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Abstract—Energy harvesting is one of the promising solutions
to the problem of limited battery capacity in many wireless
devices. This paper addresses the problem of system design
of energy harvesting capable wireless devices in terms of the
required sizes for energy and data buffers, as well as the size of
the harvester, for given delay and loss requirements. We analyze
the performance of an energy harvesting node, considering a
stochastic model that takes into account energy harvesting and
event arrival processes. We derive closed-form expressions for
the probability of event loss and the average queueing delay. Our
event-driven continuous time simulations validate our analytical
results. Employing these results, we provide a near-optimal
approach to the design of the system in terms of sizing the
energy harvesting device, the energy storage, and the event queue
capacity.

Index Terms—Energy harvesting, wireless sensor networks,
rechargeable sensors, probability of loss, average delay.

I. INTRODUCTION

THE popularity of small, battery operated wireless nodes,
particularly wireless sensor nodes [1], has focused the

attention of the research community on the issue of scarcity
of energy. The problem arises from the desire for the wireless
sensor nodes to be untethered and small, while having long
operational lifetime [2]. The current and projected available
energy density promised by the battery technology is not
adequate to satisfy all these desirables at the same time
[3]. Although a plethora of energy-efficient communication
methods and protocols have been developed, e.g. [4]–[6], the
problem is still far from being solved.

Energy harvesting, where the nodes harvest energy from am-
bient sources such as light, wind, water flow or human motion,
is an attractive solution to the energy problem [7]. However,
the majority of harvestable energy sources are stochastic in
nature. Consequently, stochastic models and analysis must be
used to study the performance of energy harvesting communi-
cation systems and to design new techniques that consider
randomness of the energy source while optimizing system
performance.

Recent attention to this subject has led to the development of
a growing body of work. These works consider joint power and
resource management problems ranging from source-channel
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coding [8], [9], to node activation [10], [11], to scheduling and
routing [12]–[15], to energy management [16]–[19]. However,
little attention has been paid to the design of an energy
harvesting node in terms of determining the required energy
storage capacity, event queue capacity, and size of the energy
harvesting device.

A. Related Work

In this section we briefly review the existing work that
have considered some aspects of the design problem. A power
management scheme and an approach to the design of energy
storage capacity are developed in [20]. In this work, a day is
decomposed into many time slots. It is assumed that in each
time slot, the harvesting power and the consumed power are
constant and known. In [21], a scheduling scheme for power
consumption is developed assuming a deterministic energy
arrival process. The goal is to avoid empty or overflowing
energy storage. With similar assumptions, i.e. deterministic
harvested energy and consumed energy, [22] maximizes the
amount of data transmitted by a deadline. In practice, however,
the majority of ambient energy sources exploited for energy
harvesting, as well as the energy consumption at the load
are unpredictable and random in nature. Thus, one needs to
consider the stochastic variations of these energy processes
in order to develop more realistic performance characteristics
and design approaches.

The work in [23] takes a step in this direction. The authors
model energy harvesting and energy consumption as two inde-
pendent bounded random processes. Given the minima and the
maxima of the harvested energy and the energy consumption
processes, a power management scheme is provided to ensure
that the energy harvesting sensor node never runs out of energy
[24]. However, in general the minima and the maxima do
not adequately describe the stochastic nature of the energy
harvesting or consumption processes. Moreover, the design
goal of strictly guaranteeing a non-empty energy storage is
only possible if the stochastic model is bounded, and often
leads to a significant over-design of the system. It would
be much more efficient to allow event loss and delay, with
carefully set tolerance limits.

In [25], the authors take an empirical approach to design
energy harvesting sensor nodes, in which the capacity of
energy storages and the capability of harvesting devices are
chosen based on the historical record of harvesting power [26]
and predefined power consumption characteristics. Although
the design approach does consider the actual variations of
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the energy harvesting process, it is time-consuming, highly
dependent on the particular data set, and does not provide
any insight into the effects of different parameters on the
performance.

B. Our contribution

In this paper, we analyze the performance of an energy
harvesting node in terms of the probability of event loss and
the average event queueing delay, in terms of the parameters
of the energy harvesting and event arrival stochastic processes,
and the parameters of the system, namely the size of the energy
harvester (which affects the rate at which the device harvests
energy) and the capacities of the event queue and the energy
storage device. To this end, we employ a Markov model that
unifies models of the energy process, the event arrival process,
the energy storage and the queueing of events. We then use
the derived closed-form expressions for the probability of
event loss and the average delay to provide a near-optimal
system design, in terms of sizing the energy storage, the queue
capacity and the energy harvesting devices, given the tolerable
levels of loss and delay.

Compared to our previous work in [27], the model and the
analysis are generalized to remove the limiting assumptions
on the system parameters. Moreover, the system set up has
been extended to include the queueing of events. The analysis
of average delay and the design methodology, given tolerable
performance metrics, have also been added. Our simulations
have also been updated to consider random channel access and
the time it takes to process one event.

The remainder of the paper is organized as follows. Section
II describes the system model. Sections III and IV provide the
analysis of the probability of event loss and the average delay,
respectively. Section V uses these results to perform a near-
optimal design of the system parameters. Section VI presents
the simulation results. Section VII concludes the paper. For
readers’ convenience, Table I lists the variables used, except
for auxiliary variables and indices.

II. MARKOVIAN MODEL FOR ENERGY HARVESTING NODES

A. Model Assumptions

To model the behavior of an energy harvesting node, one
needs to consider both energy harvesting and event arrival
processes. A very popular model for the event arrival is the
Poisson process. In other words, the event arrival process
is often assumed to be Markovian. Many researchers also
assume a Markovian model for analytical studies of the energy
process [28]–[30]. Although particular sources may not be
Markovian, the Markovian assumption provides a first order
approximation in terms of the time dependence of the energy
process, while maintaining mathematical tractability. Here we
provide a unified Markov model for an energy harvesting
node that describes the energy harvesting process, the energy
consumption process, the amount of energy stored in the node
and the queueing of events.

