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Abstract—The Internet of Things (IoT) has revolutionized con-
nectivity by enabling a large number of devices to autonomously
exchange real-time data over the Internet. However, IoT devices
used in public spaces are vulnerable to physical and cloning attacks.
To address this issue, researchers have introduced the concept of
physical-unclonable functions (PUFs) to enhance security in IoT
applications. While PUF-based security solutions typically rely
on static challenge-response behavior, many practical applications
require dynamic or reconfigurable PUFs. For instance, PUF-based
key storage may require updating or revoking secrets, and protec-
tion against modeling attacks, where an attacker can derive a PUF
model from a set of challenge-response pairs (CRPs) using learning
capabilities. In this paper, we introduce LR-OPUF, a reconfigurable
one-time PUF, and propose a lightweight and privacy-preserving
authentication scheme based on this LR-OPUF foundation. One
notable feature of our authentication scheme is that it enables
a device to prove its legitimacy to a semi-honest verifier without
disclosing the CRPs. Through security and performance analyses,
we demonstrate that our approach not only ensures vital security
aspects but also exhibits high computational efficiency.

Index Terms—Mutual authentication, IoT, devices, privacy.

I. INTRODUCTION

IOT refers to an interconnected system with a wide range
of heterogeneous devices, from high-end smartphones all

the way down to simple sensors only capable of gathering and
transmitting data. IoT has opened the doors for many new and
exciting applications such as smart cities, smart healthcare,
smart factories, smart agriculture, etc. The main advantage of
IoT devices is their connectivity with relatively modest hard-
ware capabilities. Thus, they play a critical role in automation
strategies to control and perform various tasks remotely. Around
75 billion Internet-connected devices are expected by 2025 [1],
and currently, this number is 7 billion. The large number of IoT
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devices producing huge amounts of data leads to many serious
security concerns. Moreover, the heterogeneity and resource-
constrained nature of most of these devices make IoT even more
vulnerable to cyber-attacks. A typical IoT system is composed of
numerous low-end embedded devices (for sensing and control)
connected to intermediate nodes, i.e., gateways. The gateways
usually have a wired connection to the Internet for relaying the
data gathered by the IoT devices to application servers in the
cloud for data analysis and control. The low cost and simple
nature of IoT devices with Internet connectivity can be exploited
by adversaries to discover new weaknesses and exploit emerging
vulnerabilities reported about specific devices [2], [3]. However,
due to the long lifespan and no active maintenance of these
devices, most IoT devices are not protected against emerging
vulnerabilities. An additional consideration in many IoT-based
applications is that the devices often need to be deployed in
open and public places. As a result, an adversary can perform
physical and cloning attacks to change the settings of the device
(to compromise it) or acquire the device’s secret credentials,
and thus compromise the device and the entire system. Thus, it
is important for security solutions for IoT-based applications to
consider the physical security of IoT devices. To tackle this chal-
lenge, researchers have proposed the use of physical unclonable
functions (PUFs) in the existing literature. PUFs serve various
purposes, such as hardware authentication and key generation
[4], [5]. Due to their resistance against physical and invasive
attacks, as well as their ability to securely store keys without
explicit storage, PUFs have emerged as strong contenders for
enhancing IoT security. However, applying complex logical
or arithmetic operations to silicon manufacturing variations is
challenging due to the amplification of physical noise. As a
result, PUF circuits are typically evaluated in a linear manner,
which makes them susceptible to modelling attacks [6], [7],
[8], [9].

A. Literature Review and Motivation

Since PUFs emerged as a critical primitive for device security,
various authentication systems based on PUFs have been devel-
oped in the literature. These can be divided into three categories:
(i) ideal-PUF-based authentication schemes, (ii) noisy-PUF-
based authentication schemes, and (iii) machine-learning (ML)
prevention-based authentication schemes. First, we will give
some examples of ideal-PUF-based authentication schemes. In
2008, Bringer et al. showed the use of ideal-PUF for design-
ing an RFID authentication scheme [10]. Subsequently, Tuyls

https://orcid.org/0000-0003-2786-0273
https://orcid.org/0009-0000-9113-9398
https://orcid.org/0000-0002-0084-4647
mailto:prosanta.nitdgp@gmail.com
mailto:fei.penalty -@M hongming@u.nus.edu
mailto:fei.penalty -@M hongming@u.nus.edu
mailto:bsikdar&commat;penalty -@M nus.edu.sg
mailto:bsikdar&commat;penalty -@M nus.edu.sg


and Skoric proposed a new strong authentication scheme [11].
However, this protocol has been proven to be insecure against
various attacks [35]. In follow-up work, a few more interesting
PUF-based authentication protocols (e.g., [12]) have been pro-
posed by considering ideal PUF conditions. However, according
to [16], most of them are vulnerable to various attacks. Next,
we give some examples of PUF-based authentication schemes
where noise has been taken into account. In 2011, Brzuska
et al. introduced a PUF-based key-exchange (KE) protocol along
with two other protocols for oblivious transfer (OT), and bit
commitment (BT) [31]. However, the protocols are proven to
be insecure against quadratic attacks and under the “Re-Use”
model (see Section III-B) of the PUF [35]. Chatterjee et al. [17]
presented a public-key-based setup for the secure transfer of data
in IoT. The protocol requires an additional component called
a security association provider and six rounds of interactions.
Subsequently, three more interesting noisy-PUF-based authen-
tication schemes have been proposed [16], [18], [19]. However,
they are vulnerable to machine-learning attacks. For instance, in
Gope et al.’s scheme [16], if an attacker with machine-learning
capabilities have physical access to the device and can obtain
a set of CRPs, then he/she will be able to model the PUF by
using machine learning algorithms [6], [7], [8], [9]. However,
identifying such an attack will be difficult for the verifier. Also,
according to [16], the scheme presented in [19] cannot ensure
the privacy of the devices.

To deal with the machine learning attacks, Yu et al. [20]
introduced two interesting protocols. However, these protocols
are not scalable. For instance, the first protocol only allows a
limited number of interactions with the server; after that, the
device is not allowed to access the server. In the second protocol,
for each PUF-embedded device, the server needs to maintain
a train-PUF-model [21], which is infeasible for an application
with a large number of devices. In addition, none of the protocols
has considered the privacy of the devices since, during the
authentication process, the device needs to disclose its identity
in order to help the server to identify them. Subsequently, Liang
et al. [22] proposed another train-PUF-model-based authentica-
tion scheme. Unfortunately, the proposed scheme has the same
scalability issue as [20]. In addition, our analysis shows that
in Liang et al.’s scheme, the server needs to try all possible
train-PUF-models in order to identify a particular device. This
is because, during authentication, the device does not send
any information that can be used by the server to identify the
device and uses a specific train-PUF model easily. Therefore,
this scheme is not suitable for any application with a large
number of devices. Recently, Gu et al. [23] introduced the idea
of Fake PUF to mislead the attacker. However, this approach
causes a significant overhead at the hardware level. Besides,
like [20] and [22] the server in [23] needs to maintain a trained
PUF model of the genuine PUF to authenticate a device. In
[39], the authors showed a new way to enhance resilience to
modelling by adding two flip-flops along with an additional
procedure. However, like [23], this approach also causes ad-
ditional overhead at the hardware level. Besides, like [20], [22],
and [23] the protocol designed based on this construction needs
to maintain a train-PUF-model at the server end. Barbareschi
et al. [40] introduced a new protocol using the concept of chains

TABLE I
SYMBOLS AND CRYPTOGRAPHIC FUNCTIONS

of CRP (predefined); however, their protocol is vulnerable to
device impersonation attacks. In [41], a hybrid PUF structure
(called DCH-PUF), along with an authentication protocol, has
been proposed to deal with the modelling attacks. However,
like [20], [22], and [23], the proposed solution also requires
maintaining a PUF-train model at the server’s end, which causes
the same scalability issue like [20], [22], and [23]. Besides, after
thoroughly checking, we found that the proposed authentication
scheme is also vulnerable to several attacks, such as replay
attacks, man-in-middle attacks, etc. Nevertheless, in all the
schemes described above, a server/verifier is allowed to obtain
a significant number of CRPs, which can be used for modelling
the PUF behaviour or forming a marionette PUF. The symbols
and cryptographic functions used in the proposed scheme are
defined in Table I.

