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Abstract —This paper presents a queueing model to evaluate the latency associated with file transfers or replications in peer to peer
(P2P) computer systems. The main contribution of this paper is a modeling framework for the peers that accounts for the file size
distribution, the search time, load distribution at peers and number of concurrent downloads allowed by a peer. We propose a queueing
model that models the nodes or peers in such systems as M/G/1/K processor sharing queues. The model is extended to account
for peers which alternate between online and offline states. The proposed queueing model for the peers is combined with a single
class open queueing network for the routers interconnecting the peers to obtain the overall file transfer latency. We also show that in
scenarios with multi-part downloads from different peers, a rate proportional allocation strategy minimizes the download times.

Index Terms —Peer-to-peer networks, Queueing Model, Performance Evaluation

1 INTRODUCTION

Peer to peer systems provide a paradigm shift from
the traditional client server model of most networked
computing applications by allowing all users to act
as both clients and servers. The primary use of such
networks so far has been to swap media files within
a local network or over the Internet as a whole. These
systems have grown in popularity in the recent past
and the fraction of network traffic originating from
these networks has consistently increased. Developing
models to understand and quantify the impact of factors
affecting their performance is of importance to facilitate
the development of P2P systems and to ensure proper
utilization of the networking infrastructure. In this paper
we address this issue and develop a queueing model
for evaluating the performance of peers in such systems
in terms of the latencies associated with file replication
while accounting for architectural, topological and user
related factors.

The paradigm shifts associated with P2P systems and
its inherent features necessitate the development of new
models to account for their behavior. The presence of
a node in the P2P system can be transitory with peers
continually joining and leaving the network arbitrarily
over any given period of time. Also, network and end
user heterogeneities like different access speeds at dif-
ferent peers, file popularity, number of simultaneously
allowable downloads at a peer etc. need to be taken into
account to get realistic results. Existing literature on the
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performance and modeling of P2P networks primarily
focus on measurement and simulation based studies
(5], [13], [17], [20], [25], [29], [32] [1], [31], [27], [30],
[43]. Analytic efforts to model the performance of P2P
networks using fluid or branching process based Markov
models are presented in [9], [10], [15], [19], [28], [34], [26],
[39], [22], [42] and focus on the steady state behavior of
the number of peers in the network. A closed queueing
system model for P2P systems is presented in [16] that
focuses on the saturation throughput of the system and
ignores the effect of the network topology. The existing
models in literature fail to capture the performance of
a P2P system in terms of a user’s viewpoint: “How long
does it take to replicate a file, if available, in the P2P system?”
while accounting for the various user and network level
factors which are inherent to P2P systems. This paper
addresses this issue.

The latency associated with a file replication in a P2P
system consists of two components: the query search
time and the time required by the peers to transmit
the file. In order to model the peer level latency, we
develop a queueing model to evaluate the time required
at each peer to serve its replication requests. Each peer
is modeled as M/G/1/K processor sharing queue with
arbitrary constraints on the number of simultaneous
downloads allowed by the peers and file size distribu-
tions. We also develop models to evaluate the search
time associated with a query in both centralized and
decentralized P2P systems. To evaluate the overall delay,
these models are then combined with existing results
for single class open queueing networks with arbitrary
arrival and service patterns (which evaluate the router
level delays by modeling each router as a GI/G/1
queue). The model is able to account for a number of fac-
tors of P2P systems and network heterogeneities like file
popularity and size distribution, peer specific settings
like the number of simultaneous downloads, different
access rates, physical topologies, search strategies and



transitions between online and offline states. We also
show that the optimal workload division strategy in
the presence of multiple sources is proportional to the
service rates at each peer.

Extensive simulations are conducted to validate the
results of the model. We show simulation results from
three different scenarios (1) a real University network
(Columbia University), (2) a national backbone (AT&T)
with Internet service provider (ISP) level topologies and
(3) power law topologies [11]. For each of these scenar-
ios, our analytic results show a close match with the
simulation results.

The rest of the paper is organized as follows. In Section
2 we differentiate the work presented in this paper
from existing literature. Section 3 presents the analytic
framework for evaluating the peer level latencies and
Section 4 discusses download strategies in multi-part
scenarios. In Section 5 we present simulation results to
verify our model and also analyze the impact of various
factors on the network’s performance. Finally, Section 6
presents the concluding remarks.

2 RELATIONSHIP TO PRIOR WORK

In addition to applications involving file sharing, P2P
networks have also been proposed for use in web
caching, distributed directory services, storage and grid
computation. While the majority of the existing litera-
ture on the performance of P2P systems has focused
on measurements, various analytic models have also
been proposed. A measurement study of the Gnutella
network’s properties is presented in [29]. In [32], the
authors analyze four content delivery systems: HTTP
web traffic, Akamai content delivery network, and Kazaa
and Gnutella peer-to-peer file sharing traffic. An analysis
of user traffic in Gnutella, specifically the performance
in the presence of freeloaders can be found in [1]. The
measurement study in [31] characterizes the behavior of
users as well the network, for the Gnutella and Napster
networks. In [17], [27] the authors present measurement
studies of the BitTorrent P2P system. A measurement
study of the nature and magnitude of file pollution
in the KaZaA P2P system is undertaken in [20] while
[43] presents a measurement study of the characteris-
tics of available files in the Gnutella P2P system. A
measurement based study of the eDonkey P2P system
is presented in [30]. The effect of free-riding and free-
identities on the performance of peer-to-peer systems is
studied in [13]. A simulation based study of BitTorrent is
presented in [5]. In contrast to these studies, this paper
develops an analytic model for evaluating P2P networks.

