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Modeling Queueing and Channel Access Delay in
Unsaturated IEEE 802.11 Random Access MAC

based Wireless Networks
Omesh Tickoo, Biplab Sikdar, Member, IEEE,

Abstract—In this paper, we present an analytic model for
evaluating the queueing delays and channel access times at nodes
in wireless networks using the IEEE 802.11 Distributed Coordi-
nation Function (DCF) as the MAC protocol. The model can
account for arbitrary arrival patterns, packet size distributions
and number of nodes. Our model gives closed form expressions
for obtaining the delay and queue length characteristics and
models each node as a discrete time G/G/1 queue. The service
time distribution for the queues is derived by accounting for
a number of factors including the channel access delay due to
the shared medium, impact of packet collisions, the resulting
backoffs as well as the packet size distribution. The model is also
extended for ongoing proposals under consideration for 802.11e
wherein a number of packets may be transmitted in a burst
once the channel is accessed. Our analytical results are verified
through extensive simulations. The results of our model can also
be used for providing probabilistic quality of service guarantees
and determining the number of nodes that can be accommodated
while satisfying a given delay constraint.

I. INTRODUCTION

The IEEE 802.11 MAC [11] has become ubiquitous and
gained widespread popularity as a layer-2 protocol for wireless
local area networks. While efforts have been made to support
the transmission of real time traffic in such networks, they
primarily use centralized scheduling and polling techniques
based on the point coordination function (PCF). For ad hoc
scenarios, a more reasonable model of operation is that of
random access and the distributed coordination function (DCF)
where it is substantially more difficult to provide delay guar-
antees, and the performance of the MAC protocol can easily
become the bottleneck due to factors like channel contention
delays and collisions. In order to provide such guarantees, it
is necessary to be able to characterize the delays and other
performance metrics in these networks. In this paper we focus
on developing a generic analytic model for the delay and queue
length characteristics in IEEE 802.11 MAC based networks in
the random access mode. Based on the insights gained from
this analytic framework, we then evaluate the performance of
techniques to better support delay sensitive (real time) traffic.
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Existing work on the performance of the 802.11 MAC
has focused primarily on its throughput and capacity under
saturated conditions using Markovian, mean value and fixed
point analysis methods [5], [17], [12]. Work has also been
conducted on improving the 802.11 MAC by using channel
adaptive backoff schemes as reported in [4], [21] while [18]
investigates the impact of such schemes on the traffic charac-
teristics. The effectiveness of polling based mechanisms using
the Point Coordination Function to support voice services in
the 802.11 based LANs has been studied in [7], [8], [19],
[20] while [16] considers scenarios without access points. A
simulation based comparison of the delays in 802.11b and
802.11e in the DCF mode is presented in [6]. A theoretical
lower limit on the delay under saturated conditions for the
DCF mode has been evaluated in [22] while the channel access
time under saturated conditions is evaluated in [23]. Delay
analysis for the PCF mode of operation has been proposed in
[7], [19], [15] but no such analysis been reported for the DCF
case. This paper addresses this void in the existing literature
and presents analytic models for the queue characteristics in
wireless network operating in the random access mode and
analyzes their ability to support real time traffic.

We propose a detailed analytic model based on a discrete
time G/G/1 queue which allows for the evaluation of the
networks under consideration for general traffic arrival patterns
and arbitrary number of users. Our analysis gives expressions
for the probability generating function for the queue lengths
and the delays. Thus, probabilistic service guarantees in terms
of both the delays and packet loss probabilities can be eval-
uated and used for purposes like call admission control and
providing statistical delay bounds. The results of the queueing
model can also be used to evaluate the number of connections
that can be supported for a given delay or loss constraint.
The key to the model is the characterization of the service
time distribution which needs to account for the channel
access time resulting from the random access mechanism. Our
model accounts for the collision avoidance and exponential
backoff mechanism of 802.11, the delays in the channel access
due to other nodes transmitting and the delays caused by
collisions. The results obtained from this model have been
verified through extensive simulations.

This paper also evaluates the effectiveness of some tech-
niques to reduce the delays in the network red that arise
due the channel access time in multiple-access protocols. In
particular, we evaluate the proposal of IEEE 802.11e where a
node on successfully accessing the channel, is allowed to send
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M consecutive packets instead of one, thereby reducing the
delay arising from the channel access by a factor of M − 1.
We extend our queueing model to account for this variation
of the MAC protocol and derive expressions for obtaining the
delay characteristics in IEEE 802.11 networks with “collision
free bursts”. The collision free bursts also smoothen the fine
time scale burstiness of the traffic thereby further aiding in the
reduction of the delays and losses. Simulations have been used
to verify the effectiveness of this mechanism and are presented
in the paper.

