodes, L denote non-leaf nodes
and let ωi be the weight associated with node i. We assume
the power for transmitting a query by a node is λ times as
much as the power for receiving the same bytes of data [7].
Without loss of generality, we assume receiving each query
costs γ units of energy for each node. Thus, the overall cost
function for the query tree to broadcast each query can be
defined as:

C =
∑

i∈L

γωi +
∑

i∈L

(λ + 1)γωi = γ(
∑

i∈L∪L

ωi + λ
∑

i∈L

ωi) (2)

In Equation (2), L∪L includes all nodes except the sink node,
so the first term is a constant in that it represents the overall
energy consumed by all nodes to receive a broadcast query.



9(0.1)

1(0.1)

2(0.3)

5(0.6)

4(0.2)

7 (0.3)
8 (0.3)

9(0.1)

1(0.1)

2(0.3)

5(0.6)

4(0.2)

7 (0.3)
8 (0.3)

3(0.5) 3(0.7)

6(0.4) 6(0.4)

Fig. 1. Part of a Query Tree

The second term is the energy used by all non-leaf nodes
to forward the broadcast query. We can see that minimizing
the overall energy consumption per query is equivalent to
minimizing the cost function in Equation (2). The optimal is
achieved when the sum of the weights of the non-leaf nodes
is minimum.

If a non-leaf node’s battery drains faster and results in a
faster increasing weight as compared to leaf nodes, Equation
(2) suggests an intuitive strategy to counteract this energy
unevenness. When the weight of a non-leaf node increases
beyond a certain level, the possibility of converting it to a leaf-
node to suppress its energy drainage should be considered. In
case such a decision is made, all its children in the query tree
have to be detached and switched to new parents. In the next
section, we devise a protocol to achieve this objective.

III. DYNAMIC QUERY-TREE ENERGY BALANCING

ALGORITHM

A. Algorithm-related Definitions and Design Overview

As discussed earlier, energy of non-leaf nodes drains faster
than that of leaf nodes. Thus, according to Equation (1),
the weight of non-leaf nodes tends to become higher than
leaf nodes’ as time elapses. This leads to unbalanced energy
distribution across the sensor network, eventually causing
some nodes to expend their energy before others thereby
making the sensor network disconnected. Take Fig. 1 as an
example. Here solid lines represent edges of the query tree,
while dashed lines indicate that the two nodes are within each
other’s transmission range. The arrow points from child to
parent. The label attached on each node includes the node
ID and its associated weight (number in the parenthesis).
Nodes 4 and 5 are within the transmission range of both
node 3 and 6. Initially, nodes 4 and 5 are children of node 3.
After forwarding some broadcast queries, node 3’s weight is
increased by a certain amount (0.2 in our example). According
to cost function of Equation (2), if nodes 4 and 5 are now
switched to node 6 as their new parent, the overall cost of
a broadcast will be decreased by 0.3λ as compared to the
original tree. To exploit such energy savings, our algorithm
mainly focuses on how to identify an “aging” non-leaf node,
find new parents for its children which decreases the overall
cost and finally switch the aging node to a leaf node so that
both the node and sensor network’s lifetime are prolonged.
This strategy also adds robustness to the whole tree in that
the disconnection of the tree could be largely prevented. Recall
that in Equation (1) a “dying” node has a considerably higher
weight over other nodes. With energy balancing, it has a much
higher chance to stay as a leaf node when it dies. Thus the

risk of tree disconnection can be minimized to a considerable
extent. All these decisions should be taken distributively and
are accomplished by re-arranging the query tree structure in a
local area to lower the overall cost. The query tree’s updating
procedure is triggered when the weight of a non-leaf node
increases by a certain amount. To facilitate our presentation,
we first define some terminology:

• Update Coordinator (UC): the node in charge of re-
arranging the tree structure in its neighborhood. It is
responsible for collecting information from its children,
executing the update scheme and dispatching update
instructions to the affected nodes. In our protocol, an
aging non-leaf node whose weight has recently increased
by a certain amount serves as the UC and triggers the
algorithm described later in this section.

• Alternative Parent (AP): a node qualified to be the new
parent of UC’s children. A node may have more than one
AP’s.

• Designated Parent (DP): the node which is designated
by the UC to be the new parent of UC’s children.