TABLE I: Variables used

Variable Equals Description Unit

ρ Harvesting power in active state W

E Energy consumed by one event J

T Time unit used in discretization s

k E
ρT

Number of time units required to
harvest energy for one event

-

B Energy storage capacity J

N B
E

Energy storage capacity events

L Queue capacity events

µa Rate of transition from active to
inactive state

Hz

µi Rate of transition from inactive to
active state

Hz

µe Rate of event arrival Hz

η µiρ
(µi+µa)µeE

Ratio of average harvestable
power to the average required
power

-

r ≈ µaT Transition probability from active
to inactive state

-

w ≈ µiT Transition probability from inac-
tive to active state

-

p ≈ µeT Probability of event arrival in one
time unit

-

P [pi,j ] Transition probability matrix for
the original Markov chain

-

π [πi] Steady state probability distribu-
tion for the original Markov chain

-

Q [qi,j ] Transition probability matrix for
the approximate Markov chain

-

π̃ [π̃i] Steady state probability distribu-
tion for the approximate Markov
chain

-

Pk Probability of event loss (with k
discretization)

-

P̃k Approximate probability of event
loss (with k discretization)

-

P̃ lim
k→∞

P̃k Approximate probability of event
loss

-

D̃ Approximate average event delay s

Pt Tolerable probability of event
loss

-

Dt Tolerable average event delay s

α Unit cost per energy storage unit $/event

β Unit cost per queue unit $/event

γ Unit cost per harvesting device $/W

C Total cost of an energy harvesting
node

$

Tidle Average channel idle time s

Tbusy Average channel busy time s

1) Harvesting Process: We assume a two-state1 harvesting
source (active and inactive). The node collects energy at rate

1Although some literature assume multiple states for the harvesting process
(e.g. [28]), this approach results in a large number of overall states, which
renders the analysis intractable. Hence, we limit ourselves to two states, which
is a common assumption in the literature [31]. The two-state energy model is
a good approximation for describing many harvesting sources. For example,
harvesting from human motion in a body area network where the subject is
either in rest or moving states, or solar harvesting where the harvester may be
shaded/cloudy or clear. Extension of our model and approach to a multi-state
source is straightforward, though tedious.
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(power) ρ in the active state and does not collect any energy
in the inactive state. Following the Markovian assumption, we
model the time durations for which the source stays in active
and inactive states with independent exponential distributions
with parameters µa and µi, respectively. The harvested energy
is stored in an energy storage device (i.e. rechargeable battery
or a super-capacitor), with capacity B. Any inefficiency in the
charge and discharge process can be absorbed in the energy
consumption model. Another imperfection of the storage de-
vices can be energy leakage. While some works (e.g. [17])
do take this into account, here we assume that the energy
storage device is perfect in terms of leakage, as it is commonly
assumed in the literature [28]–[32]. In most cases, this is a
reasonable assumption, since the leakage is only a secondary
effect.

2) Event Arrival Process: We abstract the energy con-
sumption process into events which include data transmission,
as well as sensing and signal processing. We also assume
that the inter-arrival times of the events are independent
and exponentially distributed with parameter µe. We further
assume that there are no batch arrivals, which is a reasonable
assumption for sensor networks. Arrived events enter a queue
with capacity to store L events, and are served on a first-come-
first-serve basis. If an event finds the queue to be full upon its
arrival, it will be lost.

Events in sensor network correspond to measurements,
observations, and data collected with reference to the ap-
plication of interest. In typical scenarios such as environ-
mental monitoring, surveillance, target tracking etc., the data
generated in response to an event (i.e. an instance of a
measurement/monitoring etc.) is fixed and the computations
and operations required to gather and process the data at the
sensor are also fixed [33], [34]. Thus we assume that each each
event generates a constant amount of data to be transmitted,
and consumes a fixed amount of energy.

3) Event Processing: An event is processed when sufficient
energy is available, consuming energy E. We assume that
the energy storage device capacity, B, is sufficient for N
events, i.e. B = NE. In our analytical approach we assume
that the energy for processing an event is instantaneously
removed from the energy storage device, as soon as there
is sufficient energy. Of course, in reality processing of one
event takes a finite amount of time, which is dominated by the
transmission time. However, this transmission time, typically,
is considerably smaller than the time required for harvesting
sufficient energy for one event. For example, a MICAz mote
requires 4.73mJ for transmitting a 132B packet (see Section
VI) and thus requires 2.37 seconds for a solar energy harvester
with a conversion rate of 2mW to generate sufficient energy
for transmitting one packet. On the other hand, protocols such
as IEEE 802.11 and IEEE 802.15.4 require only few tens of
milliseconds for channel access even under saturated traffic
conditions for moderate network sizes [35], [36]. Therefore,
this assumption does not result in a noticeable deviation in the
results.

The assumption that an event is served as soon as sufficient
energy is available, implicitly assumes that the node is always
able to access the channel. This also is not a bad assumption

for wireless sensor networks, which are often energy con-
strained, but are not expected to be bandwidth constrained.
In Section VI, we compare our analytical results to those of
simulations incorporating stochastic channel access to examine
the acceptability of this assumption, as the channel access
becomes more difficult.

B. Discretized Model

We approach the analysis of the described continuous-
time Markov model above, through discretization. We first
discretize the time with a time unit T . This reduces our model
to a discrete-time Markov model, which we analyze. Once the
expressions for the desired performance metrics are at hand,
we will consider them at the limit T → 0. In other words,
we obtain the performance of the continuous-time system by
making the discretization steps infinitely small.

If T is sufficiently small, we have µaT, µiT � 1, with
high probability. Consequently, the transition between the two
harvesting states happens at most once during T . We denote
the transition probability from active to inactive and vice versa
within one time unit by r = µaTe

−µaT ≈ µaT and w =
µiTe

−µiT ≈ µiT , respectively. Similarly, if µeT � 1, no
more than one event arrives during T and the probability of
an event arriving in T is p = µeTe

−µeT ≈ µeT .
Define k = E/(ρT ). This means that the node needs to

stay in the active state for k time slots to harvest sufficient
energy for one event. Thus, the capacity of the energy storage
device is B = NkρT . In other words, the storage device has
the capacity of holding Nk units of energy, where a unit of
energy is defined as ρT = E/k. Also note that given ρ and
E, the limits T → 0 and k →∞ are equivalent.

The overall state of an energy harvesting node is deter-
mined by the remaining energy in the storage, the number
of events in the queue and the harvesting state. Since events
are processed as soon as sufficient energy is available, the
queue length will be non-zero only if the stored energy is
less than E. Similarly, the amount of stored energy will
be no less than E, only if the queue is empty. With these
two observations, we can consider an event waiting in the
queue as negative energy stored (or energy owed). Therefore,
a Markov chain with its states depicted in two dimensions
(one for harvesting state and one for energy stored and queue
length) is appropriate for describing a harvesting node (see
Fig. 1 for an example with k = 3). In other words, the state
space is {(m, s)|m ∈ {−kL, · · · , kN} and s ∈ {0, 1}}. Index
m represents the stored energy2. In other words, the amount
of stored energy and the number of events in the queue are
given by

E(m) =

{
m
k E m ≥ 0
(mk + d−mk e)E m < 0

and

Q(m) =

{
0 m ≥ 0
d−mk e m < 0

,

2From here on, unless otherwise stated, we use the generalized notion of
energy (possibly negative) to describe the remaining actual energy and the
queue length.
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Fig. 1: Markov model of energy-harvesting sensors with a queue (k = 3).

respectively. Inactive and active harvesting states are indexed
with s = 0 and s = 1, respectively. Although this indexing
is more descriptive, we need to re-index the states by i =
2(m+ kL) + s for vector and matrix notation.

