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Queueing Analysis of Polled Service Classes in the
IEEE 802.16 MAC Protocol

Biplab Sikdar

Abstract— This paper considers the performance of the polling
based service classes of IEEE 802.16 based broadband wireless
access networks and develops queueing models to evaluate their
delay distributions and loss rates. Both single and multiple carrier
OFDMA operations are considered and models are proposed
for two polling strategies. The models can be used to provide
probabilistic service guarantees and explore the impact of various
system parameters on the performance, thereby aiding in system
design. The models are verified using simulations.

Index Terms— Wireless broadband access, MAC protocol,
IEEE 802.16

I. I NTRODUCTION

The IEEE 802.16 standard for point to multipoint broadband
wireless access is an emerging technology for ubiquitous
broadband wireless access supporting fixed, nomadic, portable
and fully mobile operations offering integrated voice, video
and data services. The IEEE 802.16e standard supports five
scheduling service classes for quality of service (Unsolicited
Grant Service (UGS), real-time, non-real-time and extended-
real-time Polling Service (rtPS, nrtPS and ertPS) and Best
Effort (BE)) and includes a request-grant mechanism for
uplink transmissions from a Subscriber Station (SS) to its Base
Station (BS).

While existing literature has evaluated many aspects of
IEEE 802.16, analytic models for polled services classes are
largely absent. Simulation studies to evaluate the performance
of various service classes are presented in [1], [2]. The binary
exponential backoff and random access mechanism of IEEE
802.16 are modeled in [3], [4]. Delay bounds for orthog-
onal frequency division multiple access with time division
multiple access (OFDMA-TDMA) and OFDMA systems for
some specific burstiness control schemes are developed in [5].
Connection-level characteristics of IEEE 802.16 under call
admission control and bandwidth allocation schemes proposed
by the authors are presented in [6], [7].

Unlike existing literature, this paper focuses on developing
queueing models specific to the case of polling based service
classes in IEEE 802.16. This MAC layer delay is an important
factor in the overall performance and capacity utilizationof the
system and accurate characterization of this delay is critical
to meeting performance goals of delay-sensitive applications.
This paper analyzes different polling schemes and presents
comparative results based on both our analysis as well as
simulations. The analytical models derive expressions forthe
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packet delay distribution and packet blocking rates at each
SS as a function of various systems parameters. Our models
can be used for determining optimal frame lengths and other
system settings, number of supportable connections for a given
delay constraint, and admission control.

The rest of the paper is organized as follows. Section II
presents the queueing model for the case where the SSs are
polled at the end of the uplink subframe and Section III
considers polling at the beginning of the uplink subframe.
Section IV extends the analysis to the IEEE 802.16 OFDMA
PHY. Finally, Section V presents the simulation results and
Section VI concludes the paper.

II. D ELAY ANALYSIS: POLLING AT END OF UPLINK

SUBFRAME

We consider a single BS servingn SSs through a
TDMA/TDD, single carrier air-interface. Each frame is di-
vided into uplink and downlink subframes, as per the IEEE
802.16 standards. The standard however does not specify any
scheduling algorithm and leaves it to be vendor specific. We
assume that a single packet is transmitted by a SS in a frame
if it made a bandwidth request in the previous frame.

This section considers the following polling scheme: nodes
are polled sequentially at the end of every uplink subframe.
The packet interarrival times at a SS are assumed to distributed
according to a Markov modulated Poisson process (MMPP)
with an arbitrary number of states,r. An MMPP based arrival
process is used in this paper because of their versatility in
modeling traffic types such as voice, video as well as long
range dependent traffic [8], [9]. The MMPP is characterized
by the transition rate matrixR and the diagonal rate matrix
Λ that contains the arrival rates at each state:

R =











−σ1 σ12 · · · σ1r

σ21 −σ2 · · · σ2r

...
...

. . .
...

σr1 σr2 · · · −σr











(1)

Λ =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. ..

...
0 0 · · · λr











(2)

The steady state probability vectorq of the Markov chain
satisfiesqR = 0 and qe = 1 where e is a unit vector. The
average arrival rate at the SS is then given byλ = qΛ. The
utilization factor of the queue at each SS is approximated in
this paper asρ = λTs. We denote the durations of the uplink
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and downlink subframes byTUL andTDL, respectively. The
total frame duration is denoted byTS . The time taken to poll
a single station is denoted byTP and time taken to transmit a
packet byL. Each SS has a finite buffer that holdsK packets.

