
1

Unified Detection of Attacks Involving Injection of
False Control Commands and Measurements in

Transmission Systems of Smart Grids
Shantanu Chakrabarty and Biplab Sikdar

Abstract—Smart grid operation and monitoring are heavily
dependent on the correctness or aptness of supervisory control
commands. These command channels are a part of the SCADA
system, which is vulnerable to cyber-attacks. Maliciously injected
commands can cause a wide range of issues including blackouts.
However, the literature addressing this problem is limited. In
order to fill this gap, a generalized framework is proposed to
achieve simultaneous detection of attacks against various types
of control devices/equipments used in transmission systems, even
if they are carried out stealthily. First, generalized mathematical
models of such stealthy attacks are presented. Then, based on
these attack models, changes in the measurement covariance
matrix that occur during an attack are exploited to formulate
the proposed approach. We first mathematically characterize
these changes using the eigenvectors and trace of the covariance
matrix and then use them to develop a detection metric. It is
observed that when the model of a false data injection (FDI)
attack is considered, the developed detection metric is also
capable of detecting such attacks. The algorithm that results from
the detection metric is a generalized framework for detection
of attacks against all types of transmission system controls
and measurements. Moreover, the algorithm is non-iterative,
computationally inexpensive, and independent of both the type
of state estimation and communication technology used. The
proposed algorithm is found to be effective, when tested on the
IEEE 118-bus system.

Index Terms—Cybersecurity, False Data Injection (FDI) at-
tacks, Supervisory Control Protection.

I. INTRODUCTION

POWER systems serve the purpose of delivering elec-
trical energy from a place of generation to a place of

consumption (distribution), through a transmission system.
Traditionally, the system was monitored and controlled with
significant human involvement. However, in recent times, due
to advent of automation, a large part of day-to-day operation
of grids is delegated to a set of computers, networked by
means of communication channels. This interface between on-
field devices and the central computer system is known as
the Supervisory Control and Data Acquisition (SCADA) sys-
tem. SCADA systems leverage on measurement data (spread
across the system) to estimate the state of the system (by a
process known as state estimation [1]); and based on the state
information, supervisory control is executed. SCADA systems,
in general, are vulnerable to cyber attacks [2], [3]. Thus,
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entire processes of state estimation and supervisory control
are vulnerable to cyber attacks.

As far as transmission grid controls are concerned, there
are two broad types of control [4]. They are active power (P )
related controls where the active power flows are manipulated,
and reactive power (Q) related controls, where the reactive
power flows are manipulated. Q-related controls are widely
used for voltage (|V |) control, as Q is very strongly coupled
with |V |. Similarly, P related controls are used to control
power flows either to prevent overloads or to ensure flows
as per contracts. These controls are executed in the system
using a wide variety of devices, that are interfaced with the
SCADA system through Remote Terminal Units (RTUs). The
commands to execute these controls are sent from the Control
Centre (i.e., Energy Management Systems (EMS)) to these
RTUs. An attack on this supervisory control mechanism is
considered to have the highest impact [2], as the adversary
has access to the entire range of control. Hence, a malicious
operation of voltage or flow control can have catastrophic
effects, both in terms of grid operation and economics [5].
In this paper, such attacks are referred to as False Command
Injection (FCI) attacks [6]. The attacks on measurement data,
formally known as False Data Injection (FDI) attacks [7],
[8], essentially force wrong estimation of states, eventually
resulting in erratic control actions.

FDI attacks are one of the most extensively studied attacks
in the context of smart/automated grids [9]. In these attacks, an
adversary carefully injects false data that does not alert the Bad
Data Detection (BDD). Several methods have been proposed
for the detection of such attacks [9], using a wide variety of ap-
proaches. However, literature on attacks involving injection of
false supervisory control commands is sparse, when compared
to literature on FDI attacks. As far as security of active power
and voltage controls are concerned, the methods proposed in
[10], [11] deal with attacks on control which result from FDI
attacks. On the other hand, the methods in [6] and [12] are
only applicable to detection of false transformer tap and phase
shifter commands, respectively. A detailed discussion on all
these references is presented in Section II. Hence, there are
no works that address malicious command injection attacks
across all types of transmission controls (both P and Q types),
or provide an unified framework for detection of FDI and FCI
attacks. This paper is an attempt to fill this gap in literature.
In this paper, generalized mathematical models for stealthy
attacks involving injection of malicious commands are first
established. Based on these generalized attack models, the
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changes that occur in the measurement covariance matrix when
there is an attack are analyzed. These changes are based on the
trace and eigenvectors of the covariance matrix. The changes
are characterised as three propositions (that are proven). It
can also be shown that when the attack models (in terms
of measurements) of FDI attacks [8], [13] are considered,
the three proposed propositions still hold good. These three
propositions are then used to develop a detection metric.
Hence, the proposed algorithm using the developed detection
metric facilitates an unified scheme for detection of attacks
against both commands and measurements.

The main contribution of the paper can be listed as follows:

1) The paper addresses both sub-problems of transmission
grid control (active and reactive power) using a general-
ized approach that is independent of the control device.

2) The proposed algorithm detects the presence of both
false commands and data, using an unified scheme based
on changes in measurement covariance matrix (that are
characterised and proven).

3) The proposed algorithm:
a) is computationally inexpensive, as there are no

iterative steps involved;
b) does not have divergence issues as it is a single

step algorithm;
c) does not need historical data of measurements or

states;
d) is found to be effective when tested on attack

scenarios on the IEEE 118-bus system.
The paper is organized as follows: A detailed discussion

on literature is given in Section II. A discussion of attacks
on smart grids is presented in Section III with an emphasis on
stealthy attacks on transmission system controls. The complete
mathematical analysis pertaining to the development of the
proposed algorithm is given in Section IV, which is followed
by the proposed algorithm in Section V. Simulation studies are
discussed in Section VI. Finally, the conclusions are drawn in
Section VII.

II. LITERATURE REVIEW

In this section, some important references related to research
on attacks involving injection of false data and commands are
outlined. State estimators are vulnerable to carefully injected
measurement data that beats BDD, as discussed in [7], un-
der a DC power flow model. In [7], conditions required to
carry out such attacks are established. The same vulnerability
under AC power flow model is studied in [8]. Subsequently,
several approaches have been proposed to provide protection
from attacks that exploit these vulnerabilities. Following the
works in [7], [8], various other innovative ways of exploiting
vulnerabilities of state estimators have been proposed [14],
[15]. A review of FDI attacks is presented in [13], discussing
physical and economic impacts of such attacks. A generalized
FDI attack scheme that accounts for measurement uncertainty
is discussed in [16], where a countermeasure strategy is
proposed that uses a set of secured PMU measurements. An
unobservable attack with an intention to overload a line is

studied in [17], where the possible consequences of such 
attacks are analysed.

