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On the Feasibility of Using WiFi White Spaces for

Opportunistic M2M Communications
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Abstract—Machine to machine (M2M) communications enable
autonomous communication between devices and are an integral
part of the Internet of Things (IoT). This paper evaluates the
feasibility of opportunistic M2M communication in the unlicensed
industrial, scientific and medical (ISM) band and its coexistence
with existing WiFi networks. Using a BMAP/G/1/K queuing
model, we evaluate the duration and frequency of idle periods or
“white spaces” in WiFi networks, that may be opportunistically
used for M2M communication. Our results show that white
spaces occur frequently and are sufficiently long to facilitate
opportunistic M2M communications.

Index Terms—WiFi, white spaces, M2M communications.

I. INTRODUCTION

The IoT is expected to fuel a large scale increase in the

number of devices in the Internet [1], and these devices

will primarily use M2M communications for information

exchange. While M2M communications may use both licensed

and unlicensed bands, this paper focuses on unlicensed spec-

trum due to the cost of licensed bands. However, unlicensed

bands such as the ISM band are crowded with many existing

networks such as WiFi, Zigbee and Bluetooth. The objective

of this paper is to explore the possibility of using unlicensed

bands for opportunistic M2M communications. In particular,

we focus on the ISM band and its most popular user: WiFi.

It is well known that many networks, including WiFi, are

underutilized, with frequent periods of inactivity [2]. We refer

to the periods when a WiFi network is idle as the “white

spaces”. If these white spaces are long enough and occur

frequently, they may be opportunistically exploited for M2M

communications and we consider this as the communication

paradigm in this paper. The M2M communication is assumed

to be opportunistic, and thus should not interfere with the

primary users in the WiFi network. Such scenarios may occur

in homes or offices where M2M devices such as sensors

transfer information during white spaces in the WiFi network

where humans are the primary users. To evaluate the feasibility

of the opportunistic M2M communication paradigm described

above, we develop a model for the distribution of the lengths
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of white spaces, and the frequency of their appearance. The

design of a protocol that exploits WiFi white spaces for

opportunistic M2M communication is left for future work.

In related literature, a trace driven study of white spaces

in lightly loaded WiFi networks, for exploitation by ZigBee

applications is presented in [3]. This model is empirical,

whose parameters have to be calculated from actual traces of

network traffic. A model for white spaces is developed in [4],

assuming that the traffic arrival process is a Markov Modulated

Poisson Process (MMPP). In contrast, this paper considers a

more general arrival process. Also, closed form expressions

for the expected length of a busy period, and the fraction of

time the channel is idle are presented. Opportunistic M2M

communication has also been considered for TV white spaces

[5], [6]. However, the activity of primary users of TV spectrum

are quite distinct from users of WiFi networks.

To characterize the white spaces, this paper models a WiFi

network as a BMAP/G/1/K queue. The periods where the

queue is empty correspond to the periods where the nodes in

the network do not transmit packets and thus model the white

spaces. We model the packet arrivals in the WiFi network as

a batch Markovian arrival process (BMAP). The service time

of the queue corresponds to time taken to transmit a packet

in the WiFi network, including the time for channel access.

The model provides a characterization of the probability

distribution of the length of white spaces, the number of white

spaces per unit time, as well as the expected time between two

successive white spaces. Our results show that WiFi white

spaces provide ample opportunities for opportunistic M2M

transmissions under a wide range of operating conditions.

The rest of the paper is organized as follows. Section II

presents the based model for characterizing white spaces in

WiFi networks. Section III presents simulation results to verify

the proposed model. Finally, Section IV concludes the paper.

II. AN ANALYTIC MODEL FOR WIFI WHITE SPACES

We consider a WiFi network with n nodes and one access

point (AP). Given that the major fraction of traffic in most

networks is in the downlink (AP to nodes), we consider the

situation where the traffic flow at each node consists of streams

of packets from the Internet that are forwarded to them by the

AP. While the presence of uplink traffic affects the idle times,

the relatively low volume of uplink traffic makes their impact

quite small and is thus neglected. For each node, the packet

arrival process at the AP is modeled as a BMAP. BMAPs are

chosen as the arrival process because of their versatility and

ability to accurately model a wide range of processes including

voice, video and long range dependent traffic [7].
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White spaces correspond to times when the WiFi network

is idle. Idle times may occur due to two factors: when nodes

do not have any packets to send, or protocol related silent

periods such as backoffs, short interframe spaces (SIFS) and

distributed coordination function interframe spaces (DIFS).