In [28], [15] fluid models are used to characterize the
performance of BitTorrent like networks in terms of the
average number of downloads and download times. A
fluid model capable of accounting for features such as
peer churn, heterogeneous upload capacity and limited
infrastructure capacity is presented in [19]. User churn
is also modeled in [41] while [42] uses a fluid model

to evaluate the impact of free-riding in BitTorrent like
P2P systems. A fluid based model for eMule-like P2P
systems is proposed in [26]. Stochastic fluid models are
also used in [9], [10] to model the performance of P2P
web caches and web clusters. Branching process based
Markovian models to study BitTorrent like networks are
used in [39], [34]. In [22] P2P networks are studied in
terms of the required rates at which nodes may enter
and leave the network in order to maintain system state.
In contrast to our approach, the focus of these studies is
primarily on the evolutionary dynamics of the system.
These studies also do not account for queueing effects
in the network.

A simple model to study search strategies in large-
scale decentralized unstructured P2P networks is pre-
sented in [14]. The fairness of resource allocation strate-
gies in P2P networks is studied in [40]. A bound on the
replication time of a file that is divided into multiple
parts is obtained in [23] without considering the network
and queueing delays. Similar bounds on the download
time based on the service rates of neighboring peers are
provided in [21]. The server capacity in P2P systems
with streaming data is modeled in [35], [33], [38]. A
game theoretic analysis of P2P systems that evaluates the
impact of user altruism is presented in [36]. A Markov
chain model for schemes for recovering lost data in
P2P storage systems is presented in [2]. In contrast to
the literature described above, this paper focuses on
evaluating the download time associated with a given
file while accounting for the search mechanism, node
heterogeneity and the queueing effects.

The literature closest to our approach is that in [16]
where a closed queuing model for peer to peer networks
has been proposed. However, unlike our approach, this
model does not capture the significance of the physical
topology underlying the P2P network. Accounting the
impact of the physical network topology is particularly
important since a next hop peer in the P2P network is
not necessarily the same as Internet Protocol (IP) next
hop. The topology of the network governs the number
of routers, and thus the queues a packet passes through
before reaching the final destination. This model also
does not capture the effect of the differences in the file
sizes of different requests on the system performance.
Another important abstraction unaddressed in [16] is the
heterogeneities in the network and hosts. Although, the
authors analyze the effect of freeloaders on the system,
the behavior of peers allowing only limited number of
simultaneous file transfers has not been modeled. Also,
while different on and off times for different classes of
users have been considered, different access rates and
varying loads on different peers has not been modeled.

3 ANALYTIC FRAMEWORK

In this section, we present our analytic framework for
modeling the performance of peer-to-peer networks. In
general, a P2P system can be considered to consist of an



Peer X
Q,

(@) OO
g Subnet A
o .
Q, « OO
e @ Subnet D
ooo\g
(o]

(e}
Subnet B

PeerY

Subnet F

Subnet C

Fig. 1. An example topology of a peer-to-peer network in
a campus environment.

interconnecting network of routers forming the network
backbone which connects the various sub-networks in
which the peers themselves reside. These subnets may
be local area networks (LANSs) in the case of campus
networks and autonomous systems (ASes) with their
own network of intra-domain routers and subnets in
the case of large networks. A simple example scenario is
shown in Fig. 1 with four routers and six subnets where
user Y in Subnet D wishes to download a file from
another peer, X, in Subnet A. From the perspective of
queuing analysis, packets from node X to node Y would
see the system in Fig. 1 as that in Fig. 2.

The total file transfer delay is given by the sum of
the (1) query search time, (2) peer level delay i.e. the
transmission time of the file being downloaded and (3)
core network delay i.e. queuing delay at the intermediate
routers. Among the three, the propagation delay of
each link is arguably the most predictable and can be
treated as a constant. Propagation delays (of the order
of few milliseconds in a LAN and a few hundreds of
milliseconds in inter-continental links) are usually much
lower the sum of the download delays due to the end
peers and the network’s queueing delays. In this paper
we thus focus on the network queueing delays and the
delays at the end peers. For our analysis we break up
the system into two components:

1) The end peers which are analyzed as processor
shared nodes with finite/infinite capacity and ar-
bitrary service times.

2) Single class open network of the core routers with
the first-come, first serve discipline, no capacity
constraints and general arrival and service time
distributions.