Consider a tagged packet arriving at SSi, 1 ≤ i ≤ n. At
the instant of its arrival, the queue at the SS may be in one
of two states:1. S0: The queue is empty (an arbitrary arrival
sees an empty queue with probability1−ρ). 2. S1:The queue
is non-empty (with probabilityρ).

A. Arrival at an Empty Queue: State S0

We consider two subcases: arrival before (case C1) and after
(case C2) SSi has been polled in the current frame. Consider
case C1. Since the SS has not been polled yet, a reservation
can be made in this frame for transmitting the tagged packet
in the next frame. For arbitrary arrivals independent of the
departure process in a slotted departure system, an arrivalis
equally likely to occur anywhere in a slot [10]. In our case,
given that an arrival occurs in a frame, the arrival instance,t,
relative to the start of the frame is thus uniformly distributed
in [0, Ts]. SSi is polled(n−i+1)TP seconds before the frame
ends. The time the SS waits before it sends the bandwidth
request is thusTs−(n−i+1)TP−t. The probability distribution
function (PDF) oft given that the arrival occurred before SS
i was polled in the frame is

P [t≤τ | t≤Ts−(n−i+1)TP ] =
P [t≤τ, t≤Ts−(n−i+1)TP ]

P [t ≤ Ts − (n−i+1)TP ]

=
τ

Ts − (n−i+1)TP

(3)

which is an uniform distribution:U [0, Ts − (n − i + 1)TP ].
If a random variableY is uniformly distributed in the range
0 to a, thena − Y is also uniformly distributed in the range
0 to a. Thus the PDF ofTs − (n − i + 1)TP − t is also
U [0, Ts − (n − i + 1)TP ]. Following the bandwidth request,
(n− i+1)TP seconds pass before the current frame ends. Ifj

of the i−1 SSs that were polled before SSi also transmit data
in the next frame, SSi has to wait an additionalTDL + jL

seconds in the next frame before it is served. Since an SS
has a non-empty queue with probabilityρ, the probability that
there arej SSs who send packets is binomially distributed with
parametersB[i−1, ρ]. Here we have made the approximation
that all SSs with non-empty queues had bandwidth reserved for
them in the previous frame. This assumption is fairly accurate
as the load increases and as our results show in Section V, has
very little effect at low loads. The Laplace-Stieltjes Transform
(LST) of the service time in this case,Xi,S0,C1, is

HXi,S0,C1
(s) = LST [U [0, Ts − (n−i+1)TP ] + (n−i+1)TP

+TDL + B[i − 1, ρ]L + L] (4)

=
1−e−s(Ts−(n−i+1)TP )

s(Ts−(n−i+1)TP )

(1 − ρ + ρe−sL)i−1

es((n−i+1)TP +TDL+L)
(5)

where the first term in the equation above is the LST of
U [0, Ts − (n − i + 1)TP ], the second term is the LST of the
constants(n − i + 1)TP + TDL + L and the third term is the
LST of B[i − 1, ρ]L.

For case C2, the packet first has to wait till the current
frame is over (TS − t). The SS makes a bandwidth request
in the next frame and is allocated a transmission slot in the
subsequent frame. The PDF oft given that it arrived after SS
i was polled, i.e., it arrived after the firstTs−(n−i+1)TP

seconds of the frame is

P [t≤τ | t>Ts−(n−i+1)TP ] =
P [t≤τ, t>Ts−(n−i+1)TP ]

P [t > Ts − (n−i+1)TP

=
τ − Ts + (n−i+1)TP

(n−i+1)TP

(6)

which is distributed asU [TS−(n−i+1)TP , TS ]. If a random
variable Y has the distributionU [a, b], then b−Y has the
distributionU [0, b−a]. ThusTS−t is distributed asU [0, (n−
i+1)TP ]. Again, the number of SSs before SSi that send
data in the frame in which the tagged packet is transmitted is
binomially distributed with parametersB[i − 1, ρ]. The LST
of the service time in this case,Xi,S0,C2, is then

HXi,S0,C2
(s) = LST [U [0, (n − i + 1)TP ] + TS + TDL+

B[i − 1, ρ]L + L] (7)

=
1 − e−s(n−i+1)TP

s(n − i + 1)TP

(1 − ρ + ρe−sL)i−1

es(TS+TDL+L)
(8)