Our goal and contribution: This paper aims to tackle all of the
aforementioned concerns. In order to do that, we first propose a
new controlled-PUF construction that we call LR-OPUF (Logi-
cally Reconfigurable One-time PUF). Subsequently, we design
a new reconfigurable authentication scheme using our proposed
LR-OPUF construction, where the behavior of the LR-OPUF
changes through a reconfiguration process. In a nutshell, this
paper’s significant contributions can be summed up as follows:
� We propose the LR-OPUF, a reconfigurable Physical Un-

clonable Function (PUF) construction that leverages both
the physical properties of an underlying PUF and state in-
formation stored in non-volatile memory (NVM) to ensure
its security.

� Our proposal entails a lightweight and privacy-preserving
reconfigurable authentication scheme, which has been de-
signed based on the underlying foundation of the LR-
OPUF. An important characteristic of the proposed au-
thentication scheme is its ability to prevent a semi-honest
server (verifier) from gaining knowledge of the original
Challenge-Response Pairs (CRPs) associated with the un-
derlying PUF. Despite this, the scheme enables device
authentication without relying on assistance from a trusted
third party. To the best of our knowledge, we are the first
to address this issue, especially in the design of a machine
learning resilient authentication scheme.

� We conduct a detailed formal security analysis of our
suggested system (constructions) in order to demonstrate
that it is secure against many imperative attacks.



II. PRELIMINARIES

A. Physically Unclonable Functions

Physically Unclonable Functions (PUFs) are physical circuits
commonly used to map a binary input (a bit-string challenge,
denoted as C) to a single or multi-bit output (the response,
denoted asQ) [4], [5]. The inherent micro-variance in each inte-
grated circuit produced during the manufacturing process allows
for the generation of strong entropy, leading to unpredictable
challenge/response behavior that is not based on mathematical
functions. A PUF can be represented asQ← P(C). The primary
objective of PUFs is to provide robust security for authentication
solutions while remaining lightweight, particularly in scenarios
where cryptographic resources are limited. PUFs are expected
to possess properties such as being unclonable, unpredictable,
reliable, and tamper-evident. Generally, PUFs can be classified
into two types: strong PUFs and weak PUFs. Strong PUFs
have the capability to generate an exponential number of chal-
lenge/response pairs (CRPs) and are predominantly used for
authentication purposes, employing single-use, known CRPs.
However, strong PUFs, which typically consist of linear cir-
cuits, are vulnerable to modelling attacks [6]. In contrast, weak
PUFs can generate only a few, and often just a single, CRP.
Consequently, weak PUFs have been utilized for reliable secret
key generation in security protocols. The limited number of
CRPs derived from weak PUFs makes modelling attacks that
rely on large datasets of known CRPs inapplicable as an attack
method. However, other physically invasive and side-channel
attacks have been attempted on popular weak PUFs [25].

B. PUF Reconfigurablity

Reconfigurable PUFs are a (relatively) newer development
within the lifetime of PUF-related research. The main idea of re-
configurable/dynamic PUF was introduced by Kursawe et al. in
[24]. Usually, a PUF exhibits a static challenge/response behav-
ior. However, in many applications, a reconfigurable/dynamic
PUF behavior is desirable. For instance, in case of a PUF-
enabled reusable/recyclable wireless access token [32], a new
user should not be allowed to obtain the security-sensitive in-
formation of the previous user of the token. The idea of the
reconfigurable PUF can also be useful for the application of
PUF-based key-storage [33], [37] and PUF-based cryptographic
primitives, where one would need to revoke/update the previous
PUF secrets extracted from the PUF. Furthermore, the idea of
reconfigurable PUF has been suggested in [36] as a countermea-
sure against the PUF Re-use model. In such scenarios, an adver-
sary is allowed one-time access to the PUF after the execution
of each protocol session and can perform CRP-measurement
on the PUF (see Section III-B). Recently, the idea of such
dynamic/reconfigurable PUF behavior has also been adopted
for dealing with machine-learning or modelling attacks [37].
For example, Modifying parameters like the timing of refresh
pauses or adjusting the size of the allocated memory block in
a DRAM-PUF [34] allows for the creation of novel challenge-
response patterns, effectively reconfiguring the system’s ‘state’.
Even though the concept of reconfigurable/dynamic PUF has

been considered an effective approach for many PUF-enabled
applications, implementing such PUFs in a practical way for
designing a cost-effective the security solution is difficult in
practice. In order to address this issue, in this paper, we present a
Logically Reconfigurable One-Time PUF (LR-OPUF), which is
then used to design a privacy-preserving authentication scheme.

C. Modelling Attacks on PUFs

In general, strong PUFs such as arbiter PUFs (APUFs) and
XOR arbiter PUFs are susceptible to machine learning attacks
that aim to generate a mathematical model of an individual
PUF to enable impersonation [25], [26], [27], [28], [29]. These
types of attacks generally involve an adversary collecting a large
subset of a PUF’s possible CRPs by calling repeated measures:
{(C1, Q1), (C2, Q2), . . . , (Cw, Qw)}. Based on this, a predic-
tive model m̂ can be developed as an algorithm to estimate an
unknown response Qw+1 for a new challenge Cw+1 [9]. The
probability that the model correctly predicts the response to an
unseen challenge is referred to as accuracy. Once a model has
been produced, an adversary can attempt to impersonate a device
during an authentication sequence by replying to another device
with the correct response to an arbitrary challenge. Rührmair et
al. introduced the first machine learning-based modelling attacks
(ML-MA) to impact APUFs and XOR APUFs [6] significantly.
The three most common and effective types of ML-MA as a
result of this work are Logistic Regression (LR), Support Vec-
tor Machine (SVM), and Evolutionary Algorithms (EA) such
as Evolution Strategies (ES). Probably Approximately Correct
(PAC) [29] machine learning and Artificial Neural Network
(ANN) techniques [27] have also been proven to be effective
in attacking these PUF implementations. To base our assump-
tions on the security of One-Time PUFs, we first mention the
following proven attacks on non-reconfigurable PUFs. Logistic
regression is a well-investigated supervised machine learning
algorithm used to predict the probability of a target variable,
in the case of PUFs: unknown responses. The model predicts
the likelihood of A PUF output bit is either a one or a zero.
More specifically, each challenge C is assigned a probability
p(C, l|�w) that it generates an output l ∈ {0, 1}. The vector �w
encodes the related internal parameters, e.g., run-time delays
of a specific PUF. Rührmair et al. proved a very successful
Logistic Regression attack (LR-RPROP) on the XOR-APUF,
the largest being a 5-XOR, 128 stage APUF with a 500,000
CRP dataset in [6]. In [14], Wisiol et al. exploited the local
minima produced by the input transformation of Lightweight
Secure PUFs to model them successfully. They also provided
a divide-and-conquer modelling strategy to attack the Interpose
PUF (iPUF) in [15], involves a Linear Regression attack on its
lower layer with randomly interposed bits and uses this to model
the upper layer further and thus, the entire iPUF.