3.1 Queueing Model for the End Peers

We now propose a queuing model for end peers and
derive an expression for the expected time it takes to
serve an user requesting a file download, starting with
the arrival process. We approach the model from a
per file request basis rather than a per packet basis.
In the network model considered in this paper, each
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Fig. 2. Queuing model equivalent of Fig 1.

Aj total arrival rate at the j** router

T service rate of the j*" router

c? J SCV of the arrival process at jt" router

cz ’ SCV of the service distribution of j*" router

Wq, | packet waiting time at 4" router before service

Q routing matrix

Dij proportion of arrivals to router j from router ¢

N¢ number of packets in the network at any time

TNy | time spent by a packet in the router network

P blocking probability at the peer

p peer service rate

Np number of connections currently being served at the peer
Wy service time for a request at the peer

C link capacity of the peer

m number of simultaneous requests allowed by a peer

| total number of files shared in the P2P network

Von number of files shared by peers that are currently online
O(i) | number of copies of i** most popular file in the network
B size of the file currently being downloaded

Np, number of concurrent downloads at it peer

X; service time of the i'" peer

Tgos | Time elapsed between query generation and termination
Tp Time required for file transfer from the peer(s)

T Overall waiting time, sum of Tps and Tp

TABLE 1
Notation and model parameters

router is attached to a number of subnets, which in
turn harbor the end peers. In view of this, traffic or
download requests from the edge router can be thought
of as splitting into several streams, one for every active
end peer, as shown in Figure 3.

Let there be A peers in the subnets of a given router
and on an average, A\; download requests arrive at the
router per second with an arbitrary inter-arrival time
distribution F7[]. It is also reasonable to assume that the
fraction ¢;(N) of these request arrivals that are destined
for particular peer i is inversely proportional to A, with
appropriate scaling, depending on the number of files
hosted by peer i. Also, assume that the choice of the
destination peer as well as the times between successive
download requests arriving at a router are not correlated.
The presence of cross-traffic, predominantly HTTP, also
lends credibility to this assumption. The assumption
also becomes more valid as the number of peers in
the subnets of the router increases. Let £1,&s,--- be the
sequence of inter-arrival times of the download requests
arriving at a given router. The inter-arrival time between
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Fig. 3. Splitting of the output stream at the router.

to requests at peer ¢, T;, is then given by the random

variable
Ti=> & ey
j=1

where v is a geometric random variable with parameter
¢(N), ie, Plv = n] = ¢N)1 — ¢;(N))" — 1, for
n = 1,2,---. Thus the inter-arrival time between two
successive arrivals at a peer is a random, geometric sum
of the inter-arrival times {. The parameter governing
the geometric sum is inversely proportional to N at
each peer and thus limy_.o ¢;(N) = 0 at each peer.
Now, it is well known from Renyi’s theorem [3], [18]
that the geometric sum of any arbitrary distribution for
independent, non-negative random variables converges
to the exponential distribution as ¢;(N) — 0. Thus
the distribution of the time between two download
requests at peer i is exponentially distributed with rate
)\di = qZ(J\/))\d

The service time is dependent on the size of the file
being downloaded. We allow for arbitrary distributions
for the service times thereby accommodating generalized
models for the file sizes. The rate at which a download
request is served also depends on the number of files the
peer is willing to let other peers simultaneously down-
load from it at any given instant of time. A savvy peer
may limit this number in order to gain download band-
width leverage (for example in a LAN where upload and
download bandwidths are coupled). Freeloaders form an
extreme class of such peers and do not share any files
but contribute to the network traffic by making frequent
download requests [1]. If a request for a file is made
when the download limit has been reached, it is lost
and no file transfer takes place. In other words, a peer
allowing at most m simultaneous downloads functions
as a node with m servers and no queue buffer. With C
and N, representing the total service capacity of the node
and number of requests being served, respectively, the
service rate of each download is C/N,. When transfers
are initiated or terminated, the service capacity of the
peer is divided equally among the current transfers.
Hence we model each peer as a M/G/1/m Processor
Sharing (PS) queue.

Insensitivity results for M/G/1/m PS queues [7], re-
veal that the state probability distribution and blocking

or loss probability results are identical to those obtained
for the corresponding M/M/1/m PS queue, whose state
probabilities in turn are identical to a M/M/1/m system.
The state probabilities p; are then given by

_ p(l-p)
bi = W 2)
_ pm(-p)
ho= T ®)
po= X @

for i = 0,1,...,m where P, is the blocking or loss
probability i.e. the probability that the threshold limit
for the file transfers has been reached, and X is the
average service time per request. Due to the file transfer
threshold imposed, all requests that are made do not get
serviced, with probability F;. Thus the effective rate of
arrivals to the peer becomes Ap(1 — P;) where Ap = Aq,
is the overall rate of request arrivals. Throughput of the
M/G/1/m PS queue can then be written as Ap(1 — P;).
The throughput can be equated to the net arrival rate
since no loss occurs at the peers, i.e. a file transfer is not
terminated midway. Implicit in this derivation is that the
end peer remains online throughout the period of the file
transfer. Using Little’s Law the expected service time that
a user encounters can then be expressed as:

E[Ny]

EWl == m

©)
where E[N,] denotes the expected number of file trans-
fers in progress at the end peer at any given instant of
time and

E[N,] =) ipi (6)
i=1

Here, p; is obtained from Eq. (2). Since the end peer is a
Processor Sharing system, the arriving request does not
spend any time waiting in the queue for service. Hence
the total time spent at the peer is equal to the service
time.