In order to address the threat of FDI attacks, numerous 
detection methods are proposed in literature. These methods 
can be broadly classified i nto t wo c ategories b ased o n the 
power flow m odel u sed t o e xpress t he r elationship between 
measurements and state variables. The first c ategory covers 
methods that consider a DC power flow m odel [18]–[24]. 
The second category includes methods that consider the non-
linear AC power flow based state estimators. In practical state 
estimators, AC power flow m odel i s u sed [ 16]. T here have 
been some interesting approaches proposed to detect FDI 
attacks under non-linear AC state estimators. In [25], dynamics 
of measurement variations are tracked using Kullback–Leibler 
(KLD) distance. In this approach, comparison with historical 
data is required. Details of practical implementation of FDI 
attacks under AC power flow m odel a re g iven i n [ 26]. In 
[26], execution of FDI attacks by firmware modifications 
and falsification o f d ata t ransmission i s d iscussed. A  novel 
graph theory based approach is presented in [27] based on 
application of outlier detection techniques. In order to make 
the detection approach independent of communication and 
networking technologies, an online detection scheme using 
load forecasts, generation schedules and synchrophasor data is 
proposed in [28]. A non-iterative technique is proposed in [29], 
that is based on flow measurements from SCADA and voltage 
measurements from PMUs. This approach is computationally 
inexpensive and independent of communication technologies. 
The use of machine learning algorithms, more specifically 
ELM-Based OCON Framework for FDI attack detection (un-
der AC power flows) can be seen in [30]. This approach, along 
with other machine learning approaches that use DC power 
flow model [21], [22], is effective for detection of FDI attacks 
after deployment. However, these approaches require a large 
training set and training is usually computationally intensive. 
FDI attacks can also be prevented or thwarted by means of 
proactive perturbation of branch susceptances [31] [32] [33]. 
These techniques in general are known as Moving Target 
Defence (MTD) [31]. In [31], the completeness, deployment 
and operational cost of MTD are studied in detail. The 
conditions such that MTD is complete in defeating FDI attacks 
using former branch parameters are proposed. Furthermore, 
guidelines for effective implementation of MTD are proposed 
based on the mathematical analysis. The analysis of [31] is 
done using DC power flow model. The use of distributed 
flexible AC transmission system (D-FACTS) for detection of 
FDI attacks can be seen in [34]–[36]. Such approaches are 
termed as proactive false data detection (PFDD) approach. 
The feasibility and limitations of PFDD in detection of FDI 
attacks are studied in detail in [34]. In [34], the minimum effort 
to use D-FACTS devices to detect FDI attacks are evaluated. 
Furthermore, the limitations of using PFDD are discussed. A 
novel federated deep learning scheme, termed “DeepFed” is 
developed to detect threats against industrial cyber-physical 
systems in general is presented in [37]. The methods in [31],
[34] are shown to be effective against FDI attacks. However, 
their applicability in the case of attacks involving command 
injections are not known. The application of Kalman filtering



3

to detect FDI attacks can be seen in [38], [39]. These methods
come under the purview of dynamic estimation [9]. A detailed
review of dynamic state estimation is presented in [40] and a
detailed review of FDI attacks under dynamic estimation is
given in [9].

In the case of attacks on supervisory control, the available
literature is limited when compared to FDI attacks. The works
in [41]–[47] consider security of commands in general. In
[42]–[45], coordinated cyber-physical attacks (CCPA) are con-
sidered. In these works, attacks involving line outages (tripping
the breakers) are studied, along the lines of the 2015 Ukraine
cyber-attack [48]. In [46], confidentiality attacks on cyber-
physical model of wide area monitoring systems are consid-
ered, centred around the generators. The command injection
attacks on generator circuit breakers (CBs) is studied in [49].
In [47], a novel method to detect false command data injection
(FcDI) attacks in the hierarchical control paradigm of the smart
grid is proposed. FcDI attacks are defined in [50] as insider
attacks where the adversary issues fake commands to various
system actuators like generators, transformers, breakers, etc.
In [47], a futuristic hierarchical control paradigm is presented
where decentralized local agents, containing their own state
estimators and local controllers. Furthermore, DC power flow
model is used in [47], and as a result, voltage control security
cannot be studied.

The literature that explicitly considers security of transmis-
sion system controls, discussed in Section I, is sparse. The
methods in [10], [11] deal with wrong control actions resulting
from an FDI attack. The methods that address attacks on
transformer tap and phase shifter commands are [6] and [12],
respectively. However, these methods are device specific and
are not extensible for detecting FDI attacks across the grid.

Based on the discussion of related literature above, the
contents of this paper differ from the existing literature in the
following ways. They are as follows:
• This paper explicitly considers the security of two sub-

problems of transmission grid operation and control in de-
tail using generalized mathematical models. This enables
the inclusion of both the sub-problems of transmission
grid controls, i.e., active power and voltage controls, un-
der a unified detection approach. Furthermore, any device
that deals with these sub-problems can be modelled and
incorporated in the developed detection scheme.

• The approach for considering security of transmission
controls is developed based on generalized mathemati-
cal models of the grid and transmission control. Thus,
this method is applicable under any implementation of
information and communication technology.

• Furthermore, when the mathematical model for the FDI
attacks are plugged in the analysis developed in this
paper, it is observed that the developed approach also
is able to detect these attacks. Hence, this paper deals
with a unified detection scheme for detecting FDI attacks
and FCI attacks against the two sub-types of transmission
control.

In summary, it is important that techniques are developed
that are capable of detecting intrusions on both measurements
and supervisory commands of transmission system controls.

This paper is an attempt to fill this gap in the literature and the
proposed algorithm detects intrusions on both measurements
and transmission system control commands. At the same time,
it is computationally inexpensive, non-iterative, and does not
require training or historical data.

III. ATTACKS AGAINST SMART GRIDS

Attacks on data (or measurements) [7] may result in wrong
control actions due to incorrect estimation. However, attacks
on control commands [2], [6], [12] are considered to be most
catastrophic [2], as the entire range of control actions are
available. In this section, the attacks (mainly, involving false
control commands) and their relevant mathematical models are
discussed.

A. False Data Injection (FDI) Attacks

When a measurement is manipulated, one or more state
variables are affected. Similarly, other measurements related
to these affected state variables also change. If these other
measurements are not manipulated according to the system
laws or rules (like power balance, operational requirements,
etc.), BDD is triggered. In order to achieve falsification of
measurements and avoid BDD, all the measurements that
depend on the changed state variables must also be falsified
[7], [8]. Such attacks are known as False Data Injection (FDI)
attacks. This type of attack is well-researched in literature
[18]-[29]. These attacks and their difference from other types
of attacks are further discussed in Section III-B.