III. PROPOSED SCHEME

Within this section, we initially introduce our LR-OPUF
design, which is the foundation of the proposed reconfigurable
authentication scheme. Subsequently, we define the adversary



Fig. 1. LR-OPUF construction.

model along with the security goals. Finally, we present our re-
configurable authentication scheme that prioritizes lightweight
implementation and privacy preservation. The scheme com-
prises two distinct phases.

A. Proposed LR-OPUF Construction

The term “One-Time PUF (OPUF)” refers to a system for
changing the PUF configuration/settings after each authentica-
tion session, which can be considered as a variant of a recon-
figurable PUF. An OPUF is designed to provide both forward
and backward unpredictability. Forward unpredictability en-
sures that the measured responses of the PUF before the resetting
event are considered invalid. On the other hand, backward unpre-
dictability ensures that even if an adversary gains access to the
current state of the PUF, they cannot estimate the PUF’s behavior
prior to the reconfiguration. Now, like the other reconfigurable
PUFs, implementing OPUFs in a practical way for designing a
cost-effective security solution is difficult in practice. Therefore,
we now present our logically reconfigurable OPUF (LR-OPUF)
construction, depicted in Fig. 1, as the fundamental basis of
our proposed authentication scheme. It is important to note that
LR-OPUF can be viewed as Controlled PUFs, which aim to
conceal the challenge/response behavior of the underlying PUF
to enhance security against modelling attacks. Our construction
consists of two primary components: a control logic circuit and a
conventional strong PUF. The control logic circuit encompasses
three dedicated functions: Reconfig(·), TF1, and TF2. To mod-
ify the output behavior of the LR-OPUF, the circuit employs
the Reconfig(·) function to reconfigure the state S to a new in-
dependent random state S′ ← Reconfig(·) when necessary. The
updated state S′ is securely stored in the non-volatile memory
(NVM) of the device. The input-transforming function, TF1,
maps/transforms the input challenge C into the challenge W
using the operation W ← h(S||C), where h(·) is a one-way
collision-resistant hash function. Subsequently, the PUF output
R is obtained by utilizing W as the challenge, denoted as R←
P (W ). Next, the error correction on the noisy PUF output R is
performed by using a Fuzzy Extractor (FE) and the helper data

(hd) stored in the NVM, i.e.,K ← FE.Rec(R||hd). Hereafter,
the output-transforming function TF2 is used to transform the
Fuzzy Extractor output K into the final masked output Q, i.e.,
Q← h(S||K). Roughly speaking, the transformation functions
TF1 andTF2 can be regarded as masking functions, whereTF1

masks the PUF input and TF2 masks the PUF output. Upon
the completion of each authentication phase, the Reconfig(·)
function is invoked to update and reconfigure the state of the
PUF, denoted as S ′ ← h(S). The functions Reconfig(·), TF1,
and TF2 are publicly known, such as widely recognized hash
functions. It is important to note that an adversary A lacks the
capability to manipulate or modify the state to a value of their
choosing.

B. Adversary Model

We take into account the following adversary capabilities in
our proposed LR-OPUF-based authentication technique. First,
an adversary can intercept the communication channel between
the device and the server under our proposed system. The
adversary can also try to alter/block the exchanged messages.
In addition to that, an adversary can also try to mount cloning
and physical attacks on the PUF. In our proposed scheme, we
have also taken into account the adversary’s potential to attempt
machine learning modelling attacks (as described in Section
II.C). For that, we first consider the Re-Use Model of [35],
where an adversary may have repeated physical access (e.g.,
through the setup of a fake terminal) to the the device between
different key exchange sessions and try to obtain a considerable
numbers of {C,Q} pairs (input/output pairs of the LR-OPUF)
in order to model the behaviour of the LR-OPUF. Moreover, our
adversary model considers the authentication server (operated
by commercial entities) to be semi-honest and allows for the
acquisition of a considerable number of session messages for
authentication purposes. In such cases, consider a multi-server
scenario, if the PUF-enabled device (such as a wireless token
received from a trusted authority) is registered with multiple
servers (for different services) and one of the servers is mali-
cious. It should be noted that we consider different states, and
registration phases are launched between the device and different
servers. After obtaining a considerable number of CRPs, the
malicious server can construct a train PUF model that can be used
to impersonate a legitimate device with other entities. However,
neither the victim device nor the victim server will be able to
detect such malicious authentication attempts. Additionally, we
also allow multiple malicious servers to collude with each other
to obtain a large number of CRPs or input/output pairs and
eventually model the LR-OPUF behaviour within a relatively
shorter time span. This model can then be used to impersonate a
legitimate device. Section IV delves into the adversary concept
in further depth.

C. Security Objectives

Our primary focus revolves around four crucial security re-
quirements: forward unpredictability, backward unpredictabil-
ity, resilience against modelling attacks, and privacy of IoT
devices against eavesdropping or tractability attacks.



� Forward unpredictability: In terms of forward unpre-
dictability, it is of utmost importance that an adversary,
denoted asA, is unable to predict the PUF output (R), final
masked output (Q), and current state (S) for any new input
C. This holds true even if A has access to an adaptively
chosen set of input/output pairs of the LR-OPUF for any
previous state.

� Backward unpredictability: In the context of backward
unpredictability, it is necessary that A cannot predict the
PUF output (R), final masked output (Q), and current state
(S) based on any previous state (prior to reconfiguration)
when given a new challenge C. This requirement remains
even if the adversary has the capability to adaptively ac-
quire challenge/response pairs or input/output pairs for the
current state.

� Privacy: Given that IoT devices frequently deal with sen-
sitive user information, it is crucial to ensure that commu-
nication between these devices and the server maintains a
high level of anonymity and confidentiality. It is imperative
to prevent eavesdroppers from being able to identify the
device or track its movements.

� Non-resettability: The adversaryA should face significant
challenges in attempting to manipulate the state of the
LR-OPUF to achieve a specific desired value. The system
should be designed in a way that makes it practically
impossible for A to successfully set the LR-OPUF’s state
to the desired value, ensuring the integrity and security of
the system.

� Resilience against modelling attacks: To carry out mod-
elling attacks against a Physical Unclonable Function
(PUF), adversaries typically require access to a substantial
number of Challenge-Response Pairs (CRPs). Therefore,
to guarantee security against such modelling attacks, it is
crucial to prevent any adversary, including the semi-honest
server, denoted as A, from successfully modelling the be-
havior of the LR-OPUF. This holds true even ifAmanages
to obtain a significant quantity of CRPs or input/output
pairs. Safeguarding against modelling attacks is essential
to maintain the robustness and integrity of the LR-OPUF
system.

� Other objectives: In addition to addressing privacy con-
cerns, forward unpredictability, backward unpredictability,
and modelling attacks, the proposed scheme takes into
account several other crucial security properties. These in-
clude protection against impersonation or forgery attacks,
as well as defenses against replay attacks and other relevant
security threats. By considering these additional security
properties, the scheme aims to provide comprehensive
protection and ensure the integrity and authenticity of the
system.