The rest of the paper is organized as follows. In Section II
we present a brief overview of the IEEE 802.11 MAC protocol.
In Section III we present the detailed queueing model and
present the simulation results to verify the model. Section
V presents the extension of the model to the proposals for
collision free bursts in IEEE 802.11e. Finally, Section VI
presents a discussion of the results and concluding remarks.

II. OVERVIEW OF THE IEEE 802.11 MAC

The IEEE 802.11 MAC layer is responsible for a structured
channel access scheme and is implemented using a Distributed
Coordination Function based on the Carrier Sense Medium
Access with Collision Avoidance (CSMA/CA) protocol. An
alternative to the DCF is also provided in the form of a Point
Coordination Function which is similar to a polling system
for determining the user having the right to transmit. We only
describe the relevant details of the DCF access method and
refer the reader to [11] for other details on the IEEE 802.11
standard.

The CSMA/CA based MAC protocol of IEEE 802.11 is
designed to reduce the collisions due to multiple sources
transmitting simultaneously on a shared channel. In a network
employing the CSMA/CA MAC protocol, each node with a
packet to transmit first senses the channel to ascertain whether
it is in use. If the channel is sensed to be idle for an interval
greater than the Distributed Inter-Frame Space (DIFS), the
node proceeds with its transmission. If the channel is sensed as
busy, the node defers transmission till the end of the ongoing
transmission. The node then initializes its backoff timer with a
randomly selected backoff interval and decrements this timer
every time it senses the channel to be idle. The timer has
the granularity of a backoff slot (which we denote by δ)
and is stopped in case the channel becomes busy and the
decrementing process is restarted when the channel becomes
idle for a DIFS again. The node is allowed to transmit when
the backoff timer reaches zero. Since the backoff interval is
chosen randomly, the probability that two or more stations
will choose the same backoff value is very low. The details
of the exact implementation of the backoff mechanism are de-
scribed in Section III-A. Along with the Collision Avoidance,
802.11 uses a positive acknowledgment (ACK) scheme. All
the packets received by a node implementing 802.11 MAC
must be acknowledged by the receiving MAC. After receiving
a packet the receiver waits for a brief period, called the Short
Inter-Frame Space (SIFS), before it transmits the ACK.

There is another particular feature of wireless local area
networks (LANs), known as the “hidden node” problem, that
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Fig. 1. Basic operation of the CSMA/CA protocol.

the 802.11 MAC specification addresses. Two stations that are
not within hearing distance of each other can lead to collisions
at a third node which receives the transmission from both
sources. To take care of this problem, 802.11 MAC uses a
reservation based scheme. A station with a packet to transmit
sends an Ready To Send (RTS) packet to the receiver and the
receiver responds with a Clear To Send (CTS) packet if it is
willing to accept the packet and is currently not busy. This
RTS/CTS exchange, which also contains timing information
about the length of the ensuing transaction, is detected by
all the nodes within hearing distance of either the sender or
receiver or both and they defer their transmissions till the
current transmission is complete.

The basic operation of the CSMA/CA based MAC protocol
of IEEE 802.11 is shown in Figure 1 and it shows the exchange
of various packets involved in each successful transmission
and the spacing between these packets.

III. QUEUEING MODEL FOR THE 802.11 DCF

In this section we introduce a discrete time G/G/1 queue
for modeling nodes in a random access network based on
the 802.11 MAC. We assume a network with N nodes using
the DCF of IEEE 802.11 to schedule their transmissions.
We assume the use of RTS and CTS messages for channel
reservation. The analysis can be easily extended for the cases
where such messages are absent. The packet arrival process
and the length of each packet is assumed to be arbitrary and
the channel transmission rate is C bits/sec. Finally, the paper
does not consider the hidden node problem.

A. Modeling the Backoff Mechanism

In order to model the MAC layer queueing delays and
losses, we first analyze the exponential back-off scheme of
802.11 MAC protocol’s Collision Avoidance mechanism. In
Figure 2 we show the details of this backoff mechanisms.
With multiple nodes contending for the channel, once the
channel is sensed idle for a DIFS, each node with a packet to
transmit decrements its backoff timer. The node whose timer
expires first begins transmission and the remaining nodes stop
their timers and defer their transmission. Once the current
node finishes transmission, the process repeats again and the
remaining nodes start decrementing their timer from where
they left off.