B. False Command Injection (FCI) attacks against Transmis-
sion System Control

In general, these attacks involve an adversary taking over
the supervisory control of the power grid. These attacks are
usually catastrophic [2], [5], [51]. The types of controls in a
transmission system are mentioned in Section I. The variables
associated with transmission grid controls are defined first in
Section III-B1, which is followed by an introduction to stealthy
attacks involving false command injections in Section III-B2.
Finally, the mathematical conditions required for stealthy com-
mand injections are derived and discussed in Section III-B3.

1) Variables in Transmission Grid Control: In a trans-
mission grid control, mathematically, there are two types of
variables, defined as follows:

Definition 1. A controlled variable, also known as constrained
variable [52], is a variable that is set to a rated or desired
value during the grid operation, based on various operational
and contractual requirements.

Definition 2. A controlling variable, also known as adjustable
variable [52], is a variable that is varied by means of
specifically installed equipments or control mechanisms to
ensure that the requirements with regard to the controlled
variable (or constrained variable) are met.

These variables defined in Definitions 1 and 2 are princi-
pally similar (or analogous) to the ones seen in control theory,
as one or more variables (controlling variables) are tuned to
achieve a set or desired value of the controlled or constrained



4

variable. However, in practical grid operation, the variables
defined in Definitions 1 and 2 and the mechanism of achieving
the desired value of controlled (or constrained variables) are
different when compared to control theory [6], [12], [52]–[54].

In power grids, the controlling variable is one among many
variables that can affect the controlled/constrained variable.
The controlling variables differ from other variables in two
main aspects. The first aspect is that controlled variables are
highly dependent on (or sensitive to) the controlling variables
and the second aspect lies in the ability of the operator/central
computer to control that variable by suitable installation of
equipments, like a tap changing transformer or a phase shifter.

In the context of transmission control sub-problems, dis-
cussed in Section I and [4], the controlled variable may be
a state variable, like in case of voltage control using tap
changers, where the tap ratio (t) is the controlling variable and
the voltage magnitude (|V |) is the controlled variable. On the
other hand, the controlled variable may be an explicit function
of state variables, like in case of active power control using
phase shifters, where the phase shift (φ) is the controlling
variable and the active power flow (Pflow) is the contolled
variable.

2) Requirements for Stealthy False Command Injection
(FCI) Attacks: False Command Injection (FCI) attacks, dis-
cussed in [6], [12], [49], [50], are formally defined below in
Definition 3.

Definition 3. False Command Injection (FCI) attacks are the
class of attacks where the adversary injects a set of malicious
commands to compromise the control mechanisms of various
installed equipments to disrupt the operation and control of a
smart grid/power grid.

An illustration of the exchange of data and commands be-
tween the Control Centre (EMS) and a substation is presented
in Figure 1. The substation houses the control equipments,
for example, on load tap changing transformers (OLTCs) and
phase shifting transformers (PSTs). These control equipments
are actuated using RTUs that relay the commands received
from the EMS, shown in Figure 1 using dashed lines with
direction indicative of the information flow. Similarly, the mea-
surement data, when collected, is relayed from the substation
to the control centre, shown in Figure 1 using solid lines with
the direction of information flow. It is worth noting that Figure
1 is an illustration of the mechanism of exchange of data and
commands and is independent of the type of information and
communication technology used for automation. Whenever an
adversary tampers measurement data, i.e., FDI attacks [7], [8],
the adversary tampers the measurement data exchange between
the substation and control centre (illustrated using solid lines
in Figure 1). In FDI attacks, the necessity to beat the BDD is
paramount [7], [8]. On the other hand, in case of FCI attacks,
the adversary essentially injects a false or malicious command
(or falsifies the command) through the channels used to relay
the control command from the control centre to the equipment
at the substation, shown using dashed lines in Figure 1. It
is important to note that in case of FCI attacks defined in
Definition 3, evasion of BDD is not a necessity, unlike FDI
attacks.

Control
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State
Estimator

State
Estimator Data

EMS
Servers

Dedicated Line

Substation

Data
Collector

Remote
Terminal

Unit
(RTU)

User
Interfaces

Remote
Access

Networks

Remote
Access

Networks
××

Control
Devices

(e.g. OLTC, PST
, FACTS devices)

Adversary Adversary×

× ×

××

—– Measurement data Control Commands × - Vulnerability

Fig. 1. An illustration of the exchange of measurement data and control
commands between Control Centre and Substation.

In order to develop detection algorithms to protect trans-
mission system control, certain practical aspects of operation
must be taken into account while developing the attack model.
In case of transmission system controls, the operators either
at the substation, control centre, or both, usually observe or
keep track (either manually or automatically) of the relevant
controlled and controlling variables. For example, if a OLTC
is installed for voltage control, the operators keep track of
the controlled variable, i.e., voltage, |V |, and the controlling
variable, i.e., tap ratio, t. In order to develop a detection
method that is applicable for a wide range of attack scenarios,
it is necessary to consider attack scenarios (or vulnerabilities),
where the adversary injects malicious commands and hides
the presence of these commands from both the operator at the
substation and the control centre.

In other words, in order to attack control equipments (like
OLTCs and PSTs) and remain stealthy, the adversary has to
evade the attention of both the operator and the control centre
(BDD). Such attacks are called Stealthy False Command
Injection attacks, defined formally in Definition 4. On the
other hand, FCI attacks where the adversary injects malicious
commands and does not hide the presence of these commands
are called Blatant FCI attacks.
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Definition 4. Stealthy False Command Injection attacks are
a class of FCI attacks where the adversary injects a set
of malicious commands and hides the presence of these
commands from the operator at the substation and control
centre by ensuring that the measured and estimated values of
controlled and controlling variables, defined in Definitions 1
and 2, are close to the values selected by the control centre.

Mathematically, to achieve such attacks, the measured
and estimated values of both the controlling and controlled
variables must remain close to the values selected by the
control centre. In this paper, attacks pertaining to transmission
control sub-problems (active power and voltage control) are
considered.

3) Mathematical Conditions to Carry out Stealthy False
Command Injection (FCI) Attacks: The mathematical condi-
tions to carry out the stealthy FCI attacks in the context of
transmission system control are considered. These conditions
in the first case where both the controlled and controlling
variables are state variables are stated and proven in [6]. In this
paper, the conditions for the second case, where the controlled
variable is an explicit function of controlling and other state
variables is established in Proposition 1. It is worth noting
that these two sets of conditions are general and cover various
transmission network control equipments (like transformers,
FACTS devices, etc.).