D. Assumptions

The initial assumption made is that an LR-OPUF instance
remains valid solely for a specific session during the execution of
the authentication protocol, and it cannot be utilized in any other
session. This restriction ensures that the LR-OPUF instance is

securely bound to its intended session and prevents its unau-
thorized reuse in subsequent sessions. Here, we argue that the
forward and backward unpredictability of a state-reconfigurable
LR-OPUF provides significant PUF-level security against ma-
chine learning attacks. Even if repeated measures are utilized
to generate a large enough CRP dataset to model a single state
of an LR-OPUF, by this time a new authentication session will
have opened and thus a new LR-OPUF state would have been
adopted. The adversary’s model will not have sufficient accuracy
to predict unknown responses to new challenges for the new
LR-OPUF state. Thus, the adversary would have to attempt a
modelling attack again on the new state, thereby continuing
the cycle. In our proposed authentication scheme, we assume
that all actions taken within the setup (i.e., enrollment) phase
is inaccessible to all the adversaries (described in Section III-A
and Section IV). As a result, every adversary makes an effort
at an attack during the authentication phase. We suppose that
an adversary has gained physical access to the device between
the execution of two authentication phase sessions. Thus, the
adversary has the potential to gain access to the LR-OPUF’s
interface and employ brute force techniques to query the device
with various challenges. The adversary aims to construct their
own Challenge-Response Pairs (CRPs) dataset to train a machine
learning model for a potential modelling attack by monitoring
and collecting the corresponding responses. However, it is im-
portant to note that any attempt by the adversary to tamper
with the LR-OPUF physically would disrupt its functionality,
rendering it useless. Therefore, the integrity of the LR-OPUF
is maintained, even if the adversary has physical access to the
device in their efforts to obtain CRPs. Now, if we consider the
proposed protocol to be used in a scenario where a device reg-
isters with multiple verifiers for different services. Specifically,
we here would like to emphasise that the device must run an
individual setup phase with each individual server, which means
different session keys and stored data are used for different
servers. In this way, one semi-honest server cannot directly
compromise the credential secrets used by other servers.

E. Proposed Lightweight and Privacy-Preserving
Reconfigurable Authentication Scheme Using LR-OPUF

The proposed reconfigurable authentication scheme can be
divided into two distinct phases: the setup phase and the recon-
figurable authentication phase. The setup phase of our proposed
scheme is executed between a device and the server in a secure
environment (through a secure channel). On the other hand, the
authentication phase will take place in an insecure environment
(insecure public/wireless channel).

1) Setup Phase: In this phase (shown in Fig. 2), first, a device
randomly generates a new independent state Si and generates
a challenge Ci. Then the device computes Wi = TF1(Ci)⇒
h(Ci||Si) (for masking/transforming the input),Ri = PT (Wi),
(Ki, hdi) = FE.Gen(Ri), and Qi = TF2(Ki) = h(Si||Ki),
where Qi = {Q1

i ||Q2
i }and i = 0. Finally, the device constructs

a message. Set1 : {IDT , (Ki, Qi)} and sends it to the server
for enrollment, where the parameter IDT denotes the iden-
tity of the device. On receiving Set1, the server generates a



Fig. 2. Setup phase of proposed LR-OPUF-based authentication scheme.

reference identity for the i-th session of authentication,RIDi
T =

h(Qi||IDT ||msk), to uniquely identify the device and sends
RIDi

T to the device through a secure channel, where msk
denotes the secret master key of the server. Hereafter, the server
stores {RIDi

T , (Qi,Ki)} for the i-th session of authentication.
Next, upon receiving the reference identity RIDi

T , the device
stores {hdi, Ci, Si} in its secure NVM andRIDi

T in its main
memory.

2) Reconfigureable Authentication Phase: This phase of the
proposed scheme consists of four steps, described as follows.

Step #1: For the i-th session of execution of the authenti-
cation protocol, the device first loads the state Si, the helper-
data hdi, and the challenge Ci from its NVM. Next, the de-
vice selects its reference identity RIDi

T and also generates
a random number Nt. Hereafter, the device computes Wi =
TF1(Ci)⇒ h(Ci||Si) and subsequently composes a message
MSG1 : {RIDi

T , Nt} and sends MSG1 to the server through
an insecure public channel.

Step #2: Upon receiving message MSG1 from the device,
the server first checks its database and tries to find reference
id RIDi

T in it. If the server is unable to locate RIDi
T in

its database, then it aborts the execution of the protocol, and
the device has to retry with a valid security credential (as
discussed at the end of this section). Otherwise, the server
reads (Qi,Ki) from its database and loads them into its
main memory, where Qi = {Q1

i ||Q2
i }. After that, the server

generates a nonce Ns and computes N ∗s = Ki ⊕Ns, Q1∗
i =

Q1
i ⊕Ki, and Π1 = h(Ns||Ki||Q1∗

i ||Nt) and finally composes
message MSG2 : {Q1∗

i , N
∗
s ,Π1} and sends it (MSG2) to the

device.
Step #3: When the device receives message MSG2, it first

extracts the PUF output R′i = PT (Wi) and then calculates
Ki = FE.Rec(R′i, hdi),Ns = Ki ⊕N ∗s , andQ1

i = Q1∗
i ⊕Ki.

After that, the device computes {Q1Ψ
i ||Q2Ψ

i } = TF2(Ki)⇒
h(Si||Ri) and compares Q1

i with Q1Ψ
i . If Q1

i = Q1Ψ
i , then the

device validates the parameter Π1. If the validation is suc-
cessful, then the device computes Q∗ = Q2Ψ

i ⊕Ki, Ci+1 =
h(Ci||Ns||Nt), and the session key SK = h(Nt||Ns||QΨ

i ),
whereQΨ

i [{Q1Ψ
i ||Q2Ψ

i }] = Qi[{Q1
i ||Q2

i }] (i.e.,Q1Ψ
i = Q1

i and
Q2Ψ

i = Q2
i ). Hereafter, the device reconfigures its state to

a new independent state by invoking the Reconfig(·) func-
tion, i.e., Si+1 = Reconfig(Si)⇒ h(Si||R′i), and computes
Wi+1 = TF1(Ci+1)⇒ h(Ci+1||Si+1). Then, the device ex-
tracts the PUF output Ri+1 = PT (Wi+1) and also computes
(Ki+1, hdi+1) = FE.Gen(Ri+1) for the (i+1)-th session of se-
cure interaction. Subsequently, the device calculates Qi+1 =
TF2(Ki+1)⇒ h(Si+1||Ki+1) for masking/transforming the
output of the FE and then computes Δ = Enc[Qi+1||Ki+1],
Π2 = h(Δ||Ki||Q∗||Ns), RIDT

i+1 = h(RIDi
T ||Qi+1), and

Ki+1 = h(Ki||Qi+1). At the end, the device forms the mes-
sage MSG3 : {Q∗,Π2,Δ} and sends the message to the server.
Subsequently, the device stores RIDT

i+1 in its main memory
and updates the key Ki with the new key Ki+1 and challenge
Ci with the new challenge Ci+1.