Now, the probabilities of cases C1 and C2 are given by
P [C1] = TS−(n−i+1)TP

TS
and P [C2] = (n−i+1)TP

TS
, respec-

tively. The LST of the service time in state S0,Xi,S0, is then
given by

HXi,S0
(s) = P [C1]HXi,S0,C1

(s) + P [C2]HXi,S0,C2
(s)

=
(1−ρ+ρe−sL)i−1

sTSes(TDL+L)

[

1−e−s(Ts−(n−i+1)TP )

es(n−i+1)Tp
+

1−e−s(n−i+1)TP

esTS

]

(9)

B. Arrival at a Non-Empty Queue: State S1

Let the number of packet seen by a tagged arrival at a non-
empty queue beNNQ. The service time of the tagged packet
begins when the last of theNNQ enqueued packets departs
the queue. A bandwidth request is sent for the tagged packet
in the frame in which it comes to the head of the line (HOL)
and the tagged packet is transmitted in the next frame. Letj

of the i−1 SSs before SSi also transmit in the frame where
the tagged packet comes to the HOL and starts its service (j is
binomially distributed with parametersB[i − 1, ρ]). Then the
time remaining in this frame when the tagged packet starts its
service isTS−TDL−jL−L. In the next frame, ifj′ of the i−1
SSs also transmit a packet, SSi has to wait forTDL + j′L

seconds before it begins its service. The total service timein
this case isXi,S1 = TS −TDL−jL−L+TDL +j′L+L =
TS−jL+j′L. Since bothj and j′ are binomially distributed
with parametersB[i − 1, ρ], the LST of the service time for
this case is

HXi,S1
(s) = LST [TS − B[i − 1, ρ]L + B[i − 1, ρ]L] (10)

= e−sTS (1−ρ+ρesL)i−1(1−ρ+ρe−sL)i−1(11)
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C. Overall Service Time, Delay Distribution and Loss Rates

Combining the service times for cases S0 and S1, the LST
of the service time of an arbitrary arrival at SSi, Xi, is given
by

HXi
(s) = (1 − ρ)HXi,S0

(s) + ρHXi,S1
(s) (12)

whereHXi,S0
(s) andHXi,S1

(s) are given in Eqn. (9) and Eqn.
(11) respectively. The average service time is denoted byΘ
and given by

Θ = −
d

ds
HXi,S1

(s)

∣

∣

∣

∣

s=0

= (1+ρ)
TS

2
+(1−ρ)

[

(n−i+1)Tp + TDL + (i−1)ρL + L
]

To obtain the distribution of the packet delays and loss rates,
the queue at each SS is modeled as a MMPP/G/1/K queue
whose service time distribution is given by Eqn. (12). We use
the analysis for the MMPP/G/1/K queue from [11] and list the
equations below for completeness.

Consider the imbedded Markov chain consisting of the ser-
vice completion instants at the queue. Letπ(k) (respectively,
p(k)) be the r−dimensional vector whosej−th element is
the limiting probability at the imbedded epochs (at an arbitrary
time instant) of havingk packets in the queue and being in the
phasej of the MMPP,k = 0, 1, · · · ,K−1 (k = 0, 1, · · · ,K).
Consider the matrix sequence{Ck} defined as

Ck+1 =

[

Ck − UAk −

k
∑

ν=1

CνAk−ν+1

]

A
−1
0 (13)

for k = 1, 2, · · · ,K − 2 with C0 = I, C1 = (I − UA0)A
−1
0

andI being ar × r identity matrix. The(k, l)−th element of
the matrixAν denotes the conditional probability of reaching
phasel and havingν arrivals at the end of a service time,
starting from phasek. The matricesAν can be easily calcu-
lated using an iterative procedure [12]. The probability vectors
π(k) can then be calculated using

π(0)

[

K−1
∑

ν=0

Cν + (I − U)A(I − A + eq)−1

]

= q (14)

and π(k) = π(0)Ck, k = 1, 2, · · · ,K − 1. The vectorsp(k)
are then obtained usingp(0) = ξπ(0)(Λ − R)−1Θ−1 and

p(k) = ξ

[

π(k) +

k−1
∑

ν=0

π(ν)Uk−1−ν(U − I)

]

(Λ−R)−1Θ−1

(15)
for k = 1, 2, · · · ,K − 1 andp(K) = q −

∑K−1
ν=1 p(ν) where

ξ = [1 + π(0)(Λ − R)−1Θ−1e]−1. The packet blocking
probability is given by

Pb = 1 −

K−1
∑

ν=0

p(ν) (16)

Finally, the LST of the cumulative distribution function ofthe
packet waiting time,W (s) is given by

W (s) =
1

1−Pb

[

p(0)+ξΘ−1
K−1
∑

ν=1

Gν(s)HK−1−ν
Xi

(s)TK−1−ν(s)

]

(17)

whereGj(s) = π(0)[I − UHXi
(s)] − H

j
Xi

(s)π(j), Tj(s) =
F(s)[−ΛF(s)]j andF(s) = [sI+R−Λ]−1. Moments of the
packet waiting time can be easily obtained from Eqn. (17).

