Synthetic Time-series Data Generation with 3D
Convolution for EV Systems

Xudong Hu*

Electrical and Computer Engineering
National University of Singapore
Singapore
€0459193 @u.nus.edu

Abstract—As electric vehicles (EVs) gain widespread accep-
tance for sustainable transportation, robust testing and validation
for related technologies are becoming difficult due to challenges
in acquiring real-world data due to limited availability, high
costs, and privacy concerns. To address this issue, this paper
introduces the 3D-time-series Generative Adversarial Network
(BDTS GAN) to generate high-resolution, multivariate synthetic
driving data for EV systems. Integrating Auto-encoder and GAN
structures, the proposed method addresses the shortcomings of
existing data generation methods, offering a more comprehensive
representation of driving data. Evaluation results show that this
method is able to generate synthetic data that is similar to original
driving data with higher similarity scores than those attained
using existing methods. Moreover, a functional check is done
to demonstrate that there is no significant difference between
using the original driving data and the synthetic data to perform
further tasks such as energy consumption prediction.

Index Terms—Electrical Vehicle, 3D Convolution, Synthetic
Data, Time series data, Energy Consumption prediction

I. INTRODUCTION

With the wide and rapid adoption of electric vehicles (EVs)
towards sustainable transportation, the need for robust testing
and validation processes is becoming increasingly paramount.
However, acquiring real-world data for electric vehicles poses
significant challenges due to factors such as limited avail-
ability, high cost, and privacy concerns. In response to these
problems, the utilization of synthetic data has emerged as a
promising solution to augment and expedite the development,
testing, and validation of EV systems. Synthetic data is the
artificial data generated from real-world data and shares the
same characteristics and structure of the original data. Thus,
a given analysis method performed on synthetic data and
original data would provide similar results [1]. Synthetic data
can replicate real-world scenarios, providing a versatile and
scalable alternative to traditional data collection methods. By
publishing synthetic data, there is no privacy concern as the
original confidential data is under protection. Even when there
is data breach of the synthetic data, driver’s private information
is not leaked.

However, existing data generation methods have less con-
siderations on the time-series characteristics of the data. For
example, there are more data corresponding to the whole
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trip and the data are spread over a longer period of time.
Common methods only concentrate on short periods of time,
while the information and inter-connection between data that
are distributed far from each other is not well captured and
thus, the generated synthetic data does not fully represent
the characteristics of original data. Moreover, the generated
synthetic data are usually univariate that only refers to one
type of data. A more utilizable group of synthetic driving data
should contain more types of information like environmental
and traffic conditions, road type, vehicle motor performance,
temperature, driving distance, speed, acceleration, battery re-
charging ability etc.

To address these problems, the 3D-time-series Generative
Adversarial Network (3DTS GAN) is proposed to generate
synthetic data in time-series format. This method can handle
multivariate data at high resolution (i.e., per-second data).
The synthetic data can be further used for EV system testing
and validation like energy consumption prediction task. The
proposed method combines the structure of Auto-encoder and
typical GAN. The 3D convolution process helps to examine
and store time-series features by considering time as the third
axis. By feeding input of random Gaussian noise, the model
produces synthetic data which contains a total of 35 features
like the speed, acceleration, temperature, power consumption
etc. Evaluation results show that our proposed method can
generate driving data that are similar to original data with
tiny differences while maintaining the utility of the data for
further prediction and testing tasks. The main contributions of
our work are as follows:

e« We propose the 3DTS GAN to generate multivariate
synthetic data in time-series format to overcome the
scarcity and privacy issues of driving data.

o We compare the proposed technique with existing meth-
ods and results show that our model performs better at
generating data that is similar to the original data.

o We examine the generated synthetic data in terms of its
ability to perform energy consumption prediction and the
accuracy is comparable to the results when using original
data.

The rest of the paper is organized as follows. Section II is
the literature review of related works. Section III describes the



details of proposed model to generate synthetic data. Section
IV discusses the evaluation results. Section V presents the
concluding remarks of our work.

II. RELATED WORKS

The field of synthetic data generation has witnessed signifi-
cant advances in recent years, characterized by a diverse array
of methodologies spanning statistical and neural network-
based approaches. These methods have been applied across
various domains, each presenting unique strengths and chal-
lenges.