Step #4: When the server receives message MSG3, it
first computes Q2Ψ

i = Q∗ ⊕Ki and compares Q2Ψ
i with

Q2
i . If the verification is successful, then the server also

verifies the key-hash parameter Π2. If the server success-
fully verifies both parameters, it implies that the server
authenticates the device as a legitimate entity. Next, the
server calculates the session key SK = h(Nt||Ns||Qi), where
QΨ

i [{Q1Ψ
i ||Q2Ψ

i }] = Qi[{Q1
i ||Q2

i }], and subsequently decrypts
Δ and obtains mrQi+1||Ki+1. After that, the server computes
RIDT

i+1 = h(RIDi
T ||Qi+1) and Ki+1=h(Ki||Qi+1), and at

the end it replaces the key Ki with the new key Ki+1 and
stores {RIDT

i+1, (Qi+1,Ki+1)}. Details of the proposed re-
configurable authentication process are shown in Fig. 3. The
successful completion of all the aforementioned steps in the
authentication protocol confirms the mutual authentication be-
tween the server and the device T , resulting in the estab-
lishment of a shared session key SK. Any failure in the
verification process leads to the termination of the protocol
execution.

To address any potential desynchronization between the de-
vice and the server, we propose incorporating additional mea-
sures into the protocol. In this regard, apart from Ki, Qi, the
device also needs to generate a set of EM (emergency) challenges
CEM = {C1

EM, . . . , C
n
EM} during the execution of the setup

phase. Then, using the same process as for Ki, Qi, the device
generates [(KEM, QEM)] = {(K1

EM, Q
1
EM), . . . , (Kn

EM, Q
n
EM) to

enhance the security of the stored emergency data and mitigate
the risk identified by potential attackers accessing this data,
we propose encrypting the stored EIDEM,KEM, QEM using
Authenticated Encryption with Associated Data (AEAD). The
encryption key used is Ki, and the associated data (AAD) in-
cludesCEM and hdEM. Before storing the data in its non-volatile
memory (NVM) and sending it to the server through the secure
channel, the device encryptsEIDEM, CEMKEM, QEM using this
method.

Next, the server generates a set of unique emergency identi-
ties EIDEM = {EID1

EM, . . . , EID
n
EM} and securely transmits

EIDEM to the device through a secure channel. The server also
stores an encrypted copy of EIDEM,KEM, QEM in its database
using the same AEAD encryption method.

In case of loss of synchronization, both the server and the
device need to use a set {EIDj

EM, (K
j
EM, Q

j
EM)} from the

encrypted{EIDEM, (KEM, QEM)}. After a set of data is utilized,



Fig. 3. Proposed LR-OPUF-based modelling-attack resilient reconfigurable authentication scheme.

it must be removed from both the device and the server, neces-
sitating the repetition of the generation and encryption process.

By adopting this approach—where the emergency data
is securely encrypted using AEAD with key Ki and as-
sociated data CEM and hdEM—the protocol effectively han-
dles desynchronization between the device and server with-
out compromising privacy or security. Even if an attacker
gains access to the stored encrypted emergency data, they
cannot decrypt or manipulate the data without Ki and the
correct associated data. By discarding and regenerating sets
of encrypted data, the protocol maintains its ability to oper-
ate smoothly and securely, even when synchronization issues
arise.

IV. SECURITY ANALYSIS

In this section, we evaluate our proposed scheme in
terms of the significant security requirements discussed in
Section III-C. To accomplish this, we begin by introducing our
formal adversarial model.

A. Security Primitives

Definition 1: A physical unclonable function (PUF) is said to
be (qα, qβ , ε1)-securely forward and backward unpredictable if:
� Forward unpredictability: Given up to qα challenge-

response pairs (Ci, Ri), where Ci is the challenge and
Ri = PUF(Ci) is the response, it is computationally hard
to predict the response Rj for any new challenge Cj , with
advantage at most ε1.

� Backward unpredictability:After observing up to qβ new
challenge-response pairs (Ck, Rk), it remains computa-
tionally infeasible to find a valid challenge-response pair
from the past interactions with advantage at most ε1.

Definition 2: A hash function h(·) : {0, 1}∗ → {0, 1}n is
said to be an ε2-secure collision-resistant hash function (CRHF)
if for any probabilistic polynomial-time adversary A, the prob-
ability of finding two distinct inputs x 	= x′ such that H(x) =
H(x′) is bounded by ε2. Formally,

Pr[A(1λ)→ (x, x′) such that x 	= x′ and H(x) = H(x′)] ≤ ε2
(1)



B. Adversarial Model

Assume that, there are n IoT devices T = {T1, T2, . . . , Tn}
communicates with a server S. The server executes SetupT(1γ)
for initializing each device, which is basically a setup algo-
rithm that outputs ψ and secret key K. Both the devices in
T and the server S participate in the authentication phase of
the proposed scheme and try to validate each other through
an insecure channel. At the end of the authentication phase,
both the devices in set T and the server S produce an output
of 1 or 0, representing ”Accept” or ”Reject” as the outcome
of the authentication phase. Each communication between a
device T ∈ T and the server S is considered a communication
session, identified by a unique session identifier sid. A session
is labeled as a ”matching session” if the messages exchanged
between S and T are honestly transmitted. For the protocol to be
deemed correct, both the server S and the device T must accept
the session in the presence of a matching session. To formally
analyze the security of the mutual authentication protocol P , an
adversary A engages in a security game with a challenger C.

The experiment output Φ to indicate whether the challenger
C accepts the session or not.
ExprSecP,A(γ):
1) (ψ,K)Random←−−−−−−Setup(1

γ);

2) (sid∗, T )Random←−−−−−−A
Launch,SendS,SendT ,Outcome,Reveal
1 (ψ,

S, T );
3) Φ := Outcome(sid∗, �);
4) Output Φ.
When the adversary A receives (ψ,S, T ), she can issue the

following oracle queries:
-Launch(1γ): A new session has been launched by S
-SendS(M) A random message M is sent to S.
-SendT (Tj ,M): An arbitrary message M has been sent to

the device Tj ∈ T .
-Result(�, sid): Output whether the sid of � is accepted or

not where � ∈ {S, T }.
-Reveal(Tj): Output all the information stored in the memory

of the IoT device Tj .
The advantage of the adversaryA againstP can be defined as

AdvrSecP,A(γ), which represents the probability that ExprSecP,A(γ)
outputs 1 when sid∗ of� does not have a corresponding session.

Definition 3: The security of a protocol P against man-in-
the-middle attacks can be defined as follows: For any probabilis-
tic polynomial-time adversary A, the advantage AdvrSecP,A(γ) is
negligible in γ, where γ is a security parameter sufficiently large.

Theorem 1 (Security): Assuming that the LR-OPUF instance
LR-OPUF∗ is a (qα, qβ , ε1)-secure forward and backward
unpredictable PUF, and h(·) is an ε2-secure collision-resistant
hash function (CRHF) (undefined), the proposed authentication
protocol P can be deemed secure against man-in-the-middle
attacks.

Proof: The attacker’s objective is to manipulate the security
game by attempting to persuade either the device Tj ∈ T or
the server S to accept a session that does not correspond to
the intended session. To prove the security of our protocol, we
adopt a security game approach where we gradually replace the
protocol’s communications with random strings. The adversary

is considered successful if she can distinguish between real
execution and random string execution, and successfully modify
the messages exchanged between the device and the server
to make them accept the non-matching session. We proceed
with the game transformations, denoting Gi as the adversary’s
advantage in winning Game i.
� Game 0: The primary game between the adversary A

and the challenger C is conducted without making any
modifications to the protocol.