Proposition 1. Let z =
[
z1 · · · znm

]T
be the mea-

surement vector and x =
[
x1 · · · xns

]T
be the state

vector. Suppose c =
[
xi xi+1 · · · xi+k

]T
and zc =[

zl zl+1 · · · zl+k

]T ∀ i ≥ 1, l ≥ 1, k ≤ (ns − i) and
k ≤ (nm − l) be two same-length vectors (of length (k + 1))
containing controlling variables and controlled variables, re-
spectively. Let the vector, zsel

c ∈ R(k+1)×1, contain values of
controlled variables (in vector zc) selected by the EMS, where,
the superscript, sel, is used to denote quantities selected by
the EMS. Let the controlled variable, zl+k, be expressed as
an explicit function, zl+k = hl+k(xi+k,Λi+k), where Λi+k is
the set containing other state variables except the controlling
variable, xi+k. Let a vector, d ∈ R(k+1)×1, be defined such
that its elements, di+k ∈ Λi+k ∀ i ≥ 1, k ≤ (ns − i). Let
a set, Θi+k be defined such that Θi+k = Λi+k − {di+k}.
For an adversary to launch a malicious command to change
c and remain hidden from both the operator and BDD, c, d
and measurements dependent on c and d must be modified to
ensure that zc = zsel

c + e, ∀ e ∼ N (0, σ) .

Proof. Under normal conditions, in the absence of a cyberat-
tack, we have

zn = h(xn) + e, (1)

where, superscript n is used to denote quantities under normal
conditions. The state vector is of the form

xn =
[
xn1 xn2 · · · (cn)T · · · (dn)T · · · xnns

]T
.
(2)

When there is no cyber-attack, the controlled and controlling
variables are at the values selected by the EMS. Thus, based
on definitions in the statement of this proposition, we have
znc = zsel

c .

When an adversary injects false commands to maliciously
modify zc, we have

zb = h(xb) + e, (3)

where, superscript b is used to denote quantities under a blatant
or non-stealthy attack.

In order to keep this malicious change hidden from both
the operator and EMS, the adversary has to ensure that
zhid
c ≈ znc = zsel

c and chid = cn, where the superscript, hid,
denotes quantities under a stealthy attack. To achieve these
requirements, the adversary has to first solve the system of
equations 

zsel
l

zsel
l+1
...

zsel
l+k

 =


hl(x

n
i , di,Θ

b
i )

hl+1(xni+1, di+1,Θ
b
i+1)

...
hl+k(xni+k, di+k,Θ

b
i+k)

 , (4)

for every controlled variable, to estimate the values of di,
di+1, · · · , di+k. Let the vector containing the solution for
all controlled variables, obtained by solving the system of
equations (4), be denoted by dsol

(
where the superscript, sol,

is used to denote solutions to (4)
)
. In order for the adversary

to evade the attention of the operator at the substation, and/or
control centre, the measured and estimated values of c and d
must be cn and dsol, respectively, to ensure that zhid

c = zsel
c +e,

∀ e ∼ N (0, σ). Hence, the state vector in a stealthy attack
must be of the form,

xhid =
[
xb1 xb2 · · · (cn)T · · · (dsol)T · · · xbns

]T
.

(5)
In order to beat BDD, according to [8], the following vector,

E = h(xhid)− h(xb), (6)

is added to (3), resulting in

zb + E = h(xhid) + e. (7)

Thus, based on (7), it is clear that power balance is maintained,
and thus BDD gets beaten. From the form of xhid and (6),
it is clear that E has non-zero entries corresponding to the
measurements that are functions of c and d.
Hence proved.

Based on above discussions and Proposition 1, certain
remarks can be made. They are as follows:
• The conditions derived in Proposition 1 are sufficient

conditions.
• Consider a pair of controlled and controlling variables,

defined in statement of Proposition 1, individually, i.e.,
xi+j and zl+j ∀ i ≥ 1, l ≥ 1 j = 0, 1, · · · , k. From the
outcome of Proposition 1, it can be seen that xi+j , di+j

and measurements dependent on xi+j and di+j must be
modified to ensure that any malicious command remains
hidden. Practically, this implies that if di+j is chosen as
a state variable related to voltage magnitude or angle at
the substation that houses the control equipment, then
the adversary can carry out this attack by taking over
one substation. This is because the information available
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at the substation that houses the control equipments is
sufficient for the adversary to launch the attack.

• The attack model and its related derivations in Proposition 
1 are relevant only for control sub-problems where the 
controlled variables are an explicit function of state 
variables, i.e., zl+k = hl+k(xi+k, Λi+k), or in other words, 
the controlled variables are only measurements, like in 
case of active power control.
• As discussed before, there is another set of problems 

where the controlled variables can be both state variables 
and measurements, like in case of voltage control, where 
the controlled variable, i.e., voltage magnitude is a state 
variable and can also be measured using voltmeters. In 
such situations, mathematically, for a node k, the voltage 
magnitude measurement, |Vk|meas = |Vk| + ek ∀ e ∼ N (0, 
σ), where superscript, meas, denotes measured value. 
Mathematically, |Vk|meas can be seen as a measurement 
which is function of state variable, |Vk|. The mathematical 
conditions required to launch a stealthy FCI attack 
(defined in Definition 4) in such situations are derived in 
[6], as stated before in Section III-B3.

• State variables are usually voltage magnitudes and angles 
when the system under study does not have control 
equipments like tap changing transformers, phase shifting 
transformers, etc. However, in transmission system where 
there are such equipments, the equations are modelled 
to take these equipments into consideration [1]. In other 
words, state estimation is modified to incorporate them 
into the formulation [55], [56]. As a result the controlling 
variables like tap ratio and phase shift gets included 
in the state vector [55]. It is important to note the 
mathematical algorithms remain unchanged. Hence, it can 
be mathematically and intuitively inferred from [55] that 
the principles related to BDD remains unchanged [55].

IV. PRINCIPLES OF DETECTION METRICS

In this section, the principles used in the formulation of
indices used for the purpose of detection of FDI and FCI
attacks are discussed in detail. The discussion is done based
on the attack model in Proposition 1.

A. Mathematical Model of Measurements Under Normal and
Attack Scenarios

Let the measurement vector at the kth snapshot be znk ∈
Rnm . The measurements over t instants (or snapshots) can
be consolidated as a matrix Zn ∈ Rnm×t, where nm is the
number of measurements, such that

Zn =
[
zn1 zn2 · · · znm zn(m+1) · · · znt

]
, (8)

also shown in Figure 2, where, n in the subscript represents
quantities under normal operating conditions (when there is no
cyber-attack). In other words, the measurement vector under
normal condition, i.e., zn at mth snapshot is represented
by znm. This convention can be similarly extended to the
state vector, xn. The illustration in Figure 2 is based on the
practical aspects of grid operation and monitoring [57]. State
estimation is usually done every few minutes and measurement

data is available once every few seconds. Furthermore, further
advancements in information and communication technologies
would provide more measurement snapshots between two state
estimations. In the algorithm developed in this paper, the time-
frame between two state estimations is the time-frame of the
detection window.

zn1 zn2 znm zn(m+1)zn(t−2) znt

Estj Estj+1 Estj+2

Winj
(
Zn in (8)

)
Winj+1

Estj - jth estimation instant

Winj - jth detection window

Fig. 2. Measurement snapshots over time

The measurements (in vector znm) are related to the states
(in vector x), by the relation

znm = h(xnm) + em. (9)

The measurement noise, em ∼ N (0, σ) [1]. So, E(em) = 0
and E

[
em(i)em(j)

]
= 0, where, E(·) is the expectation

operator. Measurements related to controlled variables, defined
in Proposition 1, i.e., in zc, are included in the measurement
vector znm. The controlling variables, in c, are always in-
cluded in the state vector xnm. In certain cases, provision
for measurement of controlling variables is available. In such
cases, the measured values of controlling variables also be-
come a part of the measurements vector.