Statistical methods traditionally rely on analyzing linear
correlations within data, employing mathematical equations to
model these interconnections. For instance, the work presented
in [2] focuses on generating data for EV charging sessions,
while another study employs Markov chain approaches for
evaluating battery pack state of health [3]. While those models
offer straightforward extrapolation within linear space, they
often fall short in capturing the complexity and diversity of
data types. In [4], statistical characteristics were analyzed
to simulate EV load profiles, yet, these models often lack
transferability and scalability to different evaluation scenarios.
Bayesian Networks (BNs), as probabilistic graphical models,
leverage prior probabilities for data generation. The work
in [5] demonstrates their effectiveness in scenarios where
intrinsic correlations between features are pivotal. However,
the reliance on prior probabilities can sometimes constrain
their applicability to a narrower range of use cases.

Neural network methods, particularly various forms of
GANSs, have emerged as potent tools for capturing non-linear
correlations within data. Studies by [6], [7] utilize conventional
GAN architectures to enhance prediction accuracy in EV
demands and charging load curves. These models adeptly
uncover hidden patterns without necessitating an in-depth
exploration of time-series characteristics inherent in the data.
Furthermore, a specialized time-series GAN [8] incorporates
self-attention mechanisms, enabling it to learn internal time-
series properties, albeit with the limitation of handling only
single-variant data. The CycleGAN framework has emerged
as a pivotal technique in synthetic data generation, particularly
noted for its proficiency in handling unpaired data. This
attribute is especially advantageous in scenarios where one-
to-one data correspondences are absent [9]. Nonetheless, Cy-
cleGAN’s reliance on an ancillary data set potentially curtails
the quantity of synthetic samples produced, especially when
alterations to this secondary dataset are constrained. In par-
allel, Wasserstein Generative Adversarial Network (WGAN)
[10] have gained prominence, primarily owing to their incorpo-
ration of the Wasserstein distance, which has been instrumen-
tal in enhancing training convergence. Despite its strengths,
the WGAN architecture demands significant computational
resources. Additionally, its inclination towards generating a
broader range of diverse samples, as a strategy to mitigate
mode collapse, may inadvertently compromise the fidelity
of the generated data in terms of its resemblance to the
original dataset. This trade-off between diversity and similarity

is a critical aspect that needs careful consideration in the
application of WGANSs for synthetic data generation.

In summary, the landscape of synthetic data generation is
rich and evolving, with each method offering specific advan-
tages and limitations. Statistical methods excel in scenarios
with linear correlations and simpler data structures, while
neural network approaches, particularly GANs, are more adept
at handling complex, non-linear relationships and diverse data
types. The choice of method ultimately hinges on the specific
requirements of the application domain and the nature of the
data at hand.

III. METHODOLOGY
A. Dataset

In our endeavor to replicate the diverse driving behaviors
prevalent in real-life scenarios, we utilized an open-source
tool (emobpy) for electric vehicle (EV) driving simulations,
as detailed in [11]. This tool is particularly proficient in
generating granular energy consumption data at a resolution of
one second, allowing for an intricate depiction of driving dy-
namics. We tailored the simulation parameters, encompassing
a range of driver categories and travel habits, to realistically
model the driving behaviors for each journey. Table I presents
the specific configuration settings employed for this purpose.

The simulation resulted in a comprehensive dataset, amount-
ing to 5,000 minutes of driving activity. This equates to an
extensive collection of 330,000 individual data records. Of
these, 300,000 records were allocated for the creation of
synthetic data, while the remaining 30,000 were reserved for
functional testing, as elaborated in Section III-D. Each data
entry encompasses 35 features, each intricately linked to spe-
cific driving conditions, such as immediate power usage, road
type, vehicle speed, and passenger count. This compilation of
data culminates in a dataset structured as 300,000 x 35.

The final preparatory phase involves normalizing the dataset
using a min-max scaling approach. This process was crucial
to standardize the range of feature values and ensure a bal-
anced weighting across different features. The scaling formula
employed can be articulated as follows:

7= (fi = max(F)) + (fi — min(F))
! maz(F) — min(F)

)

This approach to data simulation and preparation was instru-
mental in forging a dataset that not only reflects the complexity
of real-world driving scenarios but also provides a robust
foundation for subsequent analyses.