Following are necessary procedures to dynamically update
the query tree:

1) Collection of information regarding the weights of its
children and their neighbors by the UC

2) Execution of the update algorithm by the UC for modi-
fications to the query tree which reduce the overall cost

3) If the step above succeeds, UC informs its children to
switch to their respective DPs. If the update algorithm
fails, no actions are taken by the UC and it stays as a
non-leaf node.

The first procedure is accomplished by the algorithm de-
scribed in Section III-B, while the other two procedures are ac-
complished by the algorithm described in Section III-C. Both
of the two algorithms are designed to operate distributively,
which makes them highly scalable.

B. Neighborhood Information Synchronization Algorithm

In this section we describe our “Neighborhood Informa-
tion Synchronization Algorithm” (NIS), which is designed to
update and synchronize state information among neighboring
nodes. This information will be used by our Dynamic Query-
tree Energy Balancing Algorithm in the next section.

When the query tree is first set up and stabilized, each
node i broadcasts its state information to its neighbors. This
information includes the node i’s ID, weight and route to the
root. Each node also maintains a “Neighborhood Information
Table” (NIT) where it stores the state information obtained
from each of its neighbors. In order to detect node failures,
NIS also requires the exchange of periodic “hello” messages
between a non-leaf node and its children. If a node’s state
information changes in the interval between hello messages,
the hello message is substituted by the changed information.
These messages also serve the purpose of notifying that the
node is alive and avoids the need to transmit additional,
explicit hello messages.



As mentioned earlier, a non-leaf node will trigger a tree
re-arranging procedure when its weight increases by a certain
amount. The node now becomes a UC and invokes NIS to do
following:

1) Send a request message to all its children to ask them
for all their APs’ information

2) Collect responses from its children and save them in
UC’s NIT

The NIS algorithm tries to achieve a compromise between
energy consumption and information collection latency. Each
node maintains its one hop neighbors’ information and updates
them if anything changes. Information about an AP is sent only
on demand, which is after the UC triggers the re-arranging
procedure. Thus, compared to sending such information peri-
odically, the proposed mechanism consumes lower energy.

C. Dynamic Query-tree Energy Balancing Algorithm

The state information of the neighbors collected using the
information synchronization algorithm is used by the DQEB
algorithm to dynamically update the query tree. The DQEB
algorithm has two components, the first of which tries to
update the query tree to minimize the cost function and the
second part which informs the UC’s children about any such
updates. The second step of DEQB is trivial in the sense that
it can be achieved simply by broadcasting any changes to the
tree which might have occured. The core part of the DEQB
algorithm is to find DPs for each of the UC’s children and
evaluate the cost function of Equation (2). This is done using
a greedy algorithm which we now describe.

1) A Greedy Algorithm for Parent Selection: The parent
selection algorithm developed in this section is analogous to a
set-covering problem [2]. Our algorithm involves three types
of nodes: the UC, UC’s children and children’s alternative
parents. The algorithm is a local algorithm which is run at each
UC with its local information. The basic aim of the algorithm
is for the UC to select the appropriate APs for its children from
all its non-child neighbors. However, the algorithms has other
considerations also which are described and addressed next.
Consider the network shown in Figure 2 where we assume
node i’s weight increases beyond the threshold amount and
thus triggers the DQEB algorithm. Thus node i tries to detach
all its children and switch to being a leaf node in order to
reduce its battery depletion rate. As shown in the figure, all
solid nodes are involved in this decision process at node i,
while others are not (node 2 is not involved since it is the
parent of node i). Thus, the problem is how to find DPs for
all i’s children such that the cost function of Equation (2)
is minimized. Each node is associated with a weight value.
Also, we use C1, C2, C3, · · · , Cn to denote UC’s children and
A1, A2, A3, · · · , Am to denote their APs. We also define the
sets C = ∪n

i=1Ci and A = ∪m
i=1Ai.