In the following analysis we denote the probability that an
arbitrary packet transmission, or an RTS transmission if RTS-
CTS exchange is used, results in a collision by p (since hidden
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Fig. 2. The backoff mechanism of 802.11 MAC. The frame transmission time
includes the RTS/CTS exchange and the MAC layer ACK. CW = Contention
Window.

nodes are not considered in this paper, there are no CTS colli-
sions). The lower and upper bounds on the contention window
associated with backoffs are denoted by CWmin and CWmax

and we use the notation m = log2(CWmax/CWmin). Once a
node goes into collision avoidance or the exponential back-off
phase, we denote the number of slots that it waits beyond a
DIFS period before initiating transmission by BC. This back-
off counter is calculated from

BC = int (rnd() · CW(k)) (1)

where the function rnd() returns a pseudo-random number
uniformly distributed in [0, 1] and CW (k) represents the
contention window after k unsuccessful transmission attempts.
Note that in case the int() operation is done using a
ceil() function, the effective range for BC becomes 1 ≤
BC ≤ CW (k) since the probability of rnd()= 0 is 0
assuming a continuous distribution. For the rest of this paper
we assume that a ceil() function is used to do the int()
operation.

The first attempt at transmitting a given packet is performed
assuming a CW value equal to the minimum possible value
of CWmin [11]. For each unsuccessful attempt, the value of
CW is doubled until it reaches the upper limit of CWmax

specified by the protocol. Then, at the end of k unsuccessful
attempts, CW (k) is given by

CW (k) = min
(

CWmax, 2k−1CWmin

)

(2)

Also, let the probability that a transmission attempt is unsuc-
cessful, i.e., the probability of a collision be denoted by p.
Then, the probability that CW = W is given by

Pr{CW = W} =

{

pk−1(1 − p) for W = 2k−1CWmin

pm for W = CWmax

(3)
where k ≤ m. Note that the second case (W = CWmax)
includes all cases where the number of collisions is greater
than m. The probability that back-off counter BC = i, 1 ≤

i ≤ CWmax, is then given by

Pr{BC = i} =


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[

∑m−1
k=0

pk(1−p)
2kCWmin

1 ≤ i ≤ CWmin

+ pm

CWmax

]

[

∑m−1
k=j

pk(1−p)
2kCWmin

2j−1CWmin + 1 ≤

+ pm

CWmax

]

i ≤ 2jCWmin

pm

CWmax

2m−1CWmin + 1 ≤

i ≤ CWmax

(4)
In [17], [18] the collision probability p was derived for the
saturated network case where each node always has a packet
to send and each incoming packet is immediately backlogged.
In this paper, we develop a model to obtain an expression
for the collision probabilities in the general, unsaturated case.
In the saturated case where each packet is backlogged im-
mediately, each packet starts out with a window of CWmin.
With probability 1 − p the transmission is successful and
the average backoff window of such a packet is CWmin/2.
With probability p(1 − p) the first transmission fails and the
packet is successfully transmitted in the second attempt (using
a backoff window of 2CWmin) which adds CWmin to the
average backoff window seen by the packet. Continuing along
these lines for cases with larger number of losses, the average
backoff window seen by packets at the nodes when the node
experiences a collision rate of p is given by

W = (1 − p)
CWmin

2
+ p(1 − p)

2CWmin

2
+ · · · +

pm(1 − p)
2mCWmin

2
+ pm+1 2mCWmin

2

=
1 − p − p(2p)m

1 − 2p

CWmin

2
(5)

The equation above may also be used for relating the collision
rate to the average window size for non-saturated cases with
a rather small error creeping in due to the fact that in non-
saturated nodes, it is not necessary that all packets experience
backoff at least once. We also note that in the IEEE 802.11
standards [11] Sections 9.2.5.2 and 9.2.5.5 specify conditions
where the backoff process should be invoked even for the first
attempt at transmitting a packet. Also, all nodes must perform
a backoff after every transmission with the more fragments
bit set to 0, even if there are no packets currently queued up.
These increase the likelihood that an arbitrary packet arrival
experiences some backoff slots before it is transmitted. Finally,
at low loads where some errors may be introduced by Equation
(5), the packet transmission time rather than the backoff time
dominates the packet delay, making the impact of such errors
quite small. Consequently, we use Equation (5) to characterize
the average window size for a given collision probability. Note
however, that the collision probability is a function of the load
at each node and we proceed to evaluating it.