B. Time-series Data

Inspired by the approach established in [12], this study
employs Gramian Angular Fields (GAF) as the preferred
method for data encoding, aiming to augment the inter-feature
correlations. Following the normalization of the features, a
vector is composed using features from identical timestamps.
This vector is then transformed into a polar coordinate system,
defined as follows:



TABLE I: Driving behavior setting for each trip

Condition Full-time commuters Part-time commuters Non-commuters
Weekday [ Weekend Weekday [ Weekend Weekday | Weekend
Category probability 0.4 0.3 0.3
Trip to work At least 1 | Based on need | Atleast 1 | Based on need N.A. N.A.
Minimum time at workplace 7 3 35 3 N.A. N.A.
Maximum Time at workplace 8 4 4 4 N.A. N.A.
Minimum state duration at workplace 35 3 3.5 3 N.A. N.A.
Minimum state duration except for workplace 0.25 0.25 0.25 0.25 0.25 0.25
~ ~ -~ Recovery_loss (Lr)
{d) =arccos(f;), -1 < fi <1,fi € Fy 2
r=7%,8€D
5=
In this context, s; denotes the positional aspect of each * §
feature, while D signifies the radial distance within the polar 3
coordinate framework. The formulation of the GAF matrix is Encoder(enc) il % Decoder(dec)
achieved through the computation of the inner product of the N
features, which is detailed as follows:
- —' — Similarity_loss (Lh) —
F-F—\/I—F2~\/I—F2. 3) 2T
gg
Here, I represents the unit vector. Consequently, this approach 8
yields an N x N square matrix, where N denotes the total | Generator(gen) 1 Discriminator(d)
number of features. This matrix effectively encapsulates the g
temporal interrelations among the selected features, providing "
a comprehensive representation of their dynamics.

To form the time-series data representation that captures
the inter-correlation between time-stamps, we construct a 3D
matrix where the third dimension is filled with timestamp
expansion of 30 seconds. With the help of 3D convolution
operation, the network can learn from the correlation between
features and time together. Thus, the 300,000 x 35 data
has been divided and encoded into 10,000 individual 3D
matrix of shape of 30 x 35 x 35 for network training. Each
3D matrix represents a time-series data block spanning 30
seconds, encompassing 35 encoded features.

C. Proposed Method

In this Section I, we introduce a novel 3D-time-series
Generative Adversarial Network framework, tailored for the
generation of synthetic data. This model is architecturally
composed of an encoder, a decoder, a generator, and a dis-
criminator, as illustrated in Figure 1. The training process
is demarcated by a blue arrow, where the training data X,
characterized by the dimensions of 30 x 35 x 35, is fed into the
encoder to yield the latent representations Hx. The decoder,
upon receiving Hy, reconstructs data X’ to approximate the
original input X. The discrepancy between X and X' gives
rise to the recovery loss (L,.), quantified as:

Ly =Ex/ x[[| X — X'[|,). )

Simultaneously, a randomly generated noise vector V, of
length 100, is introduced to the generator to synthesize analo-

Discriminator_loss (Ld)
Synthetic_loss (Ls)

Fig. 1: 3DTS GAN Architecture. Training process is marked
with blue arrow; Synthetic data generation process is marked
with red arrow.

gous latent representations Hy . The divergence between H x
and Hy contributes to the similarity loss (Lyp):

Subsequently, both latent representations are classified by the
discriminator to ascertain their authenticity, leading to the
discriminator loss (Lg):

Lq =log(Yx) +log(1 = Yv). (6)

Here, Yx denotes the discriminator’s output for the real latent
representations, while Yy signifies the discriminator’s output
for the synthetic counterparts. As the objective is to align Hy
closely with Hx, a synthetic loss (L) is introduced to gauge
their disparity:

Ls =log(l—Yy). @)

The backpropagation phase is unique in that the encoder and
generator also incorporate the loss from the latent representa-



tion disparities. Thus, the aggregate loss for each component
is summarized as:
Decoder loss = L,
Discriminator loss = Ly
FEncoder loss = A - L, + L,
Generator loss = Ay - Ly, + L,

®)

where A4 and ). represent the impact factors for the generator
and encoder, respectively, emphasizing the importance of
aligning the latent representations.

The synthetic data generation process, indicated by a red
arrow, simply involves passing the noise vector V' through the
generator and decoder to yield the synthetic data Xy . This
process even accommodates oversampling requirements.

D. Evaluation

To verify if the generated synthetic data is close to original
data and can provide learning insights for a neural network
in training session, we conduct both statistical measurements
and functional checks. Statistical assessments include cosine
similarity, Euclidean distance, and Jensen—Shannon distance.
Given that the synthetic data generation does not adhere to a
one-to-one mapping, it is imperative for the generated points
to feasibly reside within the original dataset’s domain. Cosine
similarity assesses the alignment between points by measuring
the angle between them, effectively determining if they are
oriented in the same direction. In contrast, Euclidean distance
quantifies the shortest path between two points, thus evaluating
if they are close to each other. Conversely, the Jensen—Shannon
distance treats each point as a distinct distribution, enabling
an evaluation of their resemblance. Employing these three
metrics together facilitates the identification of the nearest
corresponding point within the original dataset.