Weights of nodes in set A are denoted by
ω1, ω2, ω3, · · · , ωm. The weights of non-leaf nodes are
scaled by multiplying a small number ε to their original
weights defined by Equation (1), while weights of leaf nodes
are kept at their original value. This ensures that non-leaf

nodes have a higher likelihood of being selected as a DP
while choosing DPs for the children of node i. Non-leaf
nodes are preferred as a DP because children nodes can be
switched to it without introducing any extra cost. We also
denote the degree of node Aj by dj , 1 ≤ j ≤ m, which is the
number of neighbors of Cj that are in set C. Our algorithm
chooses a subset of nodes from A as the DPs that serve as
the new parents for all of the UC’s children, with the cost
function minimized. Intuitively, the desirability of choosing
node Aj as a DP is inversely proportional to the ratio ωj/dj

since it gives preference to nodes with lower weights and
those with larger degrees. This suggests a recursive algorithm
as follows:

1) Set K = φ
2) If C = φ or A = φ, then stop. Otherwise find Aj with

the least ratio ωj/dj and add it to K.
3) Remove Aj from A. Remove all of Aj’s neighbors that

are still in set C, add them to set A and return to the
step above. Update d1 through dm.

This algorithm returns a set K, which is the set of all DPs.
After the algorithm returns, if C �= φ and A = φ, or the
overall cost as computed by Equation (2) is not reduced, it
implies that we could not find a DP, or DPs good enough for
all of UC’s children. Thus, the UC will do nothing and stay as
the non-leaf node. If C = φ and the overall cost is decreased,
UC will become a leaf node and all its children are switched
to new parents given by set K.

The above algorithm falls in the class of weighted greedy
algorithms and it is clear that the algorithm is distributed and
does not require any global information. However, it cannot
always match the performance of centralized algorithms which
are guaranteed to give the optimal solution, though at the cost
of additional computational and communication complexity.
The proposed algorithm tries to achieve a tradeoff between
the optimality of the solution and the scalability, energy
consumption and energy balance of the nodes.

2) Choosing and Differentiating APs: The greedy algo-
rithm described in the previous section utilizes only local
information in its decision process. This can lead to some
unforeseen consequences which might hinder the desired
working of the DEQB algorith. For example, consider the
network in Figure 2 with node i as the UC. Now, node 5
reports node 6 as one of its APs but if node 6 is chosen as
node 5’s DP by the DEQB algorithm, it is possible that node 5
will become disconnected from the network after node i (the
UC) becomes a leaf node. This is due to the fact that node 5’s
parent, node 6, is actually connected the the root via node i.
This problem suggests that we have to differentiate between
APs and deal with them accordingly. Now, APs of each i’s
children can be classified into the following 3 categories:

• Sibling AP: Both the node and its AP are UC’s children.
In this case, the AP is called the node’s sibling AP; e.g.,
in Fig. 2 node 4 and node 3 are each other’s sibling APs;

• Offspring AP: An AP that is the corresponding UC’s
offspring, but not its child; e.g., in Figure 2 node 6 is 5’s



8

2

7

6 5

3

4

9

i

1

Fig. 2. Example topology showing three types of APs.

offspring AP since node 6 is UC node i’s grandchild.
• Independent AP: An AP that is neither a sibling AP nor

an offspring AP is defined as an independent AP; e.g., in
Figure 2 node 9 is node 3’s independent AP;

The major difference between these APs is that for inde-
pendent APs the UC is not included in their route to the sink
node which is not the case for the sibling and offspring APs.
Thus independent APs are the most desirable nodes from the
set of APs to be switched to DPs. In our greedy algorithm
we incorporate this by simply adding the independent APs to
set A during initialization. For the sibling APs, both the node
and its corresponding sibling APs start off in set C. It is easy
to verify that our algorithm guarantees that a sibling AP is
connected to the query tree before it can be selected as a DP.
This prevents a node and its sibling AP from being designated
as each other’s DP. The selection of offspring APs is based
on similar considerations as in the case of sibling APs.

3) Resolving Update Conflicts: The distributed nature of
the algorithm described above and its dependence on only
local information makes it highly scalable. On the other
hand, it also brings up a potential problem: what happens
if a node is concurrently involved in more than one update
procedure? This can easily lead to conflicting assignments
and many of the UCs might base their decisions on stale
information. Consequently, it is also possible that the network
gets disconnected or its overall cost increases because of the
use of stale information.