Let P = [pi,j ] be the transition matrix of the Markov chain,
where pi,j is the transition probability from the state i to the
state j. We note the following transitions: (i) if a node is active,
it will remain active with probability 1 − r and will become
inactive with probability r; (ii) if a node is inactive, it will
remain inactive with probability 1−w and will become active
with probability w; (iii) the node gains one energy unit if it is
active, unless the storage is full; (iv) the node loses k energy
units with probability p, unless no new events occur or the
queue is full. To summarize, we have the following transition
probabilities: For inactive states we have

pi<2k,j =

 1− w j = i
w j = i+ 1
0 otherwise

(1)

and

pi≥2k,j =


(1− w)(1− p) j = i
(1− w)p j = i− 2k
w(1− p) j = i+ 1
wp j = i− 2k + 1
0 otherwise

(2)

and for active states we have

pi<2k−1,j =

 1− r j = i+ 2
r j = i+ 1
0 otherwise

, (3)

p2k−1≤i≤2k(N+L),j =


(1− r)p j = i− 2k + 2
(1− r)(1− p) j = i+ 2
rp j = i− 2k + 1
r(1− p) j = i+ 1
0 otherwise

(4)
and

pi=2k(N+L)+1,j =


(1− r)p j = i− 2k + 2
(1− r)(1− p) j = i
rp j = i− 2k + 1
r(1− p) i = i− 1
0 otherwise

.

(5)
In Fig. 1, the states that have a full queue and will lose
incoming events, i.e. the inactive states 2(m+kL) for −Lk ≤
m ≤ −Lk + k − 1 and the active states 2(m + kL) + 1 for
−Lk ≤ m ≤ −Lk + k − 2, are marked by hollow circles,
while the remaining states (with sufficient queue space to store
at least one more event) are marked by solid circles.

III. EVENT LOSS PROBABILITY

It is easy to verify that the Markov chain defined in Section
II is finite, irreducible and positive recurrent. Hence, it has a
unique steady-state distribution, π =

[
π0, · · · , π2k(N+L)+1

]T
,

where πi is the steady-state probability of state i. Then, the
probability of event loss due to queue overflow is3

Pk =

2k−2∑
i=0

πi.

3We use the subscript k to remind us that we have discretized the initial
model using the time unit T = E/(ρk).
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Eigen analysis of the transition matrix P can provide π, from
which Pk can be obtained. However, in addition to the high
degree of computational complexity, this numerical approach
fails to provide us with any insight into how the system
parameters affect its performance. In this section, we take an
analytical approach and provide closed-form approximations
of the probability of event loss.

A. Event Loss Probability with L = 0 and k = 1

Let us first examine the simple case where L = 0 and
k = 1, developed in [37]. L = 0 means that the events are
not queued and k = 1 implies that we have selected the time
unit T such that the energy harvested in one time unit in the
active state, ρT , is equal to the energy required to process
one event, E. Recall that we assume at most one event and
at most one transition between active and inactive states take
place in one time unit. This is a good approximation when
µa, µi, µe � ρ/E.

Let η be the ratio of average harvestable power, µiρ
µi+µa

, to
the average required power µeE,

η =
µiρ

(µi + µa)µeE
. (6)

Then, the exact closed-form expression for the probability of
event loss in this case is [37]

Pk=1,L=0 =


1−η

1− µi
µa

( ρ
µeE
−1)

[
1−

ρ
µeE

1+( ρ
µeE

−1)µeµi
η

1−η

]N η 6= 1

µa
µi+µa

1
η+

µi
µe
N

η = 1

(7)
It is easy to verify that (7) is a continuous function of η. An

interesting point is η = 1. This is the balanced point where
the average harvestable and required powers are equal. When
η < 1, on average the load requires more energy than the
source may possibly harvest, i.e. the node is under-resourced.
When η > 1, on average the load requires less energy than the
source can possibly harvest, i.e. the node is over-resourced.

A simple corollary of (7) can demonstrate the expected
result when energy storage is large:

lim
N→∞

Pk=1,L=0 =

{
1− η η < 1
0 η > 1

. (8)

We see that in the over-resourced region the probability of
event loss approaches zero, while in the under-resourced
region, the probability of event loss is equal to 1 − η, since
no energy will be lost due to the energy storage device being
infinitely large.

B. Event Loss Probability for General L and k

The previous section recalled the exact closed-form expres-
sion for Pk when k = 1 and L = 0. However, this is a
good approximation only if µa, µi, µe � ρ/E. When these
conditions do not hold, we must use the general model with
a large k to ensure that the time unit, T , is sufficiently small.
Unfortunately, obtaining an exact closed-form solution for the
Markov model with a large k is not tractable. Therefore,
we resort to an approximation of the Markov model and a
corresponding closed-form solution of the probability of event
loss. To this end, we simplify the Markov model by merging
a number of adjacent states with the same energy harvesting
state (Fig. 1). This approximation is based on the observation
that the adjacent states that have the same harvesting state
have almost the same steady-state probabilities.

Using this approximation approach, we can approximate the
probability of event loss with. See Appendix A for detailed
derivations and definitions of the auxiliary variables sk, δk,
λi,k, gi,k, and ui,k.

Recall that (7) gives the exact probability of event loss for
the original Markov chain with k = 1 and L = 0. Next,
we compare the approximated P̃k and the exact Pk=1,L=0.
Substituting k = 1 and L = 0 in (9) yields (10). Comparing
(10) and (7), we can see that the Pk=1,L=0 differs from

P̃k=1,L=0 only in the term
[
1− µiE

ρ + µaE

ρ( ρ
µeE
−1)

]2
in the

denominator, which vanishes if µa, µi, µe � ρ/E.
If the assumption µa, µi, µe � ρ/E is not satisfied, the

parameter k has to be large enough in order to obtain a small
time unit T . Thus, to obtain a more accurate model we make
the time unit infinitely small by taking the limit of (9) as
T → 0 (or equivalently k →∞). Then,

P̃ = lim
k→∞

P̃k

=
1− η

1− η
1−η

δ(
µi
µe

λ1
λ1−1+1

)
λN+L+1
1 −

(
µi
µe

λ2
λ2−1+1

)
λN+L+1
2

(11)

where the auxiliary variables δ and λi are given in Appendix
A.

It is also interesting to consider the case where either the
energy storage capacity or the queue capacity is sufficiently
large. Then the probability of packet loss becomes

lim
N→∞ or L→∞

P̃ =

{
1− η η < 1
0 η > 1

.