L L] R

Input 30X33X33 3D filter(3X5X5) 3D filter(3X3X3) 3D filter(3x3X3) 3D filter(3X3X3)

Output size: 30

M 30 filter with maxpooling  [] Feed forward with leakyRelu

Fig. 2: 3D convolutional predictive model for time-series
energy consumption prediction.

For a functional evaluation, we compare the utility of both
the original and synthetic datasets in consumption prediction
tasks, focusing on their performance and robustness. With a
dataset dimensioned at 300, 000 x 35 data, we designate instant
and average power consumption as prediction targets, utilizing
the remaining 33 features as inputs. The architecture of the
consumption prediction model is depicted in Figure 2. We
employ the Mean Absolute Percentage Error (MAPE) as the
accuracy metric, calculated as:

1~ Y- Y,
MAPE Loss =~y |-
058 = — ; Y, )

Here, Y; and Y; represent the predictive output and actual con-
sumption for the ¢-th second, respectively. This metric offers
a relative and balanced evaluation of prediction accuracy.

To assess model robustness, we implement a white-box Fast
Gradient Sign Method (FGSM) as an adversarial challenge.
FGSM alters inputs to deviate the model’s predictions. Finally,
we extend this evaluative approach to include comparisons
with WGAN-GP and CycleGAN, popular alternatives in syn-
thetic data generation, to provide a comprehensive perspective.

IV. RESULTS

The proposed 3DTS GAN is trained as explained in the
previous section. Figure 3 and Figure 4 show the training
losses of all components. Figure 3(a) is the loss for the encoder
and Figure 3(b) is the loss for the decoder. The figures show
that the encoder and decoder have converged to learn the
structure and patterns of input and the recovered data is closer
to the input data. As for the generator and the discriminator,
their training losses are plotted in Figure 4. The blue line
is the loss of each component and the orange line is the
changing trend. We can see there are oscillations of the loss for
generator around 5 and loss for discriminator around 1. This
is because the overall training process is like a battle between
the generator and the discriminator where the generator tries
to generate data to fool the discriminator and the discriminator
tries to differentiate the real and fake data. Nevertheless, from
the trend line of the changes in Figure 4(a) and Figure 4(b),
both generator and discriminator have converged with small
error.

A. Synthetic Time-series Data

Table II summarises the comparison of similarity scores
of generated synthetic data from our proposed method and
existing methods. The best performance metrics are made bold
for each column. It is obvious to see that our method has
generated the synthetic data that are most similar to original
data for all the metrics. For cosine similarity, larger value

Encoder
6
747
(@) 3
2_
0 25 50 75 100 125 150 175 200
Decoder
5
4]
23]
(b) 3
2_
1

T T T T T
0 25 50 75 100 125 150 175 200
Epoch

Fig. 3: Training performance for encoder and decoder.



TABLE II: Similarity scores between real and synthetic data using different methods

Method

Cosine Similarity

Euclidean Distance

JS Distance

Mean Min Max

Mean Min

Max

Mean Min Max

Ours 0.979 | 0977 | 0.981 | 2.705

2.613 | 2.812 | 0.335 | 0.193 | 0.520

WGAN-GP | 0.944 | 0.898 | 0.969 | 4.681

3.537 | 6.770 | 0.354 | 0.211 | 0.576

CycleGan 0.802 | 0.796 | 0.805 | 7.555

6.950 | 9.619 | 0.449 | 0.342 | 0.572
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Fig. 4: Training performance for generator and discriminator.

means better. Our method obtains a mean value of 0.979, the
minimum value of 0.977 and the maximum value of 0.981.
The method using WGAN-GP has slightly smaller values than
our method but the method using CycleGAN has much worse
results. For the Euclidean distance (the smaller the better),
our method also obtains the smallest values: 2.705 for mean
value, 2.812 for minimum value and 2.613 for maximum
value. Both WGAN-GP and CycleGAN generate data that
have larger Euclidean distance than our method. Similarly, our
method achieves the smallest values for the JS distance (the
smaller the better). The mean value is 0.335, the minimum
value is 0.193 and the maximum value is 0.52. It can also
been seen that the WGAN-GP method has very similar results
to ours. From this comparison, we can conclude that the
proposed method generates data that is closest to the original
data, in terms of both of the magnitudes and the distribution
characteristics. The WGAN-GP and CycleGAN methods have
advantage in handling the spatial relationships of adjacent
pixels. The models are inclined to overlook the nuances and
correlations inherent in distant data points. Consequently, their
effectiveness may diminish when applied to complex time-
series datasets.