3.1.1 Aggregate Peer Latency

Peer to peer systems like Kazaa and BitTorrent exploit
the existence of multiple copies of a file to reduce the
total download time by transferring different fragments
of the file from different peers in parallel. While more
copies result in smaller replication times, the degree of
improvement depends on the loads at the individual
peers with the copies of the file. We now derive expres-
sions to characterize the effect of splitting the download
on the transfer time.

Measurement studies have shown that the number
of replicas of files in P2P systems like Napster and
Gnutella is heavily skewed and may be modeled by a
Zipf distribution [1]. We denote the total number of files
currently shared in the entire network by V' and the
number of files shared by the peers that are currently on-
line by V,,. Then, by Zipf’s Law, the i*" most frequent



object from a total of V' files occurs
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times in a collection of V,, files, where Hy(V) is the
harmonic number of order § of V and is defined as

1

Hy(V) = ; 7 (8)
We assume that the downloading peer requests an equal
fraction of the file from each of the O(7) peers available.
Assuming that equal amounts are downloaded from
each available peer starting at the same time, the overall
download time is characterized by the time taken by
the “worst” peer to serve its share, i.e. the peer with
the maximum service time. Here we have used the
fact that the download is complete only each of the
peers has served its share of the file. Since each peer
serves an equal fraction of the file, the file download
time is determined by the peer that serves its share
at the slowest rate and this peer is referred to as the
“worst peer”. Since the link capacity, C, at each peer
is the same and the maximum number of simultaneous
downloads, m, allowed by each peer is drawn from the
same distribution, the expected performance of the worst
peer is governed by the highest download request arrival
rate seen the O(7) peers. Let the arrival rates at the O(7)
peers, Ay, Aa, ..., Ao(;), be independent and identically
distributed, continuous random variables having a com-
mon density f and distribution function F. Define

< AO(L)}

Using results from order statistics, the density function
of Ajp(i) is given by

A[O(i)] = max{Al, Ag, ..

Faouy (@) = m[f’(m)]o(”‘lf(w) ©)

Thus, having obtained the distribution of the largest

arrival rate, we use the expected value of the distribution

to characterize the arrival rate at the “worst” peer, Ay p.

oo

)‘WP = /0 mfA[o(i)] (:E)dl (10)

Now each peer allows a random number m of simulta-

neous downloads and we assume that each peer chooses

this number independently from the same distribution.

Then given that the worst peer allows m files to be

downloaded concurrently, the expected number of files
it is serving at any point in time, E[Nw p]|, is given by

m
E[Nwp |m] = ip(i)

=0

(11

where the state probabilities p; are given in Eq. (2).
Unconditioning on m, we have

E[Nwp] =) lz ip(i)

j=0 Li=0

P(m = j) (12)

When O(i) copies of the file being requested are avail-
able, we schedule B/O(7) bytes of data to be transferred
from each peer where B is the total file size. The ex-
pected service time for the data transfer at the “worst
peer” is then

Blliwel = k. (13

3.2 Online-Offline Transition of Peers

While the analysis in the previous subsection assumes
that all peers involved in the file transfer stay online,
typical peers alternate between online and offline states.
We now extend our model to account for these scenarios.
The offline (H) and online time (G) distributions of
each peer are assumed to be identical and mutually
independent with average lengths of E[H]| and E[G]
respectively.

The implication of the online-offline transitions is
that now merely characterizing the performance of the
“worst” peer is no longer sufficient. This is because the
file allocation is no longer static and is dependent on
the number of peers with a copy that are online at that
instant of time. We first consider the case when only one
copy of the file is available and then generalize the result
for the case with multiple copies.

3.2.1 Single Peer

When a download request arrives at the peer hosting the
file, including this new request, the number of download
requests at the peer, i, is between 1 and m + 1, ie,, 1 <
i < m+ 1. With C denoting the service capacity of the
peer, the service rate seen by the user is then C'/i when
1 < i < m and the service rate is 0 when ¢« = m + 1 since
the limit on the number of simultaneous downloads has
been reached and the new request is blocked. Since peers
can be modeled as M/G/1/m PS queues when they are
online, the conditional probability mass function (pmf)
of the number of download requests at the peer is given

by
Pr{requests =i}
Pr{requests > 0}
P (1—p)

1—pm

Pr{requests =i | requests > 0} =

with 1 <¢ < m+1. The pmf of the service rate x is then

00 for g =C 1<i<m
_ . _ 1—pm T T g —= =
s { U0 for gy = g
1—pm 3
’ (14)

where p = \g, X and )y, is the request arrival rate at
the peer and X is the average service time per request.
With the size of the file to be downloaded (in bytes)
denoted by B, the expected time to transmit the file is
given by E[B/x|. However, before it completely serves
the download request the peer may go offline several
times, as shown in Figure 4. Since the average online
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period is E[G] seconds and online and offline states
alternate, the expected number of the peer’s transitions
into the offline state while the file is being downloaded is
E[B/x]/E|G]. Each of these transits adds E[H] seconds
to the peer latency. The total peer latency, E[Tpy], is then
given by

E[B/x]

_ E[H]\ x~ Bi p'~'(1 = p)
- (HEm)i_lc T

where E[B/x] is given by the summation in the equation
above.