� Game 1: During the execution of the authentication session
between the server S and a specific device Tj ∈ T , we
introduce alterations to the parameters of the LR-OPUF.
Subsequently, we evaluate the output of the LR-OPUF
in Tj . Given the assumption that the LR-OPUF is a
(qα, qβ , ε1)-secure backward and forward unpredictable
PUF (undefined), it can be concluded that the output of
the LR-OPUF satisfies the min-entropy property, ensuring
the absence of correlation between each output. Based
on this property, if an adversary issues a Reveal query
and obtains the stored information from the LR-OPUF’s
memory, the resulting output will exhibit correlation. This
observation indicates that the game transformation from
Game 1 remains unaffected. Furthermore, if the adversary
A fails to successfully impersonate a legitimate Tj to the
server C, the challenger C aborts the game.

� Game 2: At this stage, we can make the assumption
that the adversary is capable of establishing a maximum
of L sessions in the game. For each session, denoted by
1 ≤ m ≤ L, we will modify and subsequently assess the
variables associated with the session between the device
Tj and the server S through a series of distinct games.
– Game 2-m-1: During the m-th session, the challenger C

examines the output of the LR-OPUF implemented in
device Tj . If it is determined that the LR-OPUF’s output
lacks sufficient entropy, the challenger C will abort the
game.

– Game 2-m-2: In the context of entity authentication, the
challenger C introduces modifications to the outputs of
the collision-resistant hash function h(·). These alter-
ations consist of substituting the hash function outputs
with randomly generated strings of the same length. The
assumption is that the underlying hash function is secure.
If an adversary is capable of distinguishing between the
output generated by the function and the output of the
random string, it implies that the adversary possesses
the ability to break the underlying one-way key-hashed
function.

– Game 2-m-3: Next, C alters the pseudorandom string of
N ∗s = Ns ⊕Ki and Q1∗

i = Ki ⊕Q1
i with an arbitrarily

generated output-strings. However, since Ki is not ac-
cessible to the adversary, as a result, she won’t be able to
tell the difference between these strings and truly random
strings.

– Game 2-m-4: C substitutes for the pseudorandom string
of Q∗ = Q2Ψ

i ⊕Ki, Δ = Enc[Qi+1||Wi+1], and Π2 =
h(Δ||Ki||Q∗||Ns)) using identically sized strings cre-
ated at random. Since the adversary has no access to



Ki (as a pseudorandom output obtained from the LR-
OPUF), The adversary will be unable to tell the differ-
ence between these and truly random strings

We’ll change the messages for the IoT device Tj in this
section. If the attacker can distinguish the arbitrary strings from
real messages/outputs, we claim he/she has won the game.
Starting with the initial call of deviceTj , we commence the game
transformation. After that, we gradually transition from Game
2-m-1 to Game 2-m -4in terms of communication messages.
We’ll move on to the next step after these transformations are
complete. We show that the adversary’s advantage over the
authentication protocol may be minimized to negligible levels
using these game transformations, as indicated in Lemmas 1, 2,
3, 4, and 5.

Lemma 1: If the number of IoT devices is denoted as n, then
we can express G0 as n multiplied by G1.

Proof: Due to the presence of n devices, the challenger C has
a reliable probability of 1/n to correctly guess the associated
session. �

Lemma 2: If LR-OPUFT| is a (qα, qβ , ε1)-secure back-
ward and forward unpredictable PUF, then G1 = G2−m−1 and
G2−(m−1)−4 = G2−m−1, for any 2 ≤ m ≤ L.

Proof: The LR-OPUF attached with device Tj is a
(qα, qβ , ε1)-secure forward and backward unpredictable PUF
and The PUF’s min-entropy is higher than χ. Furthermore,
even if the PUF’s input is revealed, the output generated from
it preserves a sufficient min-entropy quality, and the outputs
are thus uncorrelated. Next, if an adversary makes the Reveal
query and obtains the stored information from the OPUF’s mem-
ory, then, because the games in G1, G2−m−1 and G2−(m−1)−4
are based on the above condition, the gap between them is
bounded by ε1. Therefore, we can write |G1 − G2−m−1| ≤ ε1
and |G2−(m−1)−4 − G2−m−1| ≤ ε1. This signifies that the game
transformations have no effect. �

Lemma 3: Let AdvrCRHF
〈(·),B (k) denote the advantage of B to

break the security of the CRHF h(·). Then, ∀ 1 ≤ m ≤ L, we
have |G2−m−1 − G2−m−2| ≤ AdvrCRHF

〈(·),B (k).
Proof: Let us construct an algorithmB that compromises the

security of the Collision-Resistant Hash Function (CRHF) h(·).
The purpose of B is to generate all the necessary security cre-
dentials and simulate our protocol, mimicking all aspects except
for the i-th session (the current session). Within this algorithm,
B has access to the CRHF h(·). If the adversary initiates the
i-th session, B generates and transmits the randomly distributed
challengeNs, U←−, 0, 1

k as the output of the server. WhenA sends

N#
s to the device, B proceeds with the computations according

to the protocol specification. Instead of performing the usual
h(·) computation, B directs N#

s to the oracle. Upon receipt of
Π2, B produces the output Q, Π2, Δ as the response from the
device.

Upon receivingQ#, Π#
2 , Δ# from the adversary, B forwards

N#
s to the oracle and retrieves Π2, which is subsequently uti-

lized to verify the authenticity of the device. This simulation
corresponds to either Game 2-m-1 if B has access to the CRHF,
or Game 2-m-2 if the oracle query made by B is completely
random, resulting in an identical distribution.

Thus, we may compose |G2−m−1 − G2−m−2| ≤
AdvrCRHF

h(·),B .�
Lemma 4: ∀ 1 ≤ m ≤ L, |G2−m−2 − G2−m−3| ≤

AdvrCRHF
h(·),B (k).

Proof: This lemma’s proof is similar to that of Lemma 3. �
Lemma 5: ∀ 1 ≤ m ≤ L, we have G2−m−2 = G2−m−3 =

G2−m−4.
Proof: The LR-OPUF and CRHF h(·) are replaced with

the genuinely random function in the three games analyses in
this lemma. Thus, Ki/Ki+1 and h(Δ||Ki||Q∗||Ns) are used as
effective one-time pads to encode Q2Ψ

i , Q1∗
i = Q1

i ⊕Ki, and
Δ = Enc[Qi+1||Wi+1||Ki+1], and support the integrity ofQ2Ψ

i

and Δ, respectively. As a result, no adversary will be able to
tell the difference Π2 = h(Δ||Ki||Q∗||Ns), Δ and Q∗ from a
randomly chosen string. �

Theorem 2: Assume that the LR-OPUF instance LR-
OPUF∗ ← LR-OPUF is a (qα, qβ , ε1)-secure backward and
forward unpredictable PUF and let h(·) be an ε2-secure CRHF.
The indistinguishability-based privacy property is then satisfied
by our protocol P .

Proof: This theorem’s proof is identical to Theorem 1,
in which we demonstrated that the suggested authentication
protocol is secure against man-in-the-middle attacks Further-
more, it should be noted that the communication messages
for devices T0∗ and T1∗ are continuously altered during the
game transformation described in the proof of Theorem 1. This
constant alteration ensures that the entire transcript appears as
a random string, thereby preventing any disclosure of infor-
mation about the challenger’s coin. It is important to empha-
size that all identity-related memory parameters, including the
reference id RIDi

T and the emergency identities EIDEM =
(EID1

EM , . . . , EID
n
EM ), are randomly generated and can only

be used once for each pair. As a result, the likelihood that the
challenger will be able to identify T ∗0 and T ∗1 in such a way
that the game transformation is completed in a polynomial time
is 1/n2, where n is the number of devices in the network. To
put it another way, no adversary can tell the difference between
messages from devicesT ∗0 andT ∗1 with a probability greater than
1/n2. As a result, we may argue that the proposed approach can
provide privacy based on indistinguishability.�

Theorem 3: Assume that an LR-OPUF instance LR-
OPUF∗ ← LR-OPUF that is a (qα + qβ , ε1 + ε2)-secure back-
ward and forward unpredictable PUF, and h(·) be an ε2-secure
CRHF. Therefore (qα + qβ , ε1 + ε2) represents the underlying
PUF behaviour. Our protocol P can assure security against any
modelling or machine-learning attacks since underlying PUF
behavior is unpredictable.