Protocol related silent periods are of the order of tens of

micro-seconds and thus not long enough for opportunistic

M2M communications. Thus our model for white spaces only

considers the scenarios where the MAC layer queues are

empty. We characterize the network activity by modeling the

AP’s operation as a BMAP/G/1/K queue. The white spaces

in the WiFi network then correspond to the times when the

queue is empty. The model uses BMAP arrivals and a general

service time distribution h(t) (corresponding to the behavior

of the IEEE 802.11 MAC protocol) with mean Θ. K is the

buffer size at the AP and the model has a single server since

only one node may successfully transmit at any time.

A. Arrival Model

A BMAP is a continuous-time Markov chain whose under-

lying Markov process is irreducible and its infinitesimal gener-

ator is a m×m matrix D [8]. The sojourn time in each state is

exponentially distributed with parameter λi, λi ≥ −Dii. At the

end of each sojourn time, a transition occurs from current state

i to state j and that transition may or may not correspond to an

arrival epoch. With probability pi(0, j), 1 ≤ j ≤ m, j 6= i, the

transition to state j occurs without an arrival. With probability

pi(k, j), k ≥ 1, 1 ≤ j ≤ m, there is a transition to state j with

a batch arrival of size k. We have,

m
∑

j=1
j 6=i

pi(0, j) +

∞
∑

k=1

m
∑

j=1

pi(k, j) = 1. (1)

This system can be represented by a sequence of matrices

Dk, k ≥ 0, which are defined as

(D0)ii = −λi, 1 ≤ i ≤ m,

(D0)ij = λipi(0, j), 1 ≤ i, j ≤ m, j 6= i,

(Dk)ij = λipi(k, j), k ≥ 1, 1 ≤ i, j ≤ m,

with
∑∞

k=0 Dk = D. The stationary distribution of this

Markov process is denoted by π and is given by

πD = 0, πe = 1,

where e is an unit column vector of dimension m. The average

arrival rate λ for this process is given by,

λ = π
∞
∑

k=1

kDke. (2)

The matrix generating function of the BMAP arrival process

is given by

D(z) =

∞
∑

k=0

Dkz
k, for|z| ≤ 1. (3)

The arrival process for each node is modeled as an inde-

pendent BMAP with generator matrix D(i), 1 ≤ i ≤ n. The

aggregate arrival process at the AP is then the superposition

of the n BMAPs, which in turn is a BMAP. The generator

matrices for the resultant process are given by

Dk = D
(1)
k ⊕D

(2)
k ⊕ · · · ⊕D

(n)
k , ∀k = 0, 1, 2, · · · (4)

where ⊕ denotes the Kronecker-sum defined as

A⊕B = (A⊗ IB) + (IA ⊗B),

and ⊗ represents the Kronecker-product defined as

A⊗B =







a11B a12B · · · a1mB
...

...
. . .

...

an1B an2B · · · anmB






.

B. Service Time Distribution

To derive the service time distribution, consider a new

packet arrival at the AP destined for an arbitrary node i,
1 ≤ i ≤ n. At the instant of the packet’s arrival, the queue

may be either empty or non-empty, and we denote these as

state 0 and state 1, respectively. The service times for these

two cases are as follows.

State 0: When packets arrive at an empty queue, they move

to the head-of-the-line (HoL) immediately and the AP begins

the medium access procedure. After listening to the channel

for TDIFS corresponding to a DIFS, the AP transmits a

request-to-send (RTS) frame of duration TRTS . In response

to the RTS frame, the destination waits for a SIFS period,

TSIFS , and sends a clear-to-send (CTS) frame, of duration

TCTS . Once the CTS frame is received by the AP, it waits

for TSIFS and then transmits the data. The data rate used

depends on the estimated channel conditions. If the receiver

decodes the packet correctly, it sends an acknowledgment

(ACK), of duration TACK , after time TSIFS . Since there

are no collisions in our scenario, the service time in state

0 consists of constant terms except for the data transmission

time, TD, which depends on the packet size (with distribution

f(x)) and the data rate R. The Laplace-Stieltjes Transform

(LST) of the service time is then given by

H0(s) = LST [TDIFS + TCA + TD + TSIFS + TACK ]

= LST [TC + TD] = e−sTC + LST

[

f(x)

R

]

(5)

where TCA = TRTS+TCTS+2TSIFS is the time taken by the

RTS-CTS exchange and TC = TCA+TDIFS+TSIFS+TACK

denotes the total constant time in each transmission.