In order to resolve these conflicts, we introduce a “lock”
mechanism. With this procedure, once the UC triggers the
updating algorithm and its NIC algorithm requests all its
children for their APs’ information, all children will reply with
the required information. However, once this information is
transmitted, the nodes freeze themselves and do not respond
to similar requests from other UCs while they stay in this state.
This guarantees that one node will not be involved into more
than one updates at the same time. The nodes stay in the frozen
state till they either receive the present UC’s DP information
or they time out. Any UC that does not get a response from
some of its children waits for a given time and starts over.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed algorithm, we
use a sensor network with 1000 nodes, uniformly distributed in
an area of 600×600 meters. We assume that a node’s power is

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

time

po
w

er
 S

T
D

static tree
dynamic tree

Fig. 3. power balancing of nodes across the network

within the range [0,1] and they initially have full power. Since
the network is connected, we can construct an initial query
tree, with the sink node as the root. In our simulations λ = 3
and β = 3. The root generates the broadcast traffic (queries)
at fixed intervals. The following metrics and definitions are
used to evaluate the performance of the DQEB algorithm:

• Death Rate: is defined as the percentage of dead nodes
across the whole sensor network. A node is considered
dead when its remaining power drops below some prede-
fined threshold. The sensor network is considered dead
when nodes’ death rate reaches a predefined threshold.

• Lifetime: indicates the time it takes for the death rate to
reaches a given threshold. It is a non-decreasing function
of the predefined death rate threshold.

• Static Tree: refers to the case when the broadcast tree is
static and our algorithm is NOT applied.

• Dynamic Tree: refers to the case when our DQEB
protocol is applied and the query tree structure changes
dynamically.

A. Results and Discussion

Since our algorithm is mainly designed to balance energy
distribution across the sensor network and to prolong the
lifetime of the whole network, our simulations focus on the
performance improvement regarding two aspects: the sensor
network’s lifetime and energy distribution evenness. For a
given sensor network topology, the performance of a dynamic
query tree is compared with that of a static tree. We also
investigate network connectivity’s influence on the lifetime.
When calculating the lifetime, we also take into account the
energy consumed by the protocol itself.

1) Power Distribution Balance vs. Time: In Fig. 3 we show
how the remaining power at each node is balanced for the
static and dynamic trees as the network keeps broadcasting
queries. The figure plots the standard deviation for all nodes’
remaining power as a function of time, reflecting how evenly
the power is distributed among the nodes. From the figure it is
evident that the dynamic tree outperforms the static tree and
has consistently lower values for the deviation in the power.
It implies that with our algorithm nodes’ power are consumed
more evenly, which is instrumental in prolonging the lifetime
of the network.



0 1 2 3 4 5 6
0

50

100

150

200

250

death rate threshold (%)

lif
et

im
e

static tree
dynamic tree

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time

po
w

er
 S

T
D

range=20
range=40
range=60

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

death rate threshold (%)

lif
et

im
e

range=20
range=40
range=60

Fig. 4. Lifetime vs. death rate threshold Fig. 5. Power STD vs. connectivity Fig. 6. Lifetime vs. connectivity

2) Lifetime vs. Death Rate Threshold: As mentioned earlier,
the lifetime is a non-decreasing function of the death rate
threshold. In Fig. 4 we plot the lifetime of the sensor network
as a function of the the death rate threshold. As can be seen,
when the death rate threshold is set as 5%, the lifetime almost
doubles with our protocol applied. With a static tree, all non-
leaf nodes die at the same time since they have the same initial
battery power and broadcast load. This explains why in Fig. 4
the network lifetime with a static tree does not change with the
death rate threshold. With a dynamic tree, the broadcast load
is balanced among all nodes rather than excessively exploiting
certain nodes thereby prolonging the network’s lifetime.

3) Impact of Network Connectivity: We now investigate
the influence of network connectivity on power balancing and
network lifetime. In general, there are two ways of increasing
connectivity in a sensor network: increase nodes’ transmission
range or increase the node density. These two methods are
equivalent while comparing the performance our protocol. For
our simulations, we chose the method of increasing the nodes’
transmission range and in Fig. 5 we show the standard devi-
ation of the battery power at each node with the transmission
range as 20, 40 and 60 meters (equal to 1/30, 1/15, 1/10
of the region size, respectively) for our protocol. We note
that better the connectivity, the more balanced is the power
distribution. This is also intuitive since better connectivity
implies statistically more nodes are available to share the
broadcast burden in a given sub-area. Finally, in Fig. 6 we
show the change in the network’s lifetime as a function of the
connectivity. We note that higher connectivity increases the
network’s lifetime, again owing to the fact that more nodes are
available for sharing the broadcast burden in a given region.