Proof: To demonstrate this theorem, we leverage the
backward-and-forward unpredictability game described earlier.
In this game, an adversaryA is granted access to the LR-OPUF
connected to the device and acquires a set of CRPs from
it. Let A = (Aα,Aβ) be an adversary with a non-negligible
probability of breaking the LR-backward OPUF’s and forward
unpredictability. We construct an adversary B that aims to com-
promise the underlying physical PUF’s unpredictability while
achieving collisions in h(·) with the same success probability as



TABLE II
COMPARISON WITH OTHER STATE-OF-THE-ART MODELLING-ATTACK RESILIENT PROTOCOLS BASED ON DESIRABLE FEATURES (DF)

A. A is allowed to query the LR-OPUF up to (qα + qβ) times
using challengesCj (1 ≤ j ≤ qα + qβ) and receives LR-OPUF
responses Qj . B chooses an arbitrary LR-OPUF state ς and
provides it to Aα. It then executes a black-box simulation of
the backward and forward unpredictability game’s challenger C
(as defined in Definition 2). During the simulation, B queries
the LR-OPUF with a challenge Cj received from Aα, stores
(Cj , Qj) in a log file F , and forwards Qj to Aα. This process
continues until Aα eventually halts and writes a log file F∗.
Afterward,B updates the LR-OPUF state to ς∗ to change its con-
figuration for subsequent simulations or interactions. WhenAβ

sends a challenge Cj , B queries the LR-OPUF, stores (Cj , Qj)
in a log fileF , and forwardsRj toAβ . Eventually,Aβ terminates
and outputs a CRP (C#, Q#) of the LR-OPUF. However, since
B has never queried C# to the LR-OPUF, this contradicts the
unpredictability property of the LR-OPUF. Therefore, the suc-
cess probability ofB is similar to that ofA, which is ε1 + ε2, and
B makes (qα + qβ) queries to the underlying PUF. The security
of the proposed reconfigurable authentication scheme against
any ML-attack relies on the unpredictability property of the
LR-OPUF. After each round of the authentication process, the
LR-OPUF’s configuration is updated, ensuring its unpredictabil-
ity. Due to the input and output transformations, an adversary is
unable to predict any PUF response given an input. Therefore,
the adversary cannot distinguish the LR-OPUF outputsQi/Qi+1

and Ki/Ki+1 from a random string. It is important to note that
both (Qi, Qi+1) and (Ki,Ki+1) are independently generated,
further enhancing the security of the scheme. Therefore, no
adversary can correlate them. Also, the adversary (including
the semi-honest verifier/server) can only obtain the transformed
output instead of the original PUF response for a given input, and
after each reconfigurable operation, the behavior of LR-OPUF
changes. Hence, it will be difficult for any polynomial-time
adversary A to model the LR-OPUF.�

V. DISCUSSION

A. Performance Comparison

In this section, we compare the proposed solution with respect
to three state-of-the-art protocols presented in [20], [22], [23],
[39], [40] and [41], which claim to support resilience against
any modelling or ML attacks. We first consider some of the
desirable features (DF), such as mutual authentication, resilience
against replay attacks, the privacy of the devices, etc., which

are imperative for any IoT-based authentication protocol. In
[20], the authors have proposed two lockdown authentication
protocols, and we refer to them as Protocol #1 and Protocol
#2. From Table II, we can see that, like our proposed scheme,
the authentication protocols presented [20], [22], [23], [39], and
[41] also support the mutual authentication feature. However,
Protocol #1 presented in [20] and the protocol presented in [22]
are susceptible to replay attacks. More precisely, in Protocol
#1 of [20], the device sends its identity (defined as id in [20])
in Step 1 of the protocol to communicate with the server. An
adversary A can intercept that message and resend it later, but
the server cannot comprehend that. In addition, when the server
replies with the challenge (defined as c in [20]) and half of the
response bits (defined as r1 in [20]) in Step 2 of Protocol #1,
A can also intercept that message and resend it later. Therefore,
the protocol #1 presented in [20] cannot ensure security against
replay attacks. However, a similar problem also exists in their
Protocol #2. On the other hand, the protocol presented in [22],
[39] and [41] uses the same “seed”/nonce value to generate
the PUF response for each round of authentication, making it
vulnerable against replay attacks. Conversely, as discussed in
Section IV, if an adversary A intercepts and replays any of the
messages M1, M2, and M3 of our protocol, the recipient will be
able to detect that. Next, since the protocol presented in [22] uses
the same CRP for all sessions, it cannot ensure forward secrecy.
Now, Protocol #1 presented in [20] can ensure security against
any learner. Conversely, Protocol #2 and the protocol presented
in [22] ensure security against heuristic learners. However, in
both the protocols of [20], and the protocols presented in [22],
[23], [39], [40] and [41], the semi-honest server is allowed to
obtain a considerable number of original CRPs. Then, they can
model the PUF behaviour and even form a marionette PUF [35],
which makes the PUF useless. In [40], when a specified chain
of challenges is utilised, the server authenticates the device by
XORing the PUF response with the prior responses. While the
PUF advantage of not having to store responses is exploited,
chains can still be used to model the PUF.

Unfortunately, this makes the protocol vulnerable to device
impersonation attacks. In the proposed scheme, we have ad-
dressed this issue by transforming (masking) the input/output of
the underlying PUF. The proposed scheme is designed based on
the underlying foundation of the LR-OPUF, which ensures back-
ward/forward unpredictability. Therefore, the adversary will not
be able to predict the behavior of the reconfigured LR-OPUF
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TABLE IV
ESTIMATED TOTAL COST OF OUR PROPOSED SCHEME

even if she/he knows/obtains a considerable amount of CRPs of
the PUF before the reconfiguration (feias shown in Table IV
(confused)). Hence, it can ensure security against modelling
attacks. Next, from Table II, we can see that none of the protocols
presented in [20], [22], [23], [39], [40] and [41] has considered
the privacy of the devices. In addition, the protocols presented in
[20], [22], [23], [39], [40] and [41] are not scalable. For instance,
since Protocol #1 (in [20]) is constructed upon a weak-PUF
(SRAM) with a limited number of CRPs, this protocol can
only support a limited number of sessions (defined as d in
[20]). On the other hand, Protocol #2 in [20] and the protocol
presented in [22], [39], are based on the train-PUF-model, where,
for authenticating each device, the server needs to load the
train-PUF-model specific to that device. For example, instead of
storing CRPs, the server in [39], and [41] stores an Arbiter-PUF
model for each device. During authentication, the server needs to
load the Arbiter-PUF model corresponding to the device, which
impacts not only the execution time but also the storage and the
enrollment time/process required for each device. In addition,
each training process takes a considerable amount of time, which
is much higher than any key-sharing or CRP sharing process.
This is infeasible in typical IoT environments, where a server
may need to authenticate thousands of devices, and the server

needs to construct a train-PUF model for each device. Hence,
both of these solutions cannot ensure scalability.