P̃k =

p
(
kp− w

w+r

){
[(k−r)(g1,k+1)−g1,k(w+r)(k−1)2]λN+L−2

1,k

(sk+g1,k)g2,k
− [(k−r)(g2,k+1)+g2,k(w+r)(k−1)2]λN+L−2

2,k

(sk+g2,k)g1,k

}
(−u1,kg1,k+u2,k)λ

N+L−1
1,k

(1−w−r)(sk+g1,k)g2,k +
(u1,kg2,k−u2,k)λ

N+L−1
2,k

(1−w−r)(sk+g2,k)g1,k −
w(1−p)(k−r)δk

k2p(w+p−wp−rp)(sk+g2,k)(sk+g1,k)g1,kg2,k

(9)

P̃k=1,L=0 =
1− η

1− µi
µa

(
ρ

µeE
− 1
)[

1−
ρ

µeE

1+( ρ
µeE
−1)µeµi

η
1−η

]N [
1− µiE

ρ + µaE

ρ( ρ
µeE
−1)

]2 (10)
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This result, which is identical to (8), if of course consistent
with basic results from queueing theory. It shows that an
energy-harvesting node with infinitely large energy storage or
infinitely large queue has zero probability of event loss if the
system is over-resourced. This is because in the over-resourced
case, the extra energy is continuously stored into the storage
and the stored energy increases continuously. In the under-
resourced scenario, the unprocessed events are continuously
added to the queue and the queue length increases without
bound. Thus, if the system is under-resourced, the probability
of event loss is equal to the difference between the required
consumption power and the harvested power, normalized by
the required power.

Another interesting extreme is when the harvesting device is
large (i.e. ρ is large). This case isolates the effect of the limited
energy storage capacity on the probability of event loss. The
probability of event loss with a large harvesting device can be
calculated from (11) as ρ approaches infinity;

lim
ρ→∞

P̃ =
µa

µi + µa

(
µe

µi + µe

)N+L

. (12)

IV. AVERAGE DELAY

We saw in (9) and (11) that the probability of event loss is
a function of N + L. Thus, the energy storage capacity and
the queue capacity can be freely traded for each other, with
no impact on the probability of event loss. On the other hand,
the choice of L and N matters when the delay before each
event is processed is considered.

Using the approximated Markov chain (Appendix A) and
Little’s formula [38], the approximate average delay is

D̃ =
1

µe(1− P̃ )

−1∑
n=−L

−n
(
π̃2(n+L) + π̃2(n+L)+1

)
which yields (13). Derivation details are given in Appendix B.

It is also interesting to look at the average delay when N ,
L or ρ are large. Derivations for the following results are also
provided in Appendix B. For a node with sufficiently large N
we have

lim
N→∞

D̃ =

{
L
µeη
− λ1−λ1−L

1

µe(λ1−1) η < 1

0 η > 1
.

That is, the average delay is non-zero only if the node is
under-resourced. If the node is over-resourced, in the long term
the stored energy will increase without bound. Consequently
events will be processed immediately without being delayed.
However, a node with sufficiently large queue but limited
energy storage capacity and harvesting power always has an
infinite delay if the node is under-resourced. A sufficiently

large queue will reduce the delay to a finite value if the system
is over-resourced:

lim
L→∞

D̃ =

 ∞ η < 1

η−1
µeδ

[
µeE
λ2ρ
−1

(λ1−1)2
λN+2
1 −

µeE
λ1ρ
−1

(λ2−1)2
λN+2
2

]
η > 1

It is then easy to see that the average delay for sufficiently
large N and L is infinite if the node is under-resourced and
is zero if the node is over-resourced:

lim
N,L→∞

D̃ =

{
∞ η < 1
0 η > 1

,

which is quite intuitive and may also be obtained by using
results from queueing theory.

When ρ approaches infinity, since the energy storage capac-
ity is limited, the infinite harvesting power is wasted and only
fully charges the storage when harvesting. The average delay
depends on the time duration between harvesting cycles and
is

lim
ρ→∞

D̃ =

(
µe

µi+µe

)N+L

−
(

µe
µi+µe

)N
µi

(
µe

µi+µe

)N+L

− µi(µi+µa)
µa

.

However, if the energy storage capacity is also large, the delay
is zero regardless of the length of queue (which is always
empty). That is

lim
ρ,N→∞

D̃ = 0.

Finally, when both the queue capacity L and the harvesting
power ρ approach infinity, the average delay exponentially
decreases with N :

lim
ρ,L→∞

D̃ =
µa

µi(µa + µi)

(
µe

µe + µi

)N
.

V. SYSTEM DESIGN

We now use the results obtained in the previous section to
design the system parameters, given tolerable values of event
loss probability, Pt, and average delay, Dt. In practice, the
harvesting parameters µa and µi depend on the characteristics
of the energy source and therefore can not be designed. The
arrival rate of events depends on the application. In some
applications it may be possible to schedule the frequency of
events. However, in many applications this is not possible.
Therefore, the parameters which one may design are the
capacity of the energy storage device, N , the queue capacity,
L, and the harvesting power, ρ, (i.e. the size of the harvester).

Assuming linear cost per unit for the energy storage,
memory and energy harvester, the total cost is given as
C(N,L, ρ) = αN + βL + γρ, where α, β and γ are the
unit costs for energy storage, memory and energy harvester,

D̃ =
1− P̃ − η

µe

(
1− P̃

)
δ

[
λL1 − 1

λ1 − 1

(
µi
µe

λ1
λ1 − 1

+ 1

)
λN+2
1 − λL2 − 1

λ2 − 1

(
µi
µe

λ2
λ2 − 1

+ 1

)
λN+2
2

]
+

LP̃

µe

(
1− P̃

)
(1− η)

(13)
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respectively. Thus, the design problem can be expressed as the
optimization problem

minimize
N,L,ρ

αN + βL+ γρ (14)

subject to C1 : P̃ (N,L, ρ) ≤ Pt
C2 : D̃(N,L, ρ) ≤ Dt,

where P̃ (N,L, ρ) and D̃(N,L, ρ) are given in (11) and
(13). We note that the above design problem provides a
“near-optimal” solution, since the approximations used in the
derivation of (11) and (13) are close.

Since P̃ is only a function of ρ and M = N +L, a simpler
form of (14) can be written as

minimize
M,L,ρ

αM + (β − α)L+ γρ (15)

subject to C1 : P̃ (ρ,M) ≤ Pt
C2 : D̃(ρ,M,L) ≤ Dt.

Solving the above optimization problem is not straight-
forward and requires a three dimensional exhaustive search.
However, for the over-resourced case, here we provide an al-
ternative approach that has low complexity, yet it still provides
a very good design. Our design procedure is as follows (details
are given in Appendix C):

1) Solve the single variable optimization problem

minimize
ρ

ω logλ1

[
ηδPt

(1− η)ψ (1− η − Pt)

]
− ω + γρ

subject to η > 1

to find ρ†, where ψ is given in (39).
2) Find

M† = logλ1

[
ηδPt

(1− η)ψ (1− η − Pt)

]
− 1,

where ρ† is used to calculate η and δ.
3) If α ≤ β, shoose N† = M† and L† = 0. If α > β,

perform a binary search over 0 ≤ L ≤ M† to find the
largest L such that the delay constraint is satisfied.

VI. NUMERICAL RESULTS

In this section, we validate our theoretical results (11)
and (13) by comparing them to simulations. Furthermore, we
provide an example for our near-optimal design approach.