E[Tpr] = E[B/x]+

3.2.2 Multiple Peers

Let the number of peers with the copies of the file be
denoted by N. When copies of the file are available for
download on multiple peers, the download rate seen by
the user is the sum of all the download rates from all the
available peers. It is also possible that the offline states
of all the peers with the copies of the file overlap and
the download falls to zero. We call the time when all the
peers with the file are offline as the off time and the time
when at least one of the peers is online as the on time
and we denote the average time spent in the off and
on states by E[Torr] and E[Toy] respectively. Now the
fraction of time an arbitrary peer is online, v, is given
> )
ElG
77 EH] + E[C) 19
The fraction of time the peers stay in the on state, or
equivalently, the probability that at least one of the peers
is online is given by
E[Ton]
E[Ton] + E[TorF]
Also, given that the set of peers are in the on state, the

probability that there are n peers online is a conditional
binomial distribution with parameter v and

( Z >7”(17)N"
1= (1—=yN

When n peers with copies of the file are online, the
pmf of the service rate is obtained by convolving the

=1-(1-N (16)

Pr{n | ON} = 17)

service rates of the individual peers, as given in Eq. (14).
Consider the sequence ¢p = 0 and ¢; = % forl1<i<m.
The expected peer latency is then given by

N m m B
BlTpr] = > D> oo Prix=al
n=1 |iy=0  i,=0 Siy tn
i1+ 41, >0
- Pr{x=y¢,}|Pr{n| ON} (18)

Note that the summation above is done only for those
cases where there is at least one peer that does not block
the download request (by checking the condition i1 +iz+

--+1, > 0). Now, as in the single peer case, the expected
number of times the set of peers transitions into the off
state is given by E[Tp1]|/E[Ton], each of which adds
E[Torr] time units to the download time. The expected
download time is thus

E[TpL]
E[Ton]
1

= mE TpL]

where we have used Eq. (16) and E[Tpy] is given in Eq.
(18).

E[Tpr) = E[Tes]+

E[Torr]

(19)

3.3 Query Search Time

Before a peer can start downloading a file, it has to first
search for the desired content in the P2P system. We
define the query search time as the time taken for the
entire search process to terminate and not just the time
for the first hit, since knowledge of and selection from
all available peers with the desired content results in the
best download time. We now derive the expressions for
the query search time in centralized and decentralized
P2P architectures.

Centralized: In centralized architectures a central
server contains an index of all the files that the nodes in
the P2P system share. In such an architecture, the search
time for a query is primarily the average lookup time to
retrieve the information. Thus the expected query search
time is given by

k
HC's

where k is a constant and pc, is the mean service time
of the central server.

Decentralized: In such architectures a peer forwards
the query to it's immediate neighbors and this process
is repeated until a specified threshold for the maximum
number of hops (I'T'Lp) is reached. The query search
time thus depends on the time to live (TTL) value
associated with the queries and the number of routers
the queries have to pass through. However, the number
of routers is not equal to the TTL value since each hop
on the logical, overlay network connecting the peers
may comprise of a number of physical communica-
tion links and their routers. The average number of

ETgs] =

(20)



routers between two peers in the network is given by
the expected length of the shortest path between two
randomly chosen nodes on the router graph. For any
random graph it has been shown in [24] that this distance
is approximately:

_ W[(Ng—1)(% —2) + 47
(d) = =" n(%/%)

where Z; is the average number of ¢ hop neighbors
and Npg is the total number of nodes in the router
graph. Since this is inherently a topological property, the
information embedded in the router adjacency matrix, a
known entity, can be utilized to derive expressions for
71 and %». It is not too difficult to see that

—In(£?)

21

1
H o= Ay 22
1 NRi;I J ( )
Nr
R 1
L o= ZIIA(%J) (23)
i#i

where A is the router adjacency matrix, A = A% and
7 4(i,j) defined as:

Z;0,5) = {

The query is is forwarded for TTLp hops with an
average of (d) routers on each hop and the return path
has an equal number of routers. The expected time
elapsed between the query generation and termination
is then

1 if Aij>0

0 otherwise (24)

Nr
E[Tys] = 2TTLp(d) > (E[Wg,] +7:)]/Nr

i=1

(25)

where ZZJ\E(E[WQJ + 7;)/Ng is the average queueing
delay at a router where E[Wg,] is the expected waiting
time in the it router and is given in Eq. (36).