Under normal conditions, when there is no cyber-attack, the
measurement model of (9) can be re-written as

znm = h(xnm) + em,

= ztruen + em, ∀ m, (10)

based on principles of state estimation and power system
analysis in general [1], [57], [58]. The state vector under
normal condition is of the form xn in (2).

When the stealthy attack established in Proposition 1 is
carried out, we observe

zbm + E = [h(xhid
m )− h(xnm)] + h(xnm) + em,

= ∆ha + ztruen + em = zam. (11)

In (11) and the subsequent analysis, [h(xhid
m ) − h(xnm)] is

represented using ∆ha for convinience and for the remainder
of the paper, ∆ha(j) indicates the jth element of the vector
∆ha. The subscript ‘a’ in (11) represents quantities under
a cyber-attack. The state vector under a stealthy attack, i.e.,
xhid
m in (11), is of the form xhid in (5). The measurements

affected by the attack are represented by the set ZM =
{z(f1), z(f2), · · · , z(fb)}, where, f1, f2, · · · , fb, indicate in-
dices of affected measurements, represented by the set M .
So, ∆ha(j) 6= 0 if j ∈M . Similarly, all measurement vectors
after the mth snapshot can be written as

zai = ∆ha + ztruen + ei, ∀ i = (m+ 1), · · · , t. (12)
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B. Covariance Matrix of Measurements - Under Normal Con-
ditions and FCI Attack

The measurements can be treated as random variables,
denoted by zn under normal conditions, and by za under a
FCI attack established in Proposition 1. The covariance matrix
for any random variable, z, is

C = E[(z− E(z))(z− E(z))T ], (13)

where, the diagonal entries are

C(ii) = E[(z(i)− E(z(i)))2], (14)

and the off-diagonal elements are

C(ik) = E[(z(i)− E(z(i)))(z(k)− E(z(k)))]. (15)

Under normal conditions, the expected value of the mea-
surement vector is

E(zn) = E(h(x) + e) = ztruen . (16)

Similarly, under a FCI attack, the expected value of measure-
ment vector is

E(za) = E(h(x) + e + ∆ha)

= ztruen +
(t−m+ 1)

t
∆ha. (17)

As discussed in Section IV-A, ∆ha has non-zero entries for
certain measurements denoted by the set, ZM . Hence, we
observe that

E(za(w)) =

ztruen (w) +
(t−m+ 1)

t
∆ha(w) ∀ w ∈M

ztruen (w) ∀ w /∈M .
(18)

Under normal conditions, based on (10), (13) and (16), the
covariance matrix, Cn, can be written as

Cn = E[eeT ]. (19)

Based on (9), (14) and (15), we get

Cn =

 σ2
1 · · · 0
...

. . .
...

0 · · · σ2
nm

 . (20)

Thus, based on the aspects discussed above, the covariance
matrix is essentially a diagonal matrix with individual vari-
ances (of measurement errors) in the diagonal. However, when
noise does not follow Gaussian model, Cn is not perfectly
diagonal, which is discussed in detail in Section V-A.

In the case of a FCI attack, the measurement model differs
depending on the indices of measurements being affected
and also on the snapshot at which the control command
manipulation is introduced. We have

zak(w)−E(za(w)) = A1∆ha +ew, ∀ k = 1, · · · , (m−1),
(21)

where, A1 =
(m− t− 1)

t
, and

zak(w)−E(za(w)) = A2∆ha+ew, ∀ k = m, · · · , t, (22)

where, A2 = 1 + A1 and w ∈ M . However, when w /∈ M ,
we have

zak(w)− E(za(w)) = ew, ∀ k = 1, · · · , t. (23)

Hence, when w ∈M , [zak(w)−E(za(w))] can either take a
value of (A2∆ha +ew) or (A1∆ha +ew). So, when w ∈M ,
[zak(w) − E(za(w))] can be represented by (D∆ha + ew),
where, D is a random variable that takes a value of either
A1 or A2, depending on the snapshot at which the adversary
performs the FCI attack. The expected value of D can be
obtained as

E(D) = A1ρ1 +A2(1− ρ1)

= 1− ρ1 +A1 = γ, (24)

where, p(D = A1) = ρ1 and 0 < p(D = A1) < 1. Similarly,

E(D2) = ρ1(1− ρ1) + γ2 = ζ > 0. (25)

Let Ca be the covariance matrix under an FCI attack. Based
on (14), the diagonal elements of the covariance matrix can
be written as

Ca(i, i) = σ2
i ∀ i /∈M. (26)

However, when i ∈M , we get

Ca(i, i) = E
[
(em(i) +D∆ha(i))2

]
= σ2

i + ζ∆ha(i)2. (27)

Similarly, based on (15), the off-diagonal elements of the
covariance matrix can be written as

Ca(i, j) = 0, (28)

if either i or j /∈ M . However, if both i and j ∈ M , we get

Ca(i, j) = ζ∆ha(i)∆ha(j). (29)

C. Observations Useful for Detection of FCI Attacks

The covariance matrices under both normal conditions (Cn)
and FCI attack (Ca) were derived in Section IV-B. Important
observations can be made from the deviations of Cn and Ca

that enable the detection of FCI attacks. These observations
are presented as three propositions in this section.

Proposition 2. The trace of the measurement covariance
matrix under a FCI attack is greater than the trace seen under
normal conditions (when there is no cyber attack), i.e.,

Tr(Ca) > Tr(Cn). (30)

In other words, the sum of eigenvalues of the measurement
covariance matrix increases under an FCI attack.

Proof. The relation in (30) can be shown easily using (20),
(26) and (27). From (20), Tr(Cn) can be written as

Tr(Cn) =

nm∑
j=1

σ2
j . (31)

Now, from (26) and (27), Tr(Ca) can be written as

Tr(Ca) =

nm∑
j=1

σ2
j +

∑
j∈M

ζ∆ha(j)2. (32)
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Thus, from (25), (31) and (32), it can be inferred that

Tr(Ca) > Tr(Cn).

Proposition 3. The absolute values of off-diagonal elements
of the covariance matrix given by the indices (i, j) such that
i, j ∈ M , increases under a FCI attack. In other words, these
off-diagonal elements become non-zero, under a FCI attack.

Proof. This can easily be inferred from (20), (28) and (29).

