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Abstract—The dimensioning of photovoltaic (PV) panel and
battery sizes is one of the major issues regarding the design of
solar powered cellular base stations (BSs). This letter proposes a
multistate Markov model for the hourly harvested solar energy to
determine the cost optimal PV panel and battery dimensions for a
given tolerable outage probability at a cellular BS.

Index Terms—Green communications, solar energy.

I. INTRODUCTION

OLAR POWERED, offgrid cellular base stations (BSs)

provide a communication infrastructure in places without
reliable grid power. This letter presents a Markov model for
hourly solar energy and applies it to dimensioning offgrid cel-
lular BSs. Existing Markov models for solar energy lack the
day-level weather correlations that are critical for dimensioning
high-reliability systems [1], [2]. Thus, we propose a model that
combines hourly and daily transitions in the weather conditions.

II. BACKGROUND DETAILS

This letter considers a long-term valuation (LTE) cellular BS
whose power consumption at time ¢ is given by [3]

0<K<1 (1)

where Vi, is the number of transceivers, Py is the power con-
sumption at no load (zero traffic), A, is a BS specific constant,
Prax 1s the output of the power amplifier at the maximum traffic,
and K is the normalized traffic at the given time.

To model the traffic, Poisson distributed call arrivals with
time-of-day dependent rates, and exponentially distributed call
durations with mean 2 min are used [4]. K is obtained by nor-
malizing the instantaneous traffic by the maximum number of
calls that the BS can support at any time. We assume that lead
acid batteries are used. The battery lifetime is calculated by
counting the charge/discharge cycles for each range of depth
of discharge (DoD) for a year and is given by [5]

N Z
Lpa = 1/(21'—1 CTFv)

where Z; is the number of cycles with DoD in region 4, and
CTF,; is the cycles to failure corresponding to region i. Given
npy photovoltaic (PV) panels each with dc rating Fpaper, and 1,

PBS(t) = NtrX(PO + AmeaxK),
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Fig. 1. (a) Transition between good and bad days. (b) Hourly transition in a
good day. For clarity, only the transitions from state G; 1) are marked.

batteries, each with capacity Ey,, the overall PV panel dc rating
is PV, = npy Epael, and the battery bank capacity is By, =
ny Evae. This letter uses solar irradiance data made available by
National Renewable Energy Laboratory (NREL), USA [6].

III. MODEL DESCRIPTION

To develop the solar energy model, for any site, solar irra-
diance data of 10 years are fed into NREL’s System Advisor
Model tool [6] to calculate the hourly energy generated by a
PV panel with 1-kW dc rating. This data is then parsed on a
monthly basis. The solar energy output for each day in a given
month is computed and the days are sorted based on this energy.
B% of the days with the lowest energy are termed “bad,” and
the rest, “good” days. The probability of transition from one
day type to another is calculated from the data. This is modeled
as a Markov process [Fig. 1(a)] with transition matrix

T — {pgg pgb}

3
DPog Pbb 3

where pge (pob, Tespectively) is the transition probability from
good to good (bad to bad), and pe, = 1 — pgg (Pbg = 1 — Dobs
respectively) is the transition probability from good to bad (bad
to good) day.

Within a day, the harvested solar energy varies with time. We
model these variations on a hourly basis as a Markov process.
For each day type (good/bad), the minimum and maximum PV
panel output for each hour of the day are calculated. The region
between the minimum and maximum values is divided uni-
formly into four regions, as shown in Fig. 2. Each of these
regions, along with the day type, represents a “state” of the
harvested solar energy. The state at time ¢ is denoted by
z€{1,2,...,24},

St : St € {G(x,y)wB(:py)}v Yy e {1723374}
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Fig. 2. (a) States for a good day. (b) States for a bad day.

where G and B indicate good and bad days, respectively,
x is the hour of the day, and y is the region for the solar
energy. The irradiance data are used to calculate the average
hourly solar radiation Eg, for each state and the state transi-
tion probabilities. For good days, the state transition matrix is
given by

9(1,1)(1,1) 9(1,1)(24,4)

G= (4)

9(24,4)(1,1) " 9(24,4)(24,4)

where g(; j)(x,1) 18 the probability of transition from region j of
hour i to region [ in hour & on a good day. Note that from a
state in a given hour, a transition can only be made to one of
the states in the next hour, as shown in Fig. 1(b). The transition
matrix for bad days B is similarly defined.