Now consider a network with N nodes operating in discrete
time where the packet arrival rate at each node is λ packets
per slot, the packet service rate of the network is denoted by µ
packets per slot and the queue utilization at a node is denoted
by ρ. To evaluate the collision probabilities when the nodes
are unsaturated, we consider a tagged node which transmits
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in a given slot. Now, a collision occurs if one or more of the
remaining N −1 nodes also transmit in this slot. Then, letting
P [SE] denote the probability that a node does not transmit in
a slot, we have

p = 1 − P [SE]N−1 (6)

where we have used the widely used decoupling approximation
[1], [17] which assumes that the event that a node does not
transmit in a slot is independent of similar decisions by the
other nodes. Now, using QE to represent “queue empty” and
QNE to denote “queue not empty” for ease of notation,
P [SE] is given by

P [SE] = P [SE | QE]P [QE] + P [SE | QNE]P [QNE]

= 1· (1 − ρ) + ρP [SE | QNE].

since if a queue is empty, it does not transmit with probability
1 and the probability that a queue is empty is given by
1 − ρ. Note that a queue is non-empty in a slot either if it
is backlogged or if a new arrival occurs in that slot while
the queue was empty. Now, considering the fact that we are
interested in stable queues and backoff slots are two orders
of magnitude smaller than typical data packet lengths, the
probability of the latter case is quite small. Also, a backlogged
queue will not transmit in a slot with probability (W −1)/W .
Then, P [SE | QNE] can be approximated by (W − 1)/W .
Consequently,

P [SE] = (1 − ρ) + ρ
W − 1

W
= 1 −

ρ

W
(7)

and combining Equations (5), (6) and (7) the loss rate p is
given by

p = 1 −

(

1 − ρ
(1 − 2p)

1 − p − p(2p)m

2

CWmin

)N−1

. (8)

To determine ρ, we now characterize the average time to
serve a packet. For each packet, the node spends W slots
in backoff. Also, with the long term fairness of exponential
backoff, in the case where all nodes have the same traffic
arrival rates, on an average ρ(N −1) transmissions from other
nodes occur between two transmissions from the tagged node.
This contributes ρ(N−1)TS slots to the service time where TS

is the average length of a packet in units of backoff slots. Now,
with each packet transmission resulting in a collision with
probability p, the average number of collisions per successful
transmission is given by p/(1 − p). The contribution due
to the collisions of packets of other nodes is thus given by
ρ(N − 1)TCp/2(1− p) where TC is the time of a collision in
units of slots and the factor of 2 in the denominator represents
the first degree approximation that only two nodes are involved
in a collision. Finally, adding the time to transmit the packet of
the tagged node (TS), its backoff time (W ), and any collision
that it may have, we get,

1

µ
= ρ(N − 1)

[

TS + TC
p

2(1 − p)

]

+ W + TS + TC
p

2(1 − p)
(9)

Then using the fact that ρ = λ/µ for a stable system and
substituting 1/µ = ρ/λ and W from Equation (5) in the

equation above, we have

ρ =
λ

[

TS + TC
p

2(1−p)

]

+ λ (1−p−p(2p)m)
1−2p

CWmin

2

1 − λ(N − 1)
[

TS + TC
p

2(1−p)

] (10)

We can now substitute ρ in Equation (8) to obtain p by solving
the following equation:

p = 1−



1−
λ+λ

[

TS +TC
p

2(1−p)

]

1−2p
(1−p−p(2p)m)

2
CWmin

1 − λ(N − 1)
[

TS + TC
p

2(1−p)

]





N−1

(11)

B. The Queueing Model

To obtain the delays and losses experienced by a packet at
each node, we model the system as a discrete time G/G/1
queue. The unit of time or the slot length corresponds to
the length δ of a backoff slot. Note that in real networks the
packet arrival process may be a continuous time process and
we account for the fact that the arrival may occur anywhere
in the slot. Also, since δ is of the order of 20µsec, the error
introduced by the discretization is quite small. We denote by
a(n) the probability that n messages arrive in a given slot
at a given node with the corresponding probability generating
function (pgf) A(z). Also, b(n) denotes the the probability
that the service time of a packet takes n slots with the
corresponding pgf B(z). Now, b(n) depends on the number of
nodes contending for the channel as well as the packet length
distribution and we now characterize its distribution.