State 1: When a packet arrives at a non-empty queue, it first

has to wait for the packets already in the queue to be transmit-

ted, and its service time starts only when it moves to the HoL.

The service starts with a DIFS period and the AP then has to

undergo a random back-off (to prevent channel hogging). The

back-off timer is chosen as a uniformly distributed integer

between 0 and minimum contention window CW , denoted by

U [0, CW ]. The backoff time is then given by U [0, CW ]Tslot

where Tslot is the length of a backoff slot. Once the backoff

counter decrements to 0, the transmission process follows as

in state 0. The LST of the service time in state 1 is then

H1(s) = LST [U [0− CW ]Tslot + TC + TD]

= Tslot

1− e−sCW

sCW
+ e−TCs + LST

[

f(x)

R

]

. (6)
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Fig. 1. The distribution of duration of white spaces
(WS) for different traffic intensities.
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Fig. 2. P (WS ≥ 1ms) for different values of ρ.
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Fig. 3. Distribution of duration of white spaces for
different packet sizes with same arrival rates.

Overall service time H(s): Let p0 denote the steady state

probability that the queue is empty. The LST of the overall

service time is then given by

H(s) = p0H0(s) + (1− p0)H1(s)

= (1−p0)

[

Tslot

1−e−sCW

sCW

]

+

[

e−sTC+LST

[

f(x)

R

]]

.

(7)

The expected duration of the service time, Θ, is given by

Θ = −
d

ds
H(s)|s=0 . (8)

C. Duration of White Spaces

The cumulative distribution function (CDF) of the duration

of white spaces is denoted by FWS(t) = P (WS ≤ t), t ≥ 0.

To obtain this CDF, we define u∗(t, j|i) as the probability that

the queue’s idle period is less than t and the arrival process’s

phase at the start of the subsequent busy period is j, given

that the phase at the end of the preceding busy period was i:

u∗(t, j|i) = P (WS < t, j|i) ∀ i, j ∈ 1, 2, · · · ,m. (9)

Let U∗(t) denote a m×m matrix with elements u∗(t, j|i),
1 ≤ i, j ≤ m. The transform of U∗(t) is given by [9]:

U∗(s) = [sI −D(0)]−1(D(1)−D(0)) (10)

where I is a m×m identity matrix. From (3), we have, D(0) =
D0 and D(1)−D(0) = D1+D2+D3+ · · · . The transform in

(10) can be numerically inverted (e.g. following the procedure

in [10]) to obtain the conditional probabilities u∗(t, j|i). The

CDF of the duration of white spaces is then

P (WS < t) = U∗(t)eπ (11)

where e is an unit column vector. (11) shows that the duration

of white spaces does not depend on the service time distribu-

tion, or in turn, on packet lengths or the transmission rate.

D. Expected Duration of White Spaces

From (10), the expected duration of white spaces is given

by

E[U∗(t)] = (−1)
d(U∗(s))

ds

∣

∣

∣

∣

s=0

= ((−D0)
−1)2(D(1)−D0).

(12)

E[U∗(t)] represents a matrix of conditional expectations.

Unconditioning, we have

DWS = E[U∗(t)]eπ = ((−D0)
−1)2(D(1)−D0)eπ. (13)

In any time interval, the expected fraction of time that the

queue is idle is p0. Then, dividing p0 by E[WS] gives the

average number of white spaces in unit time, NWS . Thus

NWS =
p0

((−D0)−1)2(D(1)−D0)eπ
. (14)

E. Expected Length of Busy Periods

Another quantity of interest is the expected length of busy

periods which indicates the time between successive opportu-

nities for possible M2M communications. Since busy and idle

periods alternate, in any given interval of time, on an average,

the number of busy periods (NBP ) is equal to number of idle

periods, i.e.,

NBP = NWS (15)

The fraction of time the queue is busy in unit time is ρ =
1− p0. Also, in an unit of time, there are NBP busy periods.