Proposition 4. Under normal conditions, the eigenspace of
the covariance matrix is spanned only by the standard basis
vectors. However, under a FCI attack, the eigenspace is
spanned by a combination of standard basis vectors, cor-
responding to true measurements and other vectors (which
are not standard basis vectors), corresponding to affected
measurements. In other words, Cn has eigenvectors which are
standard basis vectors. However, Ca has some eigenvectors
which are not standard basis vectors having non-zero entries
that reflect affected measurements.

Proof. Let λ
′

be an eigenvalue of a matrix, A. In order to
obtain the eigenvector corresponding to λ

′
,

(A− λ
′
I)X = 0, (33)

must be solved, where X is the eigenvector corresponding
to λ

′
. X can be found using Gaussian elimination, i.e., by

transformation of the augmented matrix, [A− λ′I | 0] to row
Echelon form, followed by back substitution. However, to
prove this observation, estimation of the eigenvectors is not
necessary.

It can be seen from (20) that Cn is a diagonal matrix. Thus,
it can be easily inferred that the eigenvalues of Cn are given
as λj = σ2

j , ∀ j = 1, · · · , nm. Similarly, the eigenvectors
can be estimated using (33) as standard basis vectors of Rm.
Hence, eigenvector corresponding to λj , i.e., Xj of Cn can
be written as Xj = ej where, ej ∈ Rnm and ej(k) = 1 if
k = j, otherwise, ej(k) = 0 ∀ k 6= j.

In the case of Ca, from Proposition 3 and (28) and (29), the
matrix is not diagonal. Hence, the eigenvectors of Ca have a
different form when compared to that of Cn. In order to show
that eigenvectors corresponding to falsified measurements are
not standard basis vectors, the matrix Ca is rearranged as

Cr
a =

[
Ctrue

a 0a×b

0b×a Cfal
a

]
, (34)

where,

Cfal
a =

 (σ2
f1

+ ζ∆ha(f1)2) · · · ζ∆ha(f1)∆ha(fb)
...

. . .
...

ζ∆ha(f1)∆ha(fb) · · · (σ2
fb

+ ζ∆ha(fb)
2)

 ,

Ctrue
a =

 σ2
l1
· · · 0

...
. . .

...
0 · · · σ2

la

 ,
and 0a×b is a matrix of size a × b containing all zeros. The
set {l1, · · · , la} contains the indices of measurements which

remain unaffected in a FCI attack. Thus, from (34), it can
be seen that Cr

a is a block diagonal matrix. So, the set of
eigenvalues and eigenvectors of Cr

a is the union of those of
Ctrue

a and Cfal
a .

Similar to Cn, the eigenvalues of Ctrue
a are of the form

λj = σ2
j , ∀ j = l1, · · · , la and the eigenvectors are of the

form Xlj = elj where, elj ∈ Rm and elj (k) = 1 if k = lj ,
otherwise, elj (k) = 0 ∀ k 6= lj .

In order to prove this proposition, it is sufficient to show
that the eigenvectors corresponding to Cfal

a are not standard
basis vectors (like that of Cn and Ctrue

a ).
Let Xfj be an eigenvector for a eigenvalue λfj ∈ R (as

these matrices are symmetrical). Let Xfj = efj , i.e., Xfj is a
standard basis vector. Then,

Cfal
a Xfj =



ζ∆ha(f1)∆ha(fj)
...

(σ2
fj

+ ζ∆ha(fj)
2)

...
ζ∆ha(fb)∆ha(fj)

 6= λfjefj , (35)

which results in a contradiction. Thus, the eigenvector Xfj

must have non-zero entries at indices other than fj , eventually
reflecting affected measurements (due to a FCI attack). This
observation holds good for other eigenvectors of Cfal

a .

Note that Propositions 2, 3 and 4 can also be formulated
similarly for FDI attacks (discussed in Section III-A) and
blatant command injection attacks (discussed in Section III-B),
using their appropriate attack models. It is worth noting
that these propositions are independent of the type of state
estimation employed.

It is worth mentioning again that the conditions in Proposi-
tion 2, 3 and 4 are sufficient conditions. Consider a situation
where an adversary injects false data without any consideration
of Bad Data Detection (BDD). Such an attack where false
data is injected without any consideration of BDD does not
qualify as a False Data Injection (FDI) attack [7], [8]. This
is because the BDD immediately detects these measurements
as anomalous. If the analysis in Section IV is performed with
this attack, which is not a FDI attack, it can be analytically
shown that the values of quantities in Propositions 2, 3 and 4
increase. However, this attack has no meaning from a practical
point of view. Hence, the point of Propositions 2, 3 and 4 is to
show that when a FCI attack occurs, we observe an increase in
the values of certain quantities when compared to their values
seen under normal conditions.

Hypothetically, if an adversary causes all the measurements
to change by a constant value, say a, then, we observe that

Tr(Cn) =

nm∑
j=1

σ2
j

Tr(Ca) =

nm∑
j=1

σ2
j + nmζa

2.

Thus, it can be inferred that Tr(Ca) > Tr(Cn). The diagonal
elements of Ca are given by

Ca(i, j) = ζa2 i 6= j.
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Hence, it can be inferred that Proposition 2 and 3 hold good.
Also, following the steps of the proof of Proposition 4 with
the above attack model, it can easily be seen that with full Ca

matrix, the statement of Proposition 4 also holds good. Thus,
based on the above discussion, it can be concluded that the
Propositions 2, 3 and 4 and subsequently, an algorithm based
on these propositions can detect such attacks.

V. PROPOSED ALGORITHM

Based on the principles discussed and established in Section
IV, a simple algorithm can be developed that enables detection
of attacks on various types of commands and measurements.
Before the formal formulation of the algorithm, it is important
to consider some practical implications of the propositions
proposed and proven in Section IV-C. First, based on the
propositions, the detection indices are defined. Then, an algo-
rithm is formulated to detect the injection of false commands
and data.

A. Detection Metrics and Indices

The proposed algorithm incorporates detection metrics di-
rectly based on the propositions in Section IV-C. With C as
the computed covariance matrix, the detection involves the
following quantities (based on Propositions 2, 3 and 4):
• Tr(C).
• C(ij), where, i 6= j.
• Eigenvectors of C, collected in a matrix, V′.

As defined before in Section IV-A, the variance of the ith

measurement error is σ2
i . The measurement error is thus con-

sidered in the range [−κσi, κσi] (depending on the confidence
interval). In practical system operation, it is necessary to
take into account the maximum value of variance possible
(or the theoretical limit), to account for non-idealities in
measurement noise, as practical measurement noise observed
is approximately Gaussian. Based on Popoviciu’s inequality
[59], the maximum variance possible can be calculated to be
σ2
i |max = κ2σ2

i . This is taken into account in the development
of the algorithm.