TABLE III: Prediction MAPE using different data

Data No attack | Under FGSM attack
Original 6.62 67.64
Ours 7.69 36.41
WGAN-GP 10.69 16.53
CycleGAN 27.94 31.52

B. Functionality Evaluation

As stated previously, the synthetic data generated from
our method and other GAN methods are used to perform
the same EV energy consumption prediction task. This is to
confirm that the synthetic data can produce similar energy
consumption prediction results as to make prediction using
original data. Moreover, a typical FGSM attack is conducted
against the prediction task to examine the performance under
adversarial attack. Table III is the result of prediction MAPE
using different sets of data. The benchmark is the MAPE
score when using the original dataset to train prediction model.
The prediction MAPE is 6.62% when the model is clean and
this values increases to 67.64% when FGSM attack is carried
out on the model. This shows that the original driving data
can train a prediction model with small difference but the
model is vulnerable to adversarial attacks and the prediction
error increases significantly in the presence of an attack.
When training the prediction model using the synthetic data
generated from our method, the normal MAPE is 7.69% which
is only slightly larger than that of the original data. This
shows our method can generate synthetic data that has similar
functionality as original data. Under the FGSM attack setting,
the prediction MAPE of the model increases to 36.41%. This
value is much smaller than that of the original data. This
can be explained because when using our method to generate
the synthetic data, we are not making identical copies of
original data and the synthetic data can be thought of as the
original data with noise. This introduction of noise to the
original data leads the trained model to be more robust to
changes in the input data. Although the attack increases the

Relation between cosine similarity and MAPE
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Fig. 5: Relationship between the cosine similarity score and
MAPE.



prediction error, this error is much smaller than that of the
original trained model. As a comparison, the prediction MAPE
of model trained using WGAN-GP generated synthetic data
is 10.69% under normal case and is 16.54% when there is
FGSM attack. The normal MAPE is larger than using data
from our synthetic data, but the error is smaller than ours
when there is FGSM attack. This is as expected because
from the previous similarity score we can observer that the
synthetic data generated using WGAN-GP method is not
that close to original data. Therefore, when predicting the
power consumption, the MAPE is larger. However, since the
difference between the synthetic data and original data is
large, it is more robust to the FGSM attack and the error just
increases by about 6%. The model trained with CycleGAN
generated data has normal prediction MAPE of 27.94% and
a value of 31.52% when under FGSM attack. This model
has slightly smaller MAPE than ours under FGSM attack,
but much larger MAPE than ours under normal scenarios.
However, the model trained using our 3DTS GAN generated
data can achieve much higher cosine similarity score. This
result also follows the rules we have discussed above.

Figure 5 illustrates the relationship between the cosine
similarity score and the MAPE of the prediction model.The
yellow markers are the results using original data. The green
markers are the results obtained from our 3DTS GAN, the blue
markers are from the WGAN-GP, and the red markers are from
CycleGAN. At the same time, the circle marker represents the
normal case and triangle marker represents the FGSM case.
We can see there is a trade-off between data similarity and
the resilience against FGSM attack. The original data has the
largest changes in MAPE when encountering FGSM attack.
The CycleGAN generated data is the most unlike to original
data but it has the smallest changes in MAPE under FGSM
attack.

V. CONCLUSION

This paper discusses an exploration of synthetic data gener-
ation for electric vehicle applications, leveraging the emobpy
simulator to procure high-resolution driving data. The primary
objective is to generate a synthetic counterpart of the driving
data that not only upholds the security and privacy standards,
but also preserves the intrinsic insights and functionalities of
the original dataset.

We introduced an innovative 3DTS GAN architecture, adept
at handling multi-variant time-series data. This model excels
in capturing the intricate interplay between various features
and their temporal dynamics. Our findings indicate that the
synthetically generated driving data maintain statistical coher-
ence with the original dataset and exhibit superior performance
when bench-marked against implementations like CycleGAN
and WGAN-GP. Notably, the synthetic data also demonstrates
commendable efficacy in predicting energy consumption, as
gauged by the MAPE, thereby reinforcing its functional rele-
vance.

Moreover, the robustness analysis results shows that predic-
tive models trained with this synthetic data showcase enhanced

resilience to adversarial attacks, thereby enhancing model
security. This aspect is particularly significant, highlighting an
additional layer of protection.
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