Consider a solar powered BS with a PV panel dc rating PV,,
and battery capacity Bcyp. The multistate Markov model pro-
posed above gives the solar energy generated by a PV panel
with dc rating of 1 kW. For a panel with rating PV,,, the energy
generated at time ¢ (in hours) in state Sy is given by

E(t) =PV,Es,. 5)
To avoid deep discharges which adversely affect the battery life,
we disconnect the battery from the system when the overall
charge level goes below 70% DoD. Let B(t) denote the bat-
tery power at time ¢. Using the notation B'(t) = B(t — 1) +
E(t) — Pgs(t), B(t) is then given by

Bcapa B,(t) > BCﬂP
B(t—1) + E(t) — Pgs(t), 0.3Bep < B'(t) < Beap
0:3 B, B'(t) < 0.3Bcap

B(t) =

(6)

with B(0) = Bcyp. The hours when the battery level is either
less than or equal to 0.3B,,, correspond to outage events. The
outage probability is denoted by O and is given by

0= Houtage/H (7)
where Hoyage 18 the number of outage hours and H is the total

hours of operation. The optimal PV panel and battery dimen-
sioning problem is to determine the least cost configuration

1651

—+— Empirical o.= .25 %
—#— Empirical a.=.5 %
—&— Proposed model ot =.25 % ||
—&—Proposed model ot =.5 %
——[Ma=25%
——[1]a=.5%

w
S

ISR~
S W

Number of batteries
o

10 11 12 13 14 15 16 17 18 19 20 21 22
PV wattage (kW)

Fig. 3. PV wattage versus the number of batteries required for various outage

probabilities for Kolkata.

TABLE I
OPTIMAL CONFIGURATION FOR VARIOUS OUTAGE PROBABILITIES

Empirical [1] Proposed model

Location PV ny PV n, PV ny
a=.25%

Kolkata 14 20 105 19 135 20

Miami 11 20 10 15 11 20
a=.5%

Kolkata 12 21 10 17 11 22

Miami 10.5 18 9.5 14 10.5 18

in order to satisfy a limit on the outage probability. The cost
optimization problem can be expressed as

NpyCs + PV, Chy
O<a

Minimize :

Subject to :

where Cp is the unit battery cost, Cpy is the PV panel cost per
kW, and « is the operator’s limit on the outage probability. The
number of batteries required Np, is given by

Npa = nb(Trun/LBa[) (8)
where T, is the desired operational system lifetime. The
optimization problem can be solved using standard techniques.

IV. RESULTS

To validate our model, we consider two cities: 1) Kolkata
(India) and 2) Miami (USA). We consider an LTE BS with
10-MHz bandwidth and 2x2 multiinput multioutput configu-
ration. The BS is assumed to have three sectors, each with two
transceivers (Ntrx = 6). We assume that 12 V, 205 Ah flooded
lead acid batteries are used in the BS. The results use Ty, =
20 years and based on market statistics, we use C'g of US$ 280
and Cpy of US$ 1000. Our solar energy model uses 5 = 15%.

Fig. 3 shows the number of batteries required for a given PV
panel size for Kolkata as obtained from our model, empirical
data, and the model proposed in [1]. The optimal cost configu-
ration predicted by the three methods for the two locations are
shown in Table I. Our model has a close match to the empirical
results and greater accuracy compared to [1].
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V. CONCLUSION

This letter proposed a multistate Markov model for charac-
terizing the hourly solar irradiation. The model was used for
dimensioning solar powered cellular BSs in terms of the cost
optimal PV panel and battery bank size.
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