In order to describe the algorithm formally, it is necessary
to define indices that use the quantities mentioned above. The
indices are defined as follows:

βtr = Tr(C), (36)

βcov =
∑
i,j∈Υ

C(ij), (37)

βeig =
∑
i,j∈Ψ

V′(ij)− nm. (38)

Here, the set Υ contains the ordered pair, {(i, j) : |C(i, j)| >
κ2σ2

i }. Similarly, another set, Υd is defined as {i : |C(i, i)| >
κ2σ2

i }. On the other hand, Ψ contains the ordered pair {(i, j) :
|V′(i, j)| 6= 0}. It is worth noting that these sets (viz. Υ, Υd

and Ψ) are direct consequences of Propositions 3 and 4. These
indices and their values relative to each other depend on the
sensitivities of related electrical parameters (both states and
measurements) to the malicious command. These sensitivities
generally vary significantly, depending on factors like local

topology, present system state, rated values (of power flows)
etc.

Finally, the detection metric involves adding the individual
indices as

β = βtr + βcov + βeig. (39)

Based on definitions in (36), (37) and (38), when there is
no cyber-attack, we can see that the possible values of βtr,
βcov and βeig are as follows:

βtr =

nm∑
w=1

σ2
i

= nmσ
2 , if σi = σ ∀ i = 1, · · · , nm.

Similarly, βcov = 0 and βeig = 0. Hence, from (39),

βid = nmσ
2, (40)

where, superscript, id, is used to denote value of β ideally
under normal conditions. When Popoviciu’s inequality [59] is
invoked, we get the maximum possible value of β as

βp = nmκ
2σ2, (41)

where, superscript, p, is used to denote value of β. A value of
β which is appreciably larger than that given by (40) and (41)
is indicative of an attack. In other words, an attack is detected
if the value of β is found to be higher than a threshold value,
Th, as shown in Algorithm 1. The value of Th is tuned as
per the system where the detection algorithm is used, such
that Th > βp. The threshold selection is further discussed in
Section VI-A.

B. Detection Algorithm

This algorithm is based on the results of Propositions
2, 3 and 4. The algorithm first computes the measurement
covariance matrix, C. Then, the indices βtr, βcov and βeig and
detection metric β are computed and the elements of sets Υ,
Υd and Ψ are determined. A significant increase in the value of
β indicates the presence of an attack and the elements of sets
Υ, Υd and Ψ give information of the affected (FCI attacks)
or compromised (FDI attacks) measurements. The steps in the
algorithm are presented in Algorithm 1.

VI. RESULTS AND DISCUSSION

The proposed algorithm is tested on the IEEE 118-bus
system [60]. As stated before in Section IV-A, this algorithm
facilitates the detection of both false commands (supervisory
control) and data (measurement data). In order to validate the
effectiveness of Algorithm 1, attack scenarios are considered
where sets of falsely injected commands and data are intro-
duced, and compared with the normal scenario (when there
is no cyber-attack). There are three broad categories of attack
scenarios considered. They are:
• Case 1: Attacks involving only false commands.
• Case 2: Attacks involving only false data.
• Case 3: Attacks involving both false data and commands.
In order to consider attacks on supervisory control, six

transformers are considered, where, three of them are tap
changers (OLTCs) and the other three are phase shifters
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Algorithm 1: Proposed Generalized Algorithm for
detection of FCI and FDI attacks

Data: The measurements over t instants, i.e., Zn and
predefined threshold, Th

Result: Trig and sets Υ, Υd and Ψ
1 Compute the covariance matrix, C;
2 Estimate the eigenvectors of C and store in matrix V′;
3 Estimate βtr = Tr(C);
4 Set βcov = 0 and βeig = 0;
5 for i← 1 to nm do
6 for j ← 1 to nm do
7 if i ∼= j; then
8 if |C(i, j)| >= κ2σ2

i ;
9 then

10 Include (i, j) in Υ;
11 βcov = βcov + C(i, j);
12 else
13 Set C(i, j) = 0;

14 if i == j; then
15 if |C(i, i)| >= κ2σ2

i ;
16 then
17 Include i in Υd;

18 for i← 1 to nm do
19 for j ← 1 to nm do
20 if V′(i, j) ∼= 0;
21 then
22 Include (i, j) in Ψ;
23 βeig = βeig + V′(i, j);

24 Adjust βeig = βeig − nm;
25 Calculate β = βtr + βcov + βeig;
26 if β > Th then
27 Trig = 1;
28 Attack is detected;
29 Analyse Υ, Υd and Ψ to locate affected/tampered

measurements and commands;
30 else
31 Trig=0;
32 No Attack;

(PSTs). The OLTC tap ratios are in the range of [0.9, 1.1],
and they increment/decrement in steps of 0.025. Similarly, the
PSTs operate in the range of [−32°,+32°], in steps of 1.3333°.
The details pertaining to the location of these transformers
are given in Table I. On the other hand, in case of attacks
involving injection of false data, measurement data is modified
such that the voltage estimates of 4 nodes are influenced.
The nodes are denoted as a set Mod = {5, 48, 102, 117}.
The true voltages (in pu) of these nodes are given by the
set Tr = {0.9991, 1.026, 0.9891, 0.9738}. Let the state vector
containing the true values of voltages in the set Tr be denoted
as xtrue.

In case of transformers, the details pertaining to normal
operation, i.e., the values of control variable (|Vk| or Pkm)

TABLE I
LOCATION OF THE OLTCS AND PSTS IN THE IEEE 118-BUS SYSTEM

S.no. Type1 Branch2 fb3 tb4

1 OLTC 36 30 17
2 51 38 37
3 182 114 115
4 PSTs 101 62 67
5 127 81 80
6 148 80 96

1 Type of transformer
2 Line or Branch number
3 From Bus
4 To Bus

TABLE II
THE SPECIFIED VALUES OF CONTROLLING AND CONTROL VARIABLES.

S.no. Type1 csp1
2 csp2

3

1 OLTC 1.025 0.9934
2 1.05 0.9729
3 1.025 0.95
4 PST 0.0233 -0.1619
5 0.0233 -0.2697
6 0.0466 0.3850

1 Type of transformer
2 csp1 = tspkm, for OLTCs and csp1 =
φspkm, for PSTs

3 csp2 = |Vkm|sp, for OLTCs and
csp2 = P sp

km, for PSTs

and controlling variable (tkm or φkm) when there is no cyber
attack are given in Table II, where all quantities are in per-
unit (p.u). To carry out stealthy command injection attacks, a
malicious command is injected such that the taps and phase
shifts are changed by one setting (i.e., one discrete step, also
|∆c| = 0.025, for OLTCs and |∆c| = 1.333°, for PSTs), using
the principles in [6] and Proposition 1.