III. D ELAY ANALYSIS: POLLING AT THE START OF THE

UPLINK SUBFRAME

In this section we analyze the case where stations are polled
at the start of the uplink subframe. The analysis follows along
the same lines as in Section II and the details have been
omitted. The same definitions as in Section II are used for
the two states S0 and S1 and their subcases C1 and C2.

A. Arrival at an Empty Queue: State S0: With SSs polled at
the beginning of the uplink subframe, the time from the start
of a frame till SSi is polled isTDL+(i−1)TP and the arrival
instantt thus has the uniform distributionU [0, TDL+(i−1)TP ].
The time from the arrival till the poll,TDL+(i−1)TP−t, is thus
also distributed asU [0, TDL+(i−1)TP ] and the time remaining
in the frame after SSi is polled isTS−TDL−(i−1)TP . In case
C1, the bandwidth request is sent in this frame itself and the
packet is transmitted in the next frame. The numberj of the
i − 1 SSs that also transmit a packet before SSi in the next
frame is binomially distributed with parametersB[i − 1, ρ],
resulting in a delay ofTDL + nTp + jL seconds in the frame
before SSi is served. The LST of the service time in this case,
Xi,S0,C1, is given by

HXi,S0,C1
(s) = LST [U [0, TDL + (i − 1)TP ] + TS+

(n − i + 1)TP + B[i − 1, ρ]L + L] (18)

=
1 − e−s(TDL+(i−1)TP )

s(TDL + (i − 1)TP )

(1 − ρ + ρe−sL)i−1

es(TS+(n−i+1)TP +L)
(19)

Following along the same lines, the LST of the service time
for case C2,Xi,S0,C2, is given by

HXi,S0,C2
(s) = LST [U [0, TS − TDL − (i − 1)TP ]+

TS + TDL + nTP + B[i − 1, ρ]L + L] (20)

=
1−e−s(TS−TDL−(i−1)TP )

s(TS−TDL−(i−1)TP )

(1 − ρ + ρe−sL)i−1

es(TS+TDL+nTP +L)
(21)

The probabilities of the cases C1 and C2 are given byP [C1] =
TDL+(i−1)TP

TS
and P [C2] = TS−TDL−(i−1)TP

TS
, respectively.

Combining cases C1 and C2, the LST of the service time,
Xi,S0, is given by

HXi,S0
(s) =

(1−ρ+ρe−sL)i−1

sTSes(TS+nTp+L)

[

1−e−s(TDL+(i−1)TP )

e−s(i−1)Tp
+

1−e−s(TS−TDL−(i−1)TP )

esTDL

]

(22)

B. Arrival at a Non-Empty Queue: State S1: In this case, the
service time of the tagged packet begins when the last of the
enqueued packets seen by the tagged packet on arrival, departs
the queue. Letj andj′ of thei−1 SSs before SSi also transmit
in the frame where the tagged packet starts its service and the
next frame, respectively. The total service time in this case is
Xi,S1 = TS −TDL−nTP −jL−L+TDL+ nTP +j′L+L =
TS−jL+j′L. Since bothj and j′ are binomially distributed
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with parametersB[i − 1, ρ], the LST of the service time for
this case is

HXi,S1
(s) = e−sTS (1−ρ+ρesL)i−1(1−ρ+ρe−sL)i−1 (23)

C. Overall Service Time, Delay Distribution and Loss Rates:
Combining cases S0 and S1, the LST of the service time

of an arbitrary arrival at SSi, Xi, is given byHXi
(s) = (1−

ρ)HXi,S0
(s)+ρHXi,S1

(s) whereHXi,S0
(s) andHXi,S1

(s) are
given in Eqn. (22) and Eqn. (23) respectively. The distribution
for the waiting time and the expected blocking rates can then
be evaluated using Eqns. (17) and (16) and the methodology
of Section II-C.