A. Simulation Setup

We have performed continuous-time event-driven simula-
tions using custom written MATLABTM code. The time dura-
tions for which the system stays in the active states, inactive
states and the time duration between consecutive events are
randomly generated and are exponentially distributed with the
parameters µa, µi, and µe, respectively. During the active
durations, the harvesting sources harvest energy at rate ρ. The
schedule of event occurrences is also randomly generated. An
event is processed (served) over time duration τ . That is, the
remaining energy in the storage device is gradually decreased
at a rate of E/τ for a time period τ . Events are considered to

be lost if their arrival results in the overflow of the queue. The
probability of event loss is calculated as the ratio of the number
of lost events and the total number of generated events. The
average delay is the mean of the delay for all events, except
those lost. The events that are processed immediately without
being queued are considered to have a delay of zero.

B. Simulation Parameters

To choose realistic parameters for our simulations, we con-
sider a MICAz wireless sensor [39] powered by solar energy
[40]. In [40], empirically measured solar energy is fitted to a
stationary first-order Markovian model, in which the harvested
solar energy is quantized into two states with a quantization
threshold 1.4mW. Thus, we assume an active harvesting power
of ρ = 2mW and inactive harvesting power of 0mW in the
following simulations. A typical IEEE802.15.4 packet contains
data up to 132 bytes [41]. After the data packet is transmitted,
an interframe spacing of length equivalent to 16 bytes is used
before a 10 byte acknowledgement (ACK) packet is received.
The ACK is followed by a 20 byte long interframe spacing
before the next transmission. Since the transmission rate is
250Kbps, the total duration of power consumption for one
packet is (132 + 16 + 10 + 20)× 8 bits/250 Kbps = 5.696ms.
We assume that each event generates 1320 bytes of data,
which requires the transmissions of 10 packets, each 132
bytes long. Thus, the active time period for one single event
is τ = 56.96ms. The MICAz sensor [39] operates with a
supply voltage from 2.7 ∼ 3.3V and its currents are 25.4mA
and 27.7mA (including radio power and circuit power) for
transmitting at 0dBm and receiving mode, respectively. If we
assume that the MICAz sensor is operating with a supply
voltage of 3V, the power consumption during transmit and
receive modes are 76.2mW and 83.1mW, respectively. Since
the transmit power and the receive power are relatively close,
we assume that the sensor consumes the power 83.1mW
during duration τ . Therefore, the energy spent for one event
is E = 83.1mW× 56.96ms = 4.73mJ.

We assume that a supercapacitor is used as energy storage,
since supercapacitors have higher power density and lower
energy density than batteries. This means that supercapacitors
can deliver the energy to the load faster. Furthermore, superca-
pacitors can be charged very fast which is a major advantage
compared with batteries. A main drawback of supercapacitors
is that they are bulky compared with batteries. Therefore,
we choose a very small 3F NESSCAP supercapacitor [42],
whose energy storage capacity is 3mWh and weighs 1.5g.
With these assumptions, a fully-charged energy storage can
support N = 3×3600/4.73 = 2283 events without recharging.
The MICAz sensor has 512KB of flash memory for the
measurements [39]. This 512KB memory can hold up to
L = 512× 1000/(132× 10) = 387 events.

We simulate the two scenarios where µa = µi = 1/43200
Hz and µa = µi = 1/3600Hz. This means that active-to-
inactive or inactive-to-active transition occurs once within 12
hours or once within 1 hour, respectively. The first scenario
is meant to model a sunny day when the system stays in the
active and the inactive states for about 12 hours each. The
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Fig. 2: Comparison of the simulation results and the theoretical approximations of P and D. Each event consumes power
83.1mW and operates for 56.96ms. The active harvesting power is ρ = 2mW, N = 2281, L = 387 and (a) µa = 1/43200Hz,
µi = 1/43200Hz, (b) µa = 1/3600Hz, µi = 1/3600Hz, (c) µa = 1/43200Hz, µi = 1/3600Hz, (d) µa = 1/3600Hz,
µi = 1/43200Hz.

second scenario is meant to model a partially cloudy day when
the active and inactive states are assumed to last roughly 1
hour each. Furthermore, to complete the comparison of the
above two scenarios, we simulate two other scenarios where
µa = 1/43200Hz, µi = 1/3600Hz, and µa = 1/3600Hz,
µi = 1/43200Hz. These two scenarios are meant to model
fast and slow switching between active and inactive states.

C. Probability of Event Loss and Average Delay

Fig. 2 compares our theoretical result in (11) and (13),
with the simulation results. We can see that the theoretical
approximations of P and D closely match the corresponding
simulation results in most cases. Note the different scales for
P̃ and D̃ in the figures, as shown by the left and the right
y-axes, respectively. The balanced points of consuming the

exact same energy as harvesting, that is η = 1, are marked by
vertical dotted lines in the figures. As shown in Figs. 2(a) and
2(b), the balanced points are the same for the two scenarios
µa = µi = 1/43200Hz and µa = µi = 1/3600Hz. However,
the former has a slower harvesting transition between active
and inactive states than the latter. Compared to the case in
Fig. 2(b), the case in Fig. 2(a) has a full queue during the
long inactive periods more often, which implies a larger loss
probability and a larger average queueing delay. Fig. 2(c) (Fig.
2(d)) has the smallest (largest) loss probability and the smallest
(largest) average queueing delay among all four scenarios.
With the same µi, Fig. 2(b) has larger µa than Fig. 2(c), which
implies a larger balanced point in Fig. 2(c). Furthermore,
Fig. 2(d) has the smallest balanced point among the four
scenarios, due to its shorter active periods and longer inactive
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durations. When the sensor consumes more energy than it
harvests (i.e. the under-resourced region on the right of the
balanced point), P̃ and D̃ have large values. The average
queuing delay converges to a fixed value when the queue is
always full for relatively larger µe. When the sensor harvests
more energy than it consumes (i.e. the over-resourced region
on the left of the balanced point), P̃ and D̃ drop sharply to
zero for larger µi in Fig. 2(b) and Fig. 2(c). The falling slope
is not too steep for smaller µi and larger µa in Fig. 2(d), and
is most gradual for smaller µi and smaller µa in Fig. 2(a).

As illustrated, a larger probability of event loss corresponds
to a larger average delay for most scenarios. The loss prob-
ability is close to one at higher µe, which means that most
events are lost instead of waiting in the queue. The average
queueing delay is calculated based on the queued events. Thus,
the average queuing delay converges to a fixed value at higher
µe when the queue is always full.

D. Channel Access

In our analytical calculations we assumed that the energy
harvesting sensor processes an event immediately, as long as
it has enough energy in its energy storage. In other words, it is
implied that the sensor has access to the channel whenever it
needs to transmit. In this section, we simulate a more realistic
case where access to the channel is not guaranteed. We assume
a two-state or “idle/busy” Markovian model for the channel
access. The channel is either in the “idle” state, which means
that the sensor can access it, or it is in the “busy” state where
the sensor cannot access it. The average time durations in the
idle (busy) state is denoted by Tidle (or Tbusy). Thus, the sensor
has channel access with probability Tidle/ (Tidle + Tbusy). Fig. 3
compares our proposed model to the simulation results which
consider channel access. We can see that the theoretical results
closely match those of the simulations, except when Tidle is
quite large.