3.4 Router Network Model

For characterizing the delays at the core routers, we con-
sider an interconnection network of Ngr routers whose
topology can be considered to be a random graph and
is specified using the routing matrix (). Each element g;;
of @) specifies the fraction of traffic arriving at router 4
that is destined for router j.

We model each router as a GI/G/1 queue to allow
for arbitrary arrival patterns and packet size or service
time distributions. The total arrival rate at the j th router,
Aj, is a function of both the total external arrival rate
to it, denoted by Agj, as well as arrivals from each
of the neighboring routers. Similarly, the variability of
the arrival process at a given router is a function of
the variability, measured by the squared co-efficient of
variance (SCV), of its external arrival process as well
as that of the arrivals from its immediate neighbors.
Existing results for single class open networks such as

[37] may be used to characterize the delays in the routers.
For completeness, the appendix lists the steps necessary
to evaluate the average delay, E[T,|, experienced by a
packet as it traverses the network.

3.5 Expected File Replication Time

We conclude this section by presenting the final expres-
sion for the file replication time. The download time is
determined by the time when the last packet of the file
part being downloaded from the “worst” peer, reaches
the destination. The time when the last packet reaches
the edge of the network is when the “worst” peer is
done transmitting it’s allocated file part i.e. after E[Tyy p]
seconds. The packet then spends a further E[Ty,] sec-
onds in the network. Adding the search time in the final
expression, the overall waiting time, E[T], is given by

E[T] = E[Twp] + E[TN,] + E[Tgs] (26)

where E[Twp| and E[T,] are given in Eqns. (13) and
(39) respectively and E[Tqs] given by Eq. (20) for a cen-
tralized architecture and by Eq. (25) otherwise. Note that
the expression assumes that the query search process
and the file transfer process are sequential and do not
overlap in time. While there are P2P systems where an
user may wait for all replies to the query to arrive before
initiating downloads, in some systems, partial responses
to a query may trigger downloads. In the latter case,
the expression above serves as an upper bound on the
expected overall waiting time. This bound will be very
tight when the file being downloaded is large since the
file transmission time will dwarf the query search time.

For peers with online and offline transitions, the
overall file replication time is obtained by adding the
expected peer latency E[Tpr]| from Eq. (19) with the
query search time E[Tgs] and network delay E[T,,| so
that

E[T] = E[TpL] + E[Tn,] + E[Tgs] (27)

4 MULTI-PART DOWNLOAD

Due to replication of files, multiple peers may host copies
of a file in the network. Splitting the replication into non-
overlapping parts and downloading the respective part
from each peer, instead of downloading the entire file
from a single peer can reduce the download time. The
question that naturally arises is: How should the file be
split among the peers so as to minimize the total download
time? We answer this question below.

Claim 1 In a multi-part download, an allocation strategy
which downloads a part of the file from each peer proportional
to it’s service rate minimizes the overall download time.

Proof: The proof presented here assumes the service
rate of each peer to be static and invariant during the
course of the download. This can easily be extended
to a dynamic allocation by sampling the instantaneous



rates and using the above scheme to determine the new
assignments.

Let r;, f; and t; denote the service rate of the ith
peer, size of the file F' to be downloaded from ith peer
and the time taken to download f; from the ith peer
respectively. Also, let ¢ denote the total download time.
Note that t; = f;/r;. The download time for the entire
file is determined by the time taken for the “worst” peer
to finish it’s service, i.e.,

t = max{tl,t2,~~ ,tn}
_ { fl f2 fn }
= max i R R
Ty T2 Tn
If the file part allocation is done proportional to the rates
then we have
h_ o _
T1 T2 T'n
Therefore, ¢t =t = --- = t,, and all n peers take the

same time to finish servicing their allocated quota, and
we denote this time by ¢,. Thus

to = max{ty,to, - ,tn}

where t; = to = --- = t,. Since all hosts have equal
download times we have

(T1+T2+"'+rn)ta:F (28)

Now, consider an arbitrary allocation of the file parts
where t; denotes the transfer completion time of the ith
peer and and let ¢, denote the maximum of these n times.
Here not all the ¢;, i = 1,--- ,n are equal, else it would
equivalent to the previous case. Thus in this scenario

there exists at least one peer ¢ such that, ¢; < t;. Therefore
(ri+ro+--+rp)ty > F (29)

This can be explained as follows: in the case of arbitrary
file-part transfers assignment we have

zn: tkrk =F
k=1

Since there exists at least one value distinct from ¢,
consider the case where t, = t, V k # i. In this case,
the previous equation can be written as

n
thrk +tir; = F

k=1
k2

(30)

Now tpr; > t;r; since tp is the maximum. Thus

n n
Z tyre + tpr; > Z tyrr + tir;

k=1
ki

étbirk
1

k=1
ki

> F (From Eq. (30))

Hence Eq. (29) holds. Clearly, the above proof holds if

there exists more then one transfer time that differs from

the maximum. The ratio of Eq. (29) and Eq. (28) gives
ty(ri+ra+ -+ 1)
to(ri+ro+ - +1y)

therefore we have ¢, > ¢,. O

1

5 SIMULATION RESULTS

In this section, we validate our analytical model by com-
paring the results with those obtained from simulations.
To demonstrate the robustness of the model, simula-
tions are carried out for three structurally very differ-
ent topologies: (1) a real University network (Columbia
University), (2) power law AS level topologies and (3) a
national backbone (AT&T) with Internet service provider
(ISP) level topologies. For each set of parameters, we
repeated the simulation 200 times with various combi-
nations of the source and destination peers and report
the average of the 200 runs. The parameters that remain
fixed across all simulations are: 7; = 0.002, and the peer
service rate p, = 10.