IV. M ULTICHANNEL SCENARIO

This section extends the analysis to IEEE 802.16 operation
over an OFDMA PHY. The OFDMA PHY is modeled as a
set of m orthogonal groups of subchannels (each consisting
of multiple subcarriers) in the frequency domain. A SS is
assigned one such group when it wants to transmit data and at
most one packet is served from a SS in one frame. For both
polling scenarios, the analysis closely follows the structure
developed in previous sections and we only consider polling
at the start of the uplink subframe for illustrative purposes.
The main difference is thatm SSs may transmit at the same
time in the multichannel scenario. Thus the time before SS
i is polled relative to the start of polling is⌊ i−1

m
⌋TP and if

j SSs transmit their data before SSi, SS i has to wait for
⌊ j

m
⌋L seconds before it transmits its own packet. The rest of

the analysis stays the same and the details are thus omitted to
avoid repetition.

A. Arrival at an Empty Queue: State S0: The time till SSi is
polled in the frame isTDL+⌊ i−1

m
⌋TP . In case C1, the arrival

time t is then distributed asU [0, TDL+⌊ i−1
m

⌋TP ]. The remain-
ing time in the frame after SSi is polled isTS−TDL−⌊

i−1
m

⌋TP .
In the next frame, SSi has to waitTDL +⌈ n

m
⌉TP + ⌊ j

m
⌋L

seconds wherej is binomially distributed with parameters
B[i−1, ρ]. The LST of the distribution of the random variable
⌊ j

m
⌋L is given by

HBF (s) = I1−ρ(n−m+1,m)+

⌊ i−1

m
⌋

∑

j=1

[−I1−ρ(n−jm+1, jm)

+I1−ρ(n−(j+1)m+1, (j+1)m)]
−jsL (24)

whereI1−ρ(a, b) is the incomplete regularized beta function

defined asIx(a, b) =
R

x

0
ya−1(1−y)b−1dy

R

1

0
ya−1(1−y)b−1dy

. The LST of the

service time,Xi,S0,C1, is then given by

HXi,S0,C1
(s) = LST

[

U

[

0, TDL+

⌊

i−1

m

⌋

TP

]

+ TS−

⌊

i−1

m

⌋

TP +
⌈ n

m

⌉

TP +

⌊

B[i−1, ρ]

m

⌋

L+L

]

(25)

=
1 − e−s(TDL+⌊ i−1

m
⌋TP )HBF (s)

s(TDL+⌊ i−1
m

⌋TP )e−s(TS−⌊ i−1

m
⌋TP +⌈ n

m
⌉TP +L)

(26)
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Fig. 1. Polling at end of uplink subframe: Average delay,n = 5, i = 3.

Similarly, the LST of the service time for case C2,Xi,S0,C2,
is given by

HXi,S0,C2
(s) = LST

[

U

[

0, TS−TDL−

⌊

i−1

m

⌋

TP

]

+ TS+

TDL +
⌈ n

m

⌉

TP +

⌊

B[i−1, ρ]

m

⌋

L + L

]

(27)

=
1−e−s(TS−TDL−⌊ i−1

m
⌋TP )HBF (s)

s(TS−TDL−⌊ i−1
m

⌋TP )es(TS+TDL+⌈ n
m

⌉TP +L)
(28)

The probabilities of cases C1 and C2 are given byP [C1] =
TDL+⌊ i−1

m
⌋TP

TS
and P [C2] =

TS−TDL−⌊ i−1

m
⌋TP

TS
, respectively.

Combining cases C1 and C2, the LST of the service time,
Xi,S0, is given by

HXi,S0
(s) =

HBF (s)

sTSes(TS+⌈ n
m

⌉Tp+L)

[

1−e−s(TDL+⌊ i−1

m
⌋TP )

e−s⌊ i−1

m
⌋Tp

+

1−e−s(TS−TDL−⌊ i−1

m
⌋TP )

esTDL

]

(29)

B. Arrival at a Non-Empty Queue: State S1: Let j andj′ of the
i−1 SSs before SSi also transmit in the frame where the tagged
packet starts its service and the next frame, respectively.The
total service time in this case isXi,S1 = TS−TDL−⌈ n

m
⌉TP−

⌊ j
m
⌋L−L+TDL+⌈ n

m
⌉TP +⌊ j′

m
⌋L+L = TS−⌊ j

m
⌋L+⌊ j′

m
⌋L.