Thus the average duration of a busy period, DBP , is given by

DBP =
1− p0
NWS

=

(

1

p0
− 1

)

((−D0)
−1)2(D(1)−D0)eπ.

(16)

F. Solving the BMAP/G/1/K Queue

One of the quantities required to determine the idle and

busy periods as described in the previous subsections is p0. To

obtain p0 for a BMAP/G/1/K queue, we use the following

procedure. For a given arrival process D, we first calculate its

stationary distribution π, and the overall arrival rate λ. Using

(8), the average service time is given by

Θ = −
d

ds
HS(s)

∣

∣

∣

∣

s=0

= (1− p0)Tslot

CW

2
+ Tc + E

[

f(x)

R

]

.

(17)

Let Tdata = E[f(x)/R]. Using ρ = λΘ, we also have

p0 = 1−λΘ = 1−λ((1− p0)Tslot

CW

2
+Tc+Tdata). (18)

Solving the equation above for p0, we have

p0 =
λ(TslotCW + 2(Tc + Tdata))− 2

λTslotCW − 2
. (19)
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Fig. 4. Average duration of white spaces for different
values of ρ.
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values of ρ.

III. SIMULATION RESULTS

This section presents simulation results, using the NS3

simulator, to verify the accuracy of the proposed model. We

consider a IEEE 802.11g network with one AP and four nodes,

reflecting typical home scenarios. The traffic destined for each

node is generated according to an independent, 2-state (m = 2)

BMAP whose parameters Dk, k = 0, 1, 2 are varied to obtain

different traffic intensities, ρ. Each simulation was run for 3600

seconds, and each result is averaged over 5 runs. The size

of each packet was 1400 bytes, and the other parameters are

R = 18 Mbps, TC = 94 µs, Tslot = 9 µs and K = 100.

The CDF of the duration of white spaces, for various values

of ρ, is shown in Fig. 1. As expected, white spaces of longer

duration occur more frequently when the network utilization

(or packet arrival rate) is lower. To evaluate the feasibility

of opportunistic M2M communications in these scenarios, we

consider the likelihood of white spaces greater than 1 ms (e.g.,

it takes 0.78 ms to transmit a 50 byte packet at 512 Kbps).

Figure 2 shows P (WS > 1 ms) as a function of ρ. It can

be seen that even at high loads of ρ = 0.9, 40% of the white

spaces are longer 1 ms.

The CDF of the duration of white spaces (given in (11))

is independent of the service time. This is shown in Fig. 3

which plots the CDF of the length of white spaces for two

different packet sizes. While changing the packet size changes

the service time and ρ, the distribution of white spaces does

not change. Figure 4 shows the average duration of white

space (DWS) for different traffic intensities. We note that

DWS decreases quickly with increasing traffic. Changing the

packet size does not change the average duration of white

space because the distribution itself remains unchanged.

Finally, in order for opportunistic M2M communications to

be feasible, there should be sufficient opportunities for them to

transmit. Figure 5 shows the average number of white spaces

per second as function of ρ. The number of idle periods per

unit time first increases as the network utilization increases,

before decreasing again. This is because when the load is low,

we have longer idle periods but the number of idle periods

is small. As the traffic load increases, the idle periods are

interrupted by frequent transmissions of data packets which

decreases the average duration of idle period, but the number

of idle periods increases. However, beyond a certain point,

an increase in the load results is long busy periods thereby

decreasing both the average duration and number of idle

periods. However, white spaces of sufficiently long duration

occur frequently enough to allow meaningful communications,

even at high loads. For example, when ρ = 0.9, the average

duration of a white space is 1.11ms and the average number

of white spaces per second is 60.

IV. CONCLUSION

This paper evaluates and demonstrates the feasibility of

opportunistic M2M communications in the ISM band, in the

presence of significant WiFi traffic. The WiFi network activity

is modeled as a BMAP/G/1/K queue and expressions for the

distribution of white spaces, average duration of white spaces

and average number of white spaces per second are evaluated.
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