I. University Network: The simulated topology of the
Columbia University network from [8] is shown in Fig.
5(a) and comprises of 92 nodes, 34 core routers and 58
peers. We assumed that most of the peers reside in the
various dormitories of the University and that only a
handful are active from within the various departments.
For the simulations a random number (between 2 and
5) of peers were attached to each subnet while the de-
partment routers were assigned either one or two peers.
Since our model groups all non-P2P traffic together as
external traffic, we do not have to explicitly place non-
peer nodes in the simulation topologies. A value of
csi = 1.0 was used for these simulations. In Fig. 6(a) we
compare the simulation and the analysis results for the
download time for a file size of 120 packets. The figure
plots the download time as a function of the degree
of replication of the requested file in the network. The
simulation results match closely with the analysis and as
expected, the download time decreases with increasing
number of copies.

II. Power Law Topology: The power law topology
generated using BRITE [6] was constructed as a two-
tier hierarchical network with 25 routers and 50 peers.
Peers are attached randomly to the network and the
resulting topology is as shown in Fig. 5(b). A value of
cs; = 1.25 was chosen for these simulations and the
file size was again 120 packets. Fig. 6(b) compares the
simulation and the analysis results for the download
times for this topology. We again note the close match
with the simulation results.

III. ISP Network: For an ISP level network we consid-
ered the topology of AT&T’s backbone in the United
States. The backbone layout obtained is from [4] and the
network was extended by attaching a random number
of Autonomous Systems (generated using BRITE [6])



(a) Columbia University network

Fig. 5. Simulation topologies.

(b) Two tier AS router network

(c) AT&T network
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Fig. 6. Download time vs. Number of copies for the three topologies.

to each core router. The peers were attached randomly
to these AS routers. The final layout consisting of 44
routers, both backbone and AS, and 50 peers is shown in
Fig. 5(c). Again a value of ¢;; = 1.25 was used and the file
size was 120 packets. Fig. 6(c) compares the simulation
and the analysis results for the download time for this
topology and we again note the close match with the
simulation results.

5.1 Sensitivity Analysis

We now evaluate the impact of the P2P system’s features
on the download times. Fig. 7(a), shows the download
time as a function of the file size and number of copies.
We note that the decrease in the file transfer time is
not linear with the number of copies available in the
network. This is because the network delay, which is
small compared to the peer delays for small number of
copies, now starts dominating the total download time.
Fig. 7(b) shows the impact of the external traffic rate and
its SCV at the core routers on the file download time.
The external rate of traffic is uniformly increased across
all the routers in the network until the utilization of
the busiest among them reaches 1. When this threshold
is attained, the network becomes unstable, resulting in
a steep increase in waiting time (theoretically infinity).
The sharp upward curve in Fig. 7(b) concurs with this
observation. Finally, Fig. 7(c) shows the effect of the file
popularity and the number of simultaneous downloads
allowed by a peer on the download times. We note that

the number of allowed downloads has a more significant
impact on the performance.

5.2 Impact of Online and Offline Times

In Fig. 8(a) we compare the analytic and simulation
results for the peer model with online and offline transi-
tions developed in Section 3.2. All results in this section
correspond to C = 1MBps and B = 1MB. The results
are shown for the case where the online and offline
times are drawn from a Pareto distribution with the
parameters chosen such that the second moment was
infinite, for both the online and offline times. The results
are shown for the case with m = 5, E[H] = 2.0 and
two values of E[H]: 0.5 and 1.0. We see that the analytic
and simulation results match very closely. Similar results
were also obtained for the case when the online and
offline times are exponentially distributed.

In Fig. 8(b) we show the impact of expected duration
of the online time on the download times. In these
results, the expected offline time was kept fixed at 2.0.
Thus, the curves for different values of E[G] may also
be interpreted to correspond to different values of v. As
expected, larger online times lead to smaller download
times though the marginal decrease in the download
times becomes smaller with increasing E[G]. Finally, in
Fig. 8(c) we evaluate the impact of the expected dura-
tions of the online and offline times on the download
times. The results were evaluated for p = 0.75, N = 4
and m = 5. We note that while the download time
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increases linearly with the offline times, they decrease
non-linearly with increase in the online times.