E. System Design

Keeping the same values for E and ρ, namely E =
4.73mJ and ρ = 2mW, we consider the case where the
active and the inactive parameters are µa = 1/43200Hz
and µi = 1/43200Hz, and the event arrival rate is one
event per 10 minutes, i.e., µe = 1/600Hz. The cost of
supercapacitors is roughly 2.85$/kJ [43]. If a single event
requires energy E = 4.73mJ, then the unit cost of energy
storage is α = 4.73 × 2.85 × 10−6 = 1.35 × 10−5$/event.
Currently (in 2012), the list price for a 4GB SD-flash card
[44] is approximately $8. Thus, we assume that the cost
of flash memories is $2/GB. If one event requires ten 132
byte data packets, then the memory cost per queue unit is
β = 1320 × 2 × 10−9 = 2.64 × 10−6$/queue unit. The cost
of the solar harvester can be estimated to be γ = 6$/W [45].
Using these values we have obtained the optimal solution of
the optimization problem (14) using an exhaustive search with
a resolution of 0.01mW for ρ. Fig. 4 depicts the resulting
optimal design parameters L?, N?, and ρ?, as well as the
minimal cost C? for different values of Pt and Dt. Fig. 4
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Fig. 3: Comparison of the simulation results and the theoretical
approximations of P and D with different probabilities of
channel access. Each event consumes power 83.1mW and op-
erates for 56.96ms. The active harvesting power is ρ = 2mW,
N = 2281, L = 387, µa = 1/43200Hz, µi = 1/43200Hz,
µe = 1/60Hz.

also provides the design parameters obtained from our near-
optimal design approach, namely L†, N†, and ρ†, as well as
the resulting cost C†. We can see that the resulting L and N
are very close. The resulting value of ρ is also quite close
for larger values of Pt. On the other hand, our near-optimal
approach over-designs ρ by roughly 13%, when Pt is small.
This is of course a consequence of the conservative approach
taken while developing the simplified design to ensure that the
constraints remain satisfied. However, we see that this over-
design of ρ does not have a noticeable contribution to the
overall cost.

VII. CONCLUSIONS

In this paper we have considered the problem of system
design for energy harvesting wireless devices. We have derived
closed-form expressions for the probability of event loss and
average delay performance metrics for an energy harvesting
communication node. To do this, we have constructed a
Markov model which combines the energy harvesting process,
the event arrival process, the amount of energy remaining in
the storage and the number of events queued. Then, based
on these analytical results, we have provided a near-optimal
design procedure for the capacity of the energy storage and the
harvesting device as well as the event queue capacity, given
tolerance levels for the probability of event loss and average
delay.

APPENDIX A
DERIVATIONS OF EVENT LOSS PROBABILITY

As mentioned in Section II, the inactive states (m, 0)
for −Lk ≤ m ≤ −Lk + k − 1 lose events since their
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Fig. 4: Comparison of the optimal and the proposed near-optimal design results for (a) the queue capacity L, (b) the energy
storage capacity N , (c) the harvesting power in active state ρ, and (d) the total cost of the designed energy harvesting node (E =
4.73mJ, µa = 1/43200Hz, µi = 1/43200Hz, µe = 1/600Hz, α = 1.35× 10−5$/energy storage unit, β = 2.64× 10−6$/queue
unit, γ = 6$/W)

remaining energy is less than E. Thus, these k states are
merged into a state corresponding to event loss in the in-
active state. Similarly, every k inactive states (kn + l, 0),
0 ≤ l ≤ k − 1, are merged into a single new state (n, 0)
for each −L ≤ n ≤ N − 1, and the last inactive state (Nk, 0)
constitutes the new state (N, 0) without being merged with
any other state. For the active states, the first k − 1 states,
i.e. (m, 1) with −Lk ≤ m ≤ −Lk + k − 2, lose incoming
events since the combination of their remaining and harvested
energies are not enough for supporting an event. Thus, it is
reasonable to combine these k − 1 states together to form a
new state (−L, 1), corresponding to event loss in the active
state. Following this, every k active states (kn − 1 + l, 1),
0 ≤ l ≤ k − 1, are grouped to a single new state (n, 1)

for each −L + 1 ≤ n ≤ N − 1. The last two active states
(Nk− 1, 1) and (Nk, 1) are combined to a new state (N, 1).
These groupings are illustrated in Fig. 1. As depicted in Fig. 5,
the new Markov model has 2(N+L+1) states, with the state
space {(n, s)| − L ≤ n ≤ N, s ∈ {0, 1}}. Here, n denotes the
remaining energy in the storage, and s denotes the energy
harvesting state. Note that the number of the original states
merged into a new state (n, s) is Θ(n, s) = k for all n and s,
except for Θ(N, 0) = 1, Θ(N, 1) = 2 and Θ(−L, 1) = k− 1.

Let the transition matrix of the merged Markov chain be
denoted as Q = [qi,j ], whose entries q2n+s,2n′+s′ represents
the transition probabilities from the state (n, s) to the state
(n′, s′). The transition probability starting from the merged
state (n, s) is averaged over the outgoing probabilities of its
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Fig. 5: The merged Markov chain model generated by grouping the states of the original Markov chain model (Fig. 1).

original states (m, s), that is

q2n+s,2n′+s′

=

min{(n+1)k−s−1,Nk}∑
m=max{nk−s,−Lk}

min{(n′+1)k−s′−1,Nk}∑
m′=max{n′k−s′,−Lk}

p2m+s,2m′+s′

Θ(n, s)
.

(16)

If we re-index the states by i = 2(n+L) + s, using (1)-(5)
and (16), qi,j can be obtained as follows. The states i = 0 and
i = 1 are the two states with capability of losing events. Their
transition probabilities are

q0,j =


1− w j = 0
(k−1)w

k j = 1
w
k j = 3
0 otherwise

(17)

and

q1,j =


r j = 0

(1− r)
(

1− 1
k−1

)
j = 1

1−r
k−1 j = 3

0 otherwise

. (18)

The states i = 2(N +L) and i = 2(N +L) + 1, respectively,
have transition probabilities

qi,j =


(1− w)p j = 2(N + L)− 2
wp j = 2(N + L)− 1
(1− w)(1− p) j = 2(N + L)
w(1− p) j = 2(N + L) + 1
0 otherwise

(19)

and

qi,j =


rp j = 2(N + L)− 2
(1− r)p j = 2(N + L)− 1
r(1− p) j = 2(N + L)
(1− r)(1− p) j = 2(N + L) + 1
0 otherwise

. (20)

For remaining inactive and active states (i.e. i /∈ {0, 1, 2N +
2L, 2N + 2L+ 1}) we have

qi,j =



(1− w)p j = i− 2
wp
(
1− 1

k

)
j = i− 1

(1− w)(1− p) j = i

w
(
1− p− 1−2p

k

)
j = i+ 1

w(1−p)
k j = i+ 3

0 otherwise

(21)

and

qi,j =



rp j = i− 3
(1− r)p

(
1− 1

k

)
j = i− 2

r(1− p) j = i− 1

(1− r)
(
1− p− 1−2p

k

)
j = i

(1−r)(1−p)
k j = i+ 2

0 otherwise

, (22)

respectively. Denote the stationary distribution of Q as π̃ =
[π̃0, π̃1, · · · , π̃2(N+L)+1]T where π̃i is the steady-state proba-
bility of state i. The probability of event loss is approximated
by Pk ' π̃0 + π̃1 = P̃k.