Next, we consider some other metrics in order to compare the
proposed scheme w.r.t. the protocols presented in [20], [22], [23],
[39], [40] and [41]. In this regard, we first consider the PUF used
in each design of the authentication protocol. Protocol #1 pre-
sented in [20] is constructed using an SRAM-PUF, Protocol #2
is designed based on the XOR-PUF, and the protocol presented
in [22] uses a new PUF construction called TSMCA-PUF. On
the other hand, the protocol presented in [23] uses two Arbiter
PUFs (APUFs), where one of them is used as a genuine PUF
and the other as a fake. In the protocol presented in [39], and
[41], the server stores an Arbiter-PUF-model for each device
for authentication. In the proposed scheme, LR-OPUF is used
with an underlying non-reconfigurable strong PUF to validate
the legitimacy of the entities (both device and server). From
Table III, we can see that the number of interactions required
during the execution of the proposed scheme is 3, whereas
the other protocols (presented in [20], [22], [23], [39], [40]
and [41]) need 4-rounds of interactions. Next, we consider the
communication cost of each protocol, which denotes the total
size of the messages transmitted during the execution of the
protocol. The communication cost of the proposed scheme can



be computed as
∑3

i=1 Mi = 1280 bits. Table III also shows the
communication cost of the protocols (Protocol #1 and Protocol
#2 in [20], protocol in [20], and the proposed scheme) during
their execution. We note that the protocols presented in [20] have
lower communication cost as compared to others. However, it
should be noted that, unlike the proposed scheme, the protocols
presented in [20], [22], [23], [39], [40] and [41] have not con-
sidered any communication security of the messages exchanged
during their execution and that makes them vulnerable to many
attacks such as replay and forgery attacks. In addition, none of
them can ensure the privacy of communication.

B. Experimental Evaluation

The security of the proposed reconfigurable authentication
protocol is based on the underlying foundation of the LR-OPUF
scheme. Hence, this section presents experimental results to
show that LR-OPUF is effective against modelling attacks even
if the underlying PUF could be vulnerable to such attacks. To
generate these results, we first implemented a 64-bit LS-PUF
(Arbiter PUF with 5-XOR outputs) [36] on a Xilinx Zynq-7000
FPGA device using Xilinx Vivado Design Suite. The FPGA
is set up on a SASEBO G-II board, where we obtained the
responses against the challenges through a RS-232 C cable
connected to the SASEBO G-II board. We collected 70,000
CRPs, which were used to train a PUF model. To implement
the LR-OPUF, we used another 64-bit LS-PUF implementation
on the SASEBO G-II board consisting of a Xilinx Zynq-7000
FPGA hardware platform. The hardware engine also consisted
of two 256-bit 2 T MTP NVM (used as logic NVM) for stor-
ing the state and the helper data, respectively. The hardware
overhead includes the transformation functions (TF1(·) and
TF2(·)), Strong PUF utilized, and FE, where we benchmark our
scheme using the hardware overhead of 64-bit Arbiter PUFs. To
ensure resource efficiency, the ASCON hashing algorithm and
lightweight permutations of the Keccak hash function (Keccak-
f[200] and Keccak-f[400]) are used as transformation functions
in the control logic. The (63,30,13)-BCH code [38] is utilized
to generate helper data for the fuzzy-extractor construction. For
the error correction component of the FE, we employ an LFSR-
based implementation of the BCH encoding technique. This
encoding function transforms a 30-bit seed’s randomness into
a 63-bit code word. To ensure a more comprehensive hardware
benchmarking, we define different settings (Settings 1 through
4) to encompass a wide range of scenarios. In Table IV, we
provide a total of resource requirements for all settings in Look-
Up Tables (LUTs) and D-Flip-Flops (DFFs) for implementing
the proposed LR-OPUF construction. In all Settings, the PUF
and the error correction part of FE are identical; however, we
employ distinct input C and transformation function variations
(Keccak and ASCON hash functions). Note that because of the
algorithm design structures, the Keccak hash functions exhibit
slightly higher power consumption than the ASCON hashing
algorithm, but they fall within acceptable limits. For AEAD
encryptions, we have used four different modes: AES-GCM,
AES-OCB, AES-EAX, and XChaCha20Poly1305. Among all

Fig. 4. Layouts of the Proposed LR-OPUF Scheme (Settings 1 through 4) on
a Xilinx Zynq-7000 FPGA Device

of them, XChaCha20Poly1305 has a much greater limit on the
number of messages and message size.

Based on the information provided in Table IV, it is evident
that for a 64-bit input C, Setting 3 has the lowest hardware
requirement. Moreover, when it comes to a 128-bit input C uti-
lizing the Keccak-f[400] as the transformation function, Setting
4 is regarded as an acceptable choice in relation to hardware
requirements compared to Setting 2. Fig. 3 indicates the chip
layouts for each setting in the synthesized LR-OPUF scheme.
The chip layouts corresponding to Setting 1, Setting 2, Setting
3, and Setting 4 are represented by Fig. 4(a), (b), (c), and (d),
respectively.

Now, after obtaining the PUF responses from the underlying
Arbiter-PUF (LS-PUF) of the LR-OPUF, we apply the BCH
code for error correction, followed by hashing to construct the
final output. Both the Arbiter-PUF (LS-PUF) and the LR-OPUF
are subjected to the same set of challenges, consisting of 70,000
Challenge-Response Pairs (CRPs). To model the behaviours of
both PUFs, we employ the Scikit-learn machine-learning library
in Python, utilizing the Jupyter Notebook as our Integrated
Development Environment (IDE). We use four well-known
supervised learning algorithms: Naive Bayes (NB), Logistic
Regression (LR), Support Vector Machine (SVM) and Evolution
Strategy (ES). The objective of this evaluation is to predict the
correct response for a given challenge with high accuracy using
these machine-learning algorithms. For training and testing, we
split the generated CRP set of 70,000 samples into two parts:
the training set, which comprises 80% of the CRPs, and the test
set, containing the remaining 20% . Table V demonstrates that
the accuracy of the four methods is relatively high for LS-PUF,
indicating their vulnerability to modelling attacks. However, in
the case of LR-OPUF, despite using the same LS-PUF as the
underlying module, the accuracy of these methods is signifi-
cantly low. This is attributed to the masking of PUF input/output



TABLE V
PREDICTION ACCURACY RESULT (IN % )

through the application of two transformation functions (TF1

and TF2). Consequently, modelling a reconfigurable PUF like
LR-OPUF presents a considerable challenge, making it secure
against modelling attacks.

VI. CONCLUSION

Traditionally, PUFs exhibit static change-response behaviour.
However, many use cases/applications require dynamic PUF
challenge-response behaviour that can be achieved from re-
configurable PUFs. In this paper, we first introduced a new
reconfigurable PUF construction, which we call LR-OPUF,
which is then used for designing a privacy-aware reconfig-
urable authentication scheme. Through comprehensive security
analyses, it is shown that the proposed authentication scheme
can ensure several notable properties such as backward/forward
unpredictability, authentication without revealing CRPs to the
verifier, resilience against man-in-the-middle and modelling
attacks, etc. We argue that the proposed scheme can be useful for
many applications, such as recyclable/reusable access tokens,
PUF-based hardware intrinsic key storage, etc., which can be
updated in a secure manner.
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