5.3 Effect of File Allocation Strategies

In this section we use simulations to quantify the perfor-
mance improvement obtained with the optimal down-
load strategy of Section 4. In Fig. 9 we compare the
replication time of the optimal rate proportional allo-
cation mechanism with two other strategies where (1)
an equal amount is downloaded from each peer and (2)
a randomly chosen amount is downloaded from each
peer. The simulations were conducted on the Columbia
university topology of Fig. 5(a) and 4 copies of the file
were assumed to be available. We note that as expected,
the proportional allocation leads to significantly lower
delays.

6 CONCLUSIONS

In this paper, we presented an analytic framework to
evaluate the latencies associated with file replication in
P2P systems. The main contribution of the paper is a
queueing model to evaluate the file transfer delay at
the peers. Our model accounts for the query search
times and peer characteristics like the number of simul-
taneously allowed downloads at a peer, file popularity,
number of copies of the file etc. The model has been
validated using simulations. The paper also showed that
a rate proportional allocation strategy is optimal for
minimizing the file download time in scenarios with
multi-part downloads.
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(c) Online vs offline times

w
o

T . . T
Rate pE) orFonaI location-+—
ua é)al’t aﬂocatlon' +--
andom allocation & - et
30F .
R
25- .

Download time (in seconds)
N
o

i5p

10 | | | |
350 400 450 500 550 600 :
Number of packets

Fig. 9. Download times for different allocation strategies.

APPENDIX

The appendix presents the methodology for obtaining
the packet latency in the router network with each router
modeled as a GI/G/1 queue. While the mean and SCV of
the service time distribution at the routers are assumed
to be known, parameters of the arrival process at each
router are unknowns that first need to be determined.

6.0.1 Traffic Rate Equations

With A; denoting the traffic arrival rate at router j, and 7
denoting the average time taken by the router to process
a packet, the fundamental traffic-rate equation at router



j can then be formulated as
Ngr

Aj=Xoj+ Y Nigij J=1,2,0,

i=1

Nxg. 31)

In matrix notation, these equations can be written as
A=Al -Q)"

where Ay = (\g;) is the external arrival-rate vector, i.e.
traffic arriving from the subnets and @ = (g;;) is the
routing matrix. The associated offered load at node ¢,
which also gives the probability that the queue is busy
is given by

a; = N1, 1<i< Np

The rate of arrivals at router j from router i, A;;, and
the proportion of arrivals at router j which originate at
router 1, Dij, are given by )\,’j = )\iqij and Dij = >\ij/>\j-
Equation (31) is essentially a rate balance equation since
stable queues and infinite buffers imply that the in-
coming traffic rate equals the outgoing rate. The only
unknowns in Eqn. (31) are the arrival rates \; i =
1,---, Ng since both Ay and @ are inputs to the model.
The solution of Eqn. (31), a system of Ny linear equations
in Np variables, will therefore yield the total arrival rate
at each router.

6.0.2 Traffic Variability Equations

We denote by ¢Z; the SCV of the arrival process at router
j- The expressmns for ¢2; and the related parameters are
as derived in [37] and are enumerated below

7aJ+Z

where a; and b;; are constants, depending on the input
data, and are given by

zg 1<Z<NR7 (32)

aj=1+wj{ Phchi— +Zpu [(1—qi5) (1—Vz'j)qwfﬂ?i]}

(33)
and

-0,

where z;, 1/” and w; are independent of the variability
parameters c2 ; being calculated. In Eqns. (33) and (34)
poj is the welght associated with the external traffic while
co; denotes the SCV of the external arrival process into
router j. The variables x; and v;; are used to specify
the departure operation from the router; the variable w;
characterizes the superposition of traffic streams at the
router. z; is given by

bij = w;pijqij[vij + (1 — vig)(1 (34)

=1+ (maz{c?;,0.2} — 1),

S1

where ¢?; is the SCV for the service time of the it" router.
Also, v;; = 0 and

-1
w; = [1+4(1 —p;)*(v; — 1]t with v; = lprj
' Te)
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In our analysis for the router network, the peers are
decoupled from the system and traffic from them into
the routers is equivalent to that generated by an external
source. Hence, external traffic is a combination of several
arrival streams. Let x; and ¢ denote the rate and vari-
ability parameters for the ' stream into router j. Thus,

we have
>t
l
4 = wY (Fo)@riw
‘ — \ 2k ik
6.0.3 Network Latency

Using the results from [37], the expected waiting time at
the ith router, Wy, can be shown to be

Aoj =

BWq,] = mipi(ca; + c2i)9:/2(1 = pi), (36)
where g; = g;(pi, c2;, %) is defined as
_2(=pi) (1—c3)? :|
gilpic2 ) =4 7 [ 3pi (cGit+cly) ai <1
1 czi >1
(37)

Let the number of packets in the it router, including the
one in service, be denoted by N¢,. Using Little’s law,
the expected number of packets, E[N¢,], is: E[N¢,] =
pi + ME[Wg,]. Let Ao be the total external rate of traffic
into the routers, i.e. Ay = Eivjl Xoi. The total number
of packets in the network N¢ and therefore the sojourn
time E[Tn,] or the router network delay per packet are
given by

Ngr

Ne = Y Ne, (38)
=1

E[Tv,] JI—OC (39)
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