In order to simplify the calculation of π̃i, we introduce vari-
ables xi, for 0 ≤ i ≤ 2N + 1, defined by x2n = π̃2n + π̃2n+1

and x2n+1 = wπ̃2n + (1 − r)π̃2n+1. With this definition we
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have P̃k = x0 and
N+L∑
n=0

x2n = 1. Moreover, (17)-(22) result in

a system of 2(N + L) + 2 linear equations with variables xi,
see (23). Inspection of these equations reveals that x2n and
x2n+1 depend on x2n+2 and x2n+3, for 0 ≤ n ≤ N + L− 1.
By iterating this relationship, we get[

x2n
x2n+1

]

=



BAN+L−2C

[
sk
1

]
x2(N+L)+1 n = 0

AN+L−1−nC

[
sk
1

]
x2(N+L)+1 1 ≤ n ≤ N + L− 1[

sk
1

]
x2(N+L)+1 n = N + L

(24)

where sk = 1 + r/(w + p− wp− rp) and

A =
p

1− p

[
k−(1−p)(k−1)(1−w−r)

w+p−wp−rp − 1
w+p−wp−rp

k −1

]

B =
p

w

[
1 + (w+r)(k−1)2

k−r −1

w + w(k−1)2
k−r −w

]

C = A +
p

1− p

[
0 sk
0 1

]
.

Since
N+L∑
n=0

π̃2n = r/(w + r) and
N+L∑
n=0

π̃2n+1 = w/(w + r),

the definition of xi yields (25) and (26), where A = VDV−1

is the eigen decomposition of A and its eigenvalues are

λ1,k =
p(k − 2)

2(1− p)
+

p [(k − 1)r + 1 + δk]

2(1− p)(w + p− wp− rp)
and

λ2,k =
p(k − 2)

2(1− p)
+

p [(k − 1)r + 1− δk]

2(1− p)(w + p− wp− rp)
,

where δk =

√
[k(w + p+ r − wp− rp)− r − 1]

2
+ 4(k − 1)r.

Solving (26) for x2(N+L)+1 and substituting it in (24)
provides all xi including (27), where

g1,k = −1

2

[
1 +

(k − 1)r + 1 + δk
k(w + p− wp− rp)

]
,

u1,k = (w + p− wp− rp)
[
(1− r)(w − k2p) + wpk(k − 1)

]
,

g2,k = −1

2

[
1 +

(k − 1)r + 1− δk
k(w + p− wp− rp)

]
,

u2,k = (1− r) [kp(w + r)− w] + kp2(k − r)(1− w − r).

We can now calculate (27) when k approaches infinity.
Using w = µiE/(kρ), r = µaE/(kρ) and p = µeE/(kρ),
we can calculate

s = lim
k→∞

sk = 1 +
µa

µi + µe
,

δ = lim
k→∞

δk =

√[
(µi + µa + µe)

E

ρ
− 1

]2
+ 4µa

E

ρ
,

λ1 = lim
k→∞

λ1,k =
µe

[
(µi + µa + µe)

E
ρ + 1 + δ

]
2(µi + µe)

,

λ2 = lim
k→∞

λ2,k =
µe

[
(µi + µa + µe)

E
ρ + 1− δ

]
2(µi + µe)

,

xi =



p
w

(
1 + (w+r)(k−1)2

k−r

)
x2 − p

wx3 i = 0

p
(

1 + (k−1)2
k−r

)
x2 − px3 i = 1

pk−p(1−p)(k−1)(1−w−r)
(1−p)(w+p−wp−rp) xi+2 − p

(1−p)(w+p−wp−rp)xi+3 i = 2n, 1 ≤ n ≤ N + L− 2
pk
1−pxi+1 − p

1−pxi+2 i = 2n+ 1, 1 ≤ n ≤ N + L− 2
pk−p(1−p)(k−1)(1−w−r)

(1−p)(w+p−wp−rp) x2(N+L) − p(1−w−r)
w+p−wp−rpx2(N+L)+1 i = 2(N + L)− 2

kp
1−px2(N+L) i = 2(N + L)− 1(
1 + r

w+p−wp−rp

)
x2(N+L)+1 i = 2(N + L)

x2(N+L)+1 i = 2(N + L) + 1

(23)

N+L∑
n=0

[
x2n
x2n+1

]
=
{[

(BA−1 + (A− I)−1)AN+L−1 − (A− I)−1
]
C + I

} [sk
1

]
x2(N+L)+1 (25)

[
1
w
w+r

]
=
{[

(BA−1 + (A− I)−1)VDN+L−1V−1 − (A− I)−1
]
C + I

} [sk
1

]
x2(N+L)+1 (26)

P̃k = x0 =

p
(

w
w+r − kp

){
[−(k−r)(g1,k+1)−g1,k(w+r)(k−1)2]λN+L−2

1,k

(sk+g1,k)g2,k
+

[(k−r)(g2,k+1)+g2,k(w+r)(k−1)2]λN+L−2
2,k

(sk+g2,k)g1,k

}
(−u1,kg1,k+u2,k)λ

N+L−1
1,k

(1−w−r)(sk+g1,k)g2,k +
(u1,kg2,k−u2,k)λ

N+L−1
2,k

(1−w−r)(sk+g2,k)g1,k −
w(1−p)(k−r)δk

k2p(w+p−wp−rp)(sk+g2,k)(sk+g1,k)g1,kg2,k

(27)
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g1 = lim
k→∞

g1,k = − λ1ρ
µeE

,

g2 = lim
k→∞

g2,k = − λ2ρ
µeE

,

u1 = lim
k→∞

u1,k = −µe(µi + µe)
E2

ρ2
,

u2 = lim
k→∞

u2,k = µ2
e

E2

ρ2
.

Substituting these into (27) yields (28), where η =
µiρ

(µi+µa)µeE
. Since µi, µa, µe > 0, it is easy to verify that

0 ≤ λ2 ≤ µe
µi+µe

. Moreover, λ1 > 1 when η < 1, and
µe

µi+µe
≤ λ1 < 1 when η > 1. Now, if N → ∞ or L → ∞,

the limit of (28) becomes

lim
N→∞ or L→∞

P̃ =

{
1− η η < 1
0 η ≥ 1,

and if ρ → ∞ we get δ → 1 + (µa − µi − µe) Eρ , λ1 →
µe

µi+µe

(
1 + µaE

ρ

)
and λ2 → 0. Thus the probability of event

loss for large ρ can be calculated as

lim
ρ→∞

P̃ =
µa

µi + µa

(
µe

µi + µe

)N+L

.