V. CONCLUSION

In this paper, we proposed an energy-aware, distributed
protocol to dynamically update query tree structures in sensor
networks. The protocol aims at balancing the broadcast load
and achieving even battery power distribution across all nodes
to maximize the sensor network’s lifetime. Based on the
observation that the energy of non-leaf nodes drains faster than
that of leaf nodes, we propose a weighted greedy algorithm
that updates the broadcast tree taking the remaining battery
power at each node into account. Decisions are taken at each
non-leaf node to locally minimize the cost of the broadcast tree
by switching a non-leaf node with low remaining power to a

leaf node so that its energy depletion rate is decreased. The
children of this node are then assigned new parents found by
the proposed algorithm. Our simulations show that with the
proposed protocol, the network lifetime is greatly improved
considerably while achieving a considerably higher level of
balance in the energy distribution when compared with that
obtained by a static tree.

REFERENCES

[1] Guha, S., Khuller, S. “Approximation Algorithm for Connected Domi-
nating Sets,” Algorithmica, 20(4), pp374-387, 1998;

[2] Chvatal, V. “A Greedy Heuristic for the Set-covering Problem,” Mathe-
matics of Operations Research, Vol. 4, No. 3, Aug. 1979

[3] Li, F., Nikolaidis, I., “On Minimum-Energy Broadcasting in All-Wireless
Networks,” Proceedings of the 26th Annual IEEE Conference on Local
Computer Networks Nov. 2001, Tampa, USA.

[4] Li, F., Wu, K, “Reliable, distributed and energy-efficient broadcasting in
multi-hop mobile ad hoc networks,” Local Computer Networks Proceed-
ings of LCN 2002, 27th Annual IEEE Conference on, pp. 761-769, Nov.
2001.

[5] Wieselthier, J., G. Nguyen, A. Ephremides, “On the Construction
of Energy-Efficient Broadcast and Multicast Trees in Wireless Net-
works,”Porceedings of IEEE INFOCOM 2000.

[6] Stemm, M., Katz R., “Measuring and Reducing Energy Consumption
of Network Interfaces in Hand-held Devices,” IEICE Transactions on
Communications, vol. E80-B, no.8, pp.1125-1131, Aug.1997

[7] Kasten O.,“Energy Consumption”, http://www.inf.ethz.ch/k̃asten/research/
bathtub/energy consumption.html, Eldgenossische Technische
Hochschule Zurich.

[8] Chang, J., Tassiulas, L., “Energy Conserving Routing in Wireless Ad-hoc
Network,” Proceedings of IEEE INFOCOM 2000 ACM, 2000

[9] Heinzelman, W., Chandrakasan, A., and Balakrishnan, H., “Energy-
efficient Communication Protocol for Wireless Microsensor Networks.
In Proceedings of the 33rd Hawaii International Conference on System
Sciences, Maui, Hawaii, January 2000

[10] Li, L., Bahl, V., Wang, Y., Wattenhofer, R., “Distributed Topology
Control for Power Efficient Operation in Multihop Wireless ad-hoc
Networks,” Proceedings of IEEE INFOCOM 2001, April 2001

[11] Singh, S., Raghwvendra, C., and Stepanek, J., “Power-aware Broadcast-
ing in Mobile ad hoc Networks,” Proceedings of IEEE PIMRC’99, Osaka,
Japan, Set. 1999

[12] P.-J. Wan, G. Calinescu, and O. F. X.-Y. Li., “Minimum-energy Broad-
cast Routing in Static ad hoc Wireless Networks,” In IEEE INFOCOM
2001, Anchorage, Alaska, April 2001.

[13] O. Egecioglu and T. Gonzalez, “Minimum-energy Broadcast in Simple
Graphs with Limited Node Power,” In Proceedings of IASTED Interna-
tional Conference on Parallel and Distributed Computing and Systems
(PDCS 2001), pages 334-338, Anaheim, CA, August 2001.

[14] R. J. Marks, A. K. Das, M. El-Sharkawi, P. Arabshahi and A. Cray,
“Minimum power broadcast trees for wireless networks: optimizing using
the viability lemma,In Proceedings of IEEE International Symposium on
Circuits and Systems, pp. 273-276, Scottsdale, Arizona, May 2002.

[15] W. Liang, “Constructing minimum-energy broadcast trees in wireless
ad hoc networks, In Proceedings of ACM MOBIHOC’02 pp. 194-205,
Lausanne, Switzerland, June 2002.