In case of FDI attacks, measurement data is falsified to
change the voltage estimate of the nodes in Mod from
their true value, contained in the set Tr , such that, xest =
xtrue + a × Γ. Here, xest is state vector that contains the
wrong estimate of voltages in Mod . Γ is a vector containing
zeros except for indices of voltages of nodes in set Mod ,
where the entries of Γ are 1. The FDI attack is carried out
using the principles in [8], such that an attack vector given
by h(xest) − h(xtrue), is added to the measurement vector.
The value of a is varied to create different attack scenarios
to demonstrate the effectiveness of Algorithm 1 against FDI
attacks.

In practical power systems, the measurements are noisy and
imperfect. So, a measurement noise (Gaussian) of 1% (σ) for
power measurements and 0.3% for voltage measurements [61],
[62] is considered. In order to test the effectiveness of the
algorithm in the presence of noise, each scenario is run for
100 times.

The attack scenarios as well as normal scenarios are simu-
lated and Algorithm 1 is implemented to test its effectiveness
in separating attacks from normal scenarios. The values of β
(from (39)) are recorded and tabulated in Table III. In case
of normal scenarios, the maximum values of β are recorded,
whereas in case of attacks, minimum values of β are recorded,
unless otherwise stated. This is to test the performance of the
algorithm in the presence of noisy measurements.
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TABLE III
THE VALUES OF β RECORDED UNDER NORMAL AND ATTACK SCENARIOS

Case Attack β
Normal a = 0 & |∆c| = 0 0.0579

FCI |∆c|-one step 1.4588× 103

FDI a = 1× 10−4* 0.0527
a = 0.0012 16.01
a = 0.0023 197.98
a = 0.0034 464.3750
a = 0.0045 697.6473
a = 0.0056 855.21
a = 0.0067 978.46
a = 0.0078 1.1× 103

a = 0.0089 1.18× 103

a = 0.01 1.27× 103

Both FDI and FCI |∆c|-one step & a = 0.0001 1.457× 103

|∆c|-one step & a = 0.0012 1.4964× 103

|∆c|-one step & a = 0.0023 1.625× 103

|∆c|-one step & a = 0.0034 1.6956× 103

|∆c|-one step & a = 0.0045 1.814× 103

|∆c|-one step & a = 0.0056 1.868× 103

|∆c|-one step & a = 0.0067 2.00× 103

|∆c|-one step & a = 0.0078 2.11× 103

|∆c|-one step & a = 0.0089 2.193× 103

|∆c|-one step & a = 0.01 2.395× 103

* The only case where detection is not possible

In Table III, it can be seen that the value of detection metric,
β, increases when there is an attack, when compared to the
value seen in normal conditions. Based on the values recorded
in Table III, the following observations can be made:

• For all attack cases, except when a = 0.0001, the
minimum values of β in case of attacks are higher than
the maximum values of β under normal scenarios.

• The above mentioned observation is more pronounced in
cases when falsification of estimates is in the range of
values (above a = 0.0045) that can practically cause an
appreciable impact in the grid.

• It is not possible to detect an attack when a = 1× 10−4

as the value of β observed is close to that seen in
normal operation. However, is not a problem as a state
estimate deviation of 1× 10−4 in all likelihood requires
measurement changes that are in the order of noise.
Practically, an adversary is likely to introduce attacks that
cause significant deviations (from true values). Based on
Table III, it is seen that the value of β increases in such
cases.

• This algorithm is effective in detecting false command
injection attacks in transformers even when the change
in tap position is by one step.

• Once an attack is flagged, a close look at the sets
Υ, Υd and Ψ gives the measurements or controlled
variables under attack, which is a direct consequence of
Propositions 3 and 4.

It is important to note that the developed method is a unified
detection scheme that is capable of detecting FDI and FCI
attacks. The effectiveness of the developed method is shown to
be effective, both mathematically using Propositions 2, 3 and
4 and through simulations in Table III. This detection method
is the first to detect attacks against two types of transmission
system controls under an unified framework.

TABLE IV
COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD WITH
KL DIVERGENCE BASED APPROACH [25] AND GRAPH THEORY BASED

APPROACH [27] UNDER FDI ATTACKS

Proposed1 KLD2 GT3

Successful detection % 90.91 90.45 90.18
False Positives 0 5 0
False Negatives 0 0 8

1 Proposed Method used only to detect FDI attacks
2 KL divergence based approach [25]
3 Graph Theory based approach [27]

TABLE V
ACCURACY OF THE PROPOSED METHOD ACROSS ALL THE CASES

Percentage of cases of successful detection 95.45%
Number of false positives 0
Number of false negatives 100

The proposed detection method is compared to previous
FDI attack detection techniques by running the proposed
method exclusively against FDI attacks. The proposed method
is compared with two existing FDI attack detection algorithms.
The first algorithm is based on Kullback–Leibler divergence, in
[25]. Here, the distribution of measurement variations during
real-time system operation is compared with the distribution
of the historical normal operation. The second algorithm is a
graph-theory based approach where outliers in measurement
variation, i.e., outside µ ± κσ, where, κ > 3 (κ = 4, based
on discussion in Section V-A). Following the identification of
outliers, graph theory based analysis is performed to detect
FDI attacks [27]. The performance of the three methods
against FDI attacks is presented in Table IV. We note that the
proposed method is comparable (marginally superior) to the
two existing methods. However, it is worth reiterating that the
proposed method is capable of detecting attacks against the
active power and voltage control commands in transmission
systems. Also, this is the first unified approach to protect
transmission system controls against cyber-attacks. Hence,
the entire functionality of the proposed method cannot be
compared with any existing technique.

A. Threshold Selection

The accuracy of the proposed algorithm for the cases
considered is tabulated in Table V. In total, the algorithm
was tested across 2200 cases. The algorithm successfully
classified attacks in 2100 of 2200 cases. The algorithm fails
to recognize an attack for only one scenario (a = 10−4),
where the attack does not introduce any appreciable impact
on the operation of the power system. Hence, for all practical
purposes, this algorithm detects false injection of data and
commands effectively. Based on the values of β in Table III, it
is seen that a threshold, Th = 10, seems adequate to facilitate
detection. It is interesting to note that this algorithm detects
false data injection attack when the change in estimates is as
low as 10−3 pu. Similarly, this algorithm also detects a false
transformer tap and phase shifter commands, even when the
change is by one discrete step.



12

VII. CONCLUSION

In this paper, a generalized scheme is developed that is
capable of detecting both false data and false command
injection attacks, even when these attacks are carried out
stealthily. Mathematical models of stealthy attacks involving
transmission system control command injections are estab-
lished. Based on these established models, the change in
measurement covariance matrix is studied mathematically and
three propositions that enable detection of such attacks are
proposed and proven. These propositions are used to develop
an unified detection algorithm. The detection algorithm is
computationally inexpensive and non-iterative. When this al-
gorithm is tested on the IEEE 118-bus system, it is able to
detect both false data and commands reliably. It is worth noting
that this is the first work that proposes an unified method
to detect attacks on both measurement data and supervisory
control.
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