The LST of the service time for this case is

HXi,S1
(s) = e−sTS HBF (s)HBF (−s) (30)

C. Overall Service Time, Delay Distribution and Loss Rates:
Combining cases S0 and S1, the LST of the service time

of an arbitrary arrival at SSi, Xi, is given byHXi
(s) = (1−

ρ)HXi,S0
(s)+ρHXi,S1

(s) whereHXi,S0
(s) andHXi,S1

(s) are
given in Eqn. (22) and Eqn. (23) respectively. The distribution
for the waiting time and the expected blocking rates can then
be evaluated using Eqns. (17) and (16) and the methodology
of Section II-C.
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Normalized Load
Packet Drop Rate

K = 10 K = 30 K = 50

Simulation Analysis Simulation Analysis Simulation Analysis

0.911 0.031 0.037 0.003 0.007 0.001 0.002
0.993 0.061 0.057 0.024 0.023 0.014 0.014
1.092 0.111 0.104 0.086 0.081 0.084 0.079

TABLE I

PACKET BLOCKING RATES FOR BUFFER SIZES OF10, 30AND 50 FOR POLLING AT THE END OF THE UPLINK SUBFRAME.
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Fig. 2. Polling at end of uplink subframe: Second moment of delay, n = 5,
i = 3.
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Fig. 3. Polling at beginning of uplink subframe: Average delay, n = 5,
i = 3.

V. SIMULATION RESULTS

This section verifies the accuracy of our models by com-
paring them against simulations. The simulations were carried
out using aNS-2 based IEEE 802.16 module developed by
the WiMAX Forum. All results used the parameters:TS =
5ms, TDL = 3.75ms, TUL = 1.25ms and TP = 72µs.
The single (respectively, multi) channel operation had the
following parameters: channel bandwidth: 3.5MHz (10MHz),
Fast Fourier Transform (FFT) size: 256 (1024), oversampling:
8/7 (28/25), uplink data rate: 1.958Mbps (4.032Mbps), symbol
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Fig. 4. Comparison with piggybacked operation: Average delay, n = 5,
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Fig. 5. Multichannel operation with polling at beginning ofuplink subframe:
Average delay,n = 10, i = 7.

time: 72µs (102.9µs), useful symbol time: 64µs (91.4µs) and
69 (48) symbols in the frame. Both scenarios used 16QAM
3/4 (quadrature amplitude) modulation. The simulations use
a 2-state MMPP with transition rates ofσ12 = 3.15 and
σ21 = 1.94 and the ratioλ1 = 1.6λ2 for the arrival process
[8].

Polling at End of Uplink Subframe: Figs. 1 and 2 demon-
strate the closeness in the simulation and analytic resultsfor
the first and second moment of the packet delay when SSs are
polled at the end of the uplink subframe, for different buffer
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sizes. The corresponding packet blocking rates are shown in
Table I. The slight difference in the analytic and simulation
results for the delay for moderate loads is because our model
approximates the probability that a SS has a non-empty queue
and bandwidth was reserved in the previous frame byρ, the
probability that the queue is empty.

Polling at Beginning of Uplink Subframe: Fig. 3 shows the
close match between the average packet delay for various
buffer sizes when SSs are polled at the beginning of the
uplink subframe. Results for the delay’s second moment and
the blocking rates show similar trends and accuracy as those
for polling at the end of the uplink subframe, and have been
omitted due to constraints on the number of figures and tables.

Piggybacked Bandwidth Requests: With piggybacked oper-
ation, a SS may send bandwidth requests embedded in any
data packet they transmit. An arrival is more likely to miss
the poll in the frame of its arrival and thus have a longer wait
if SSs are polled at the start of the uplink subframe. Polling
at the end maximizes the likelihood of an arrival reserving
bandwidth in the frame in which it arrives. Our models thus
form upper and lower bounds on the delay for piggybacked
operation, as verified in Fig. 4.

Multichannel Scenario: The comparisons between simu-
lation and analysis for the multichannel OFDMA operation
are presented in Fig. 5. A 10MHz channel was used. It was
assumed thatm=5 groups of subchannels were available for
polled SSs and again the simulation and analytic results match
closely.

VI. CONCLUSIONS

This paper presented queueing models to evaluate the per-
formance of polling based operation of IEEE 802.16 networks
in terms of the packet delays. We considered both single carrier
as well as OFDMA based PHY layers under different polling
strategies. Expressions for the delay distribution and packet
blocking rates were obtained and the models were verified
using simulations.
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