APPENDIX B
DERIVATIONS OF AVERAGE DELAY

As mentioned in Section IV, the average delay is

D̃ =
1

µe(1− P̃ )

−1∑
n=−L

−nx2(n+L).

Using the xi (when k → ∞) calculated in Appendix A, the
closed-form solution of the average delay is given by (29),
where δ, λ1, λ2, and η are given in Appendix A.

Using (29) and recalling that 0 ≤ λ2 ≤ µe
µi+µe

and λ1 > 1
when η < 1, and 0 ≤ λ2 ≤ µe

µi+µe
≤ λ1 < 1 when η > 1, the

asymptotic results are readily obtained for D̃:

lim
N→∞

D̃ =

{
L
µeη
− λ1−λ1−L

1

µe(λ1−1) η < 1

0 η ≥ 1
(30)

lim
L→∞

D̃ =


∞ η < 1

η−1
µeδ

[(
µeE
ρλ2
−1
)
λN+2
1

(λ1−1)2
−
(
µeE
ρλ1
−1
)
λN+2
2

(λ2−1)2

]
η ≥ 1

(31)

lim
ρ→∞

D̃ =

[(
µe

µi+µe

)L
− 1

](
µe

µi+µe

)N
µi

(
µe

µi+µe

)N+L

− µi(µi+µa)
µa

(32)

lim
N→∞
L→∞

D̃ =

{
∞ η < 1
0 η ≥ 1

(33)

lim
N→∞
ρ→∞

D̃ = 0 (34)

lim
L→∞
ρ→∞

D̃ =
µa

µi(µa + µi)

(
µe

µe + µi

)N
. (35)

APPENDIX C
DERIVATIONS OF THE LOW COMPLEXITY DESIGN

APPROACH

We focus on the over-resourced case (η > 1), as this is
a more desirable scenario in practice. We take a two step
design approach. First, as an approximation, instead of the
cost function C, we consider its upper bound, Cu = ωM+γρ,
where ω = max{α, β}, and perform minimization constrained
only to C1. That is, we will first consider

minimize
M,ρ

ωM + γρ (36)

subject to C1 : P̃ (ρ,M) ≤ Pt.

This optimization problem yields ρ† and M† = N +L. Then,
in the second step, we will use constraint C2 and costs α and
β to find the best split of M† between N† and L†. That is

minimize
L

α(M† − L) + βL (37)

subject to C2 : D̃(ρ†,M†, L) ≤ Dt.

P̃ = lim
k→∞

P̃k =
(µi + µa)µeE − 2µiρ+

µ2
iρ

2

(µi+µa)µeE

(µi + µa)µeE − µiρ− µiµeρδ(λ1−1)(λ2−1)
(λ2−1)[(µi+µe)λ1−µe]λN+L+1

1 −(λ1−1)[(µi+µe)λ2−µe]λN+L+1
2

=
1− η

1−
η

1−η δ[
µiλ1

µe(λ1−1)
+1
]
λN+L+1
1 −

[
µiλ2

µe(λ2−1)
+1
]
λN+L+1
2

, (28)

D̃ =

[(µi+µa)µeE(λ1−1)λL−1
1 L−µiρ(λL1−1)]λ

N+2
1

µeµiρ[(µi+µe)λ2−µe](λ1−1)2
− [(µi+µa)µeE(λ2−1)λL−1

2 L−µiρ(λL2−1)]λ
N+2
2

µeµiρ[(µi+µe)λ1−µe](λ2−1)2

λN+L+1
1

[(µi+µe)λ2−µe](λ1−1) −
λN+L+1
2

[(µi+µe)λ1−µe](λ2−1) −
(µi+µa)µ2

eEδ
[(µi+µa)µeE−µiρ][(µi+µe)λ1−µe][(µi+µe)λ2−µe]

= LP̃

µe(1−P̃)(1−η)
− (P̃−1+η)

µeδ(1−P̃)

{[
µiλ1

µe(λ1−1) + 1
]

(λL1−1)λ
N+2
1

λ1−1 −
[

µiλ2

µe(λ2−1) + 1
]

(λL2−1)λ
N+2
2

λ2−1

}
(29)
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We start by considering (36). It is easy to verify that for
over-resourced systems, 0 ≤ λ2 ≤ µe

µi+µe
≤ λ1 ≤ 1, which

implies µiλ1

µe(λ1−1) + 1 ≤ 0 and µiλ2

µe(λ2−1) + 1 ≥ 0. Thus, if
M = N + L ≥M0, we have

ψλN+L+1
1 ≥ −

[
µiλ1

µe (λ1 − 1)
+ 1

]
λN+L+1
1

+

[
µiλ2

µe (λ2 − 1)
+ 1

]
λN+L+1
2 (38)

where

ψ = −
[

µiλ1
µe (λ1 − 1)

+ 1

]
+

[
µiλ2

µe (λ2 − 1)
+ 1

](
λ2
λ1

)M0+1

.

(39)
Equation (38) provides a better bound if M0 is larger. To find
a good M0 we recall (12), which is the probability of loss for
large ρ. Thus, we have

Pt ≥ P̃ (ρ,M) ≥ lim
ρ→∞

P̃ (ρ,M) =
µa

µi + µa

(
µe

µi + µe

)M
.

(40)
We can then choose M0 to be

M0 =
lnPt + ln (µi + µe)− lnµa

lnµe − ln (µi + µe)
≤M. (41)

Substituting (38) into (11) yields

P̃ (ρ,M) ≤ 1− η
1 + ηδ

(1−η)ψλM+1
1

= Pt, (42)

where the upper limit of P̃ is set to the tolerable probability
of event loss. Solving (42) for M yields

M = logλ1

[
ηδPt

(1− η)ψ (1− η − Pt)

]
− 1. (43)

Now using (43), instead of the optimization problem (36),
we can solve

minimize
ρ

ω

{
logλ1

[
ηδPt

(1− η)ψ (1− η − Pt)

]
− 1

}
+ γρ

(44)
subject to η > 1

which has slightly smaller feasible set. This is a convex
minimization problem with a single variable, ρ, and can be
readily solved to yield ρ†. Then, given ρ†, we can find M†

from (43).
In the second step we need to find the best split of M†

between N† and L†, such that the delay constraint is satisfied.
Since D̃ is a monotonically increasing function of L, it is
easy to distinguish two cases: If α ≤ β, the best solution
is N† = M† and L† = 0. On the other hand, if α > β,
the best L† can be easily found using a binary search over
0 ≤ L ≤M† such that the delay constraint is satisfied.
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