We define the service time of a packet to be the time
from the instant the packet reaches the head of the queue
in the node to the instant it successfully departs from the
queue. Thus it has two components: (1) the time till the node
successfully accesses and reserves the channel for use and (2)
the time required to transmit the packet. While the second part
is essentially characterized by the packet length distribution,
the first part needs a more detailed analysis. To characterize
the time required to successfully access the channel, we refer
to Fig. 3. Between any two successful transmissions by a
tagged node, other nodes may successfully transmit a number
of packets or may be involved in a number of collision, each of
which add to the channel access time of the tagged node. Note
that transmission attempts by the tagged node which result in
collisions are also included in this access time characterization.

We first characterize the number of backoff slots that the
tagged node has to wait between two successful transmissions.
When a packet comes in and finds that the system is empty, it
directly proceeds with a transmission and if successful, depart
without experiencing any backoff slots. Thus, the probability
that the number of backoff slots, BO, is zero is approximated
by P [BO = 0] = (1 − ρ)(1 − p). Now with probability ρ
the packet goes into backoff at least once. Now, note that if
the tagged node successfully transmits the packet in its first
attempt (with probability 1 − p) the number of backoff slots
is uniformly distributed between 1, · · · , CWmin. In case of a
successful transmission after a single collision (with probabil-
ity p(1−p)), the probability mass function (pmf) of the number
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Fig. 3. Interleaving of transmissions and collisions contributing to the service time.

of backoff slots is obtained through U1,CWmin
∗ U1,2CWmin

and so on, where Ua,b denotes a uniform distribution between
a and b and ∗ represents the convolution operation. For a
sequence of k, k > m, successive collisions for the same
packet, we have k convolutions the first m of which are
U1,CWmin

, U1,2CWmin
, · · · , U1,2mCWmin

(i) while the remain-
ing terms are U1,2mCWmin

(i) since the backoff window is
constrained by CWmax = 2mCWmin. Then, the probability
the tagged node experiences i backoff slots, i > 0, is given
by

P [BO = i] = ρ

[

(1 − p)U1,CWmin
(i) + p(1 − p)

[

U1,CWmin
∗ U1,2CWmin

(i)
]

+ · · · + pm(1 − p)
[

U1,CWmin
∗ U1,2CWmin

∗ · · · ∗ U1,2mCWmin
(i)

]

+pm+1(1 − p)
[

U1,CWmin
∗ · · · ∗ U1,2mCWmin

∗

U1,2mCWmin
(i)

]

+ · · ·

]

(12)

with the corresponding pgf BO(z). Note that the maximum
number of retransmission attempts allowed for each packet is
governed by the long retry count (SLRC) (short retry count
(SSRC) for transmissions without the RTS-CTS exchange)
which forms the limit on the summation above. However, its
effect may be neglected since the term pk(1 − p) becomes
negligibly small as k increases.

To evaluate the service time seen by a packet waiting
at the tagged node, we now characterize how many of the
backoff slots experienced by it were followed by collisions
or successful transmissions by other nodes. We term such
slots as active slots. Now, since the average window size is
W (Eqn. (5)), and a queue is active with probability ρ, the
probability that a node attempts a transmission in an arbitrary
slot is given by ρ/W . Note that since we are looking at a
backoff slot between two successful transmissions from the
tagged node, if the tagged node transmits in any of the backoff
slots the slot must be accompanied by a collision. Denote
by “TX n” and “TX other” the event that the tagged node
transmits in an arbitrary slot and the event that at least one
of the remaining N − 1 nodes transmits in an arbitrary slot,
respectively. Then, the probability that a given slot is active
(i.e. contains a transmission attempt by at least one of the N
nodes and in case the tagged node transmits it experiences a

collision), q, is given by

q = P [TX other](1 − P [TXn]) + P [TX other]P [TXn]

= P [TX other]

= 1 −

(

1 −
ρ

W

)N−1

(13)

Then, given that the tagged node experiences i backoff slots
before it successfully transmits a packet, the pmf of the
number of active slots within the backoff slots is given by

P [j slots active|BO = i] =

(

i
j

)

qj(1 − q)i−j (14)

for j = 0, · · · , i. We next obtain the probability that a slot
results in a collision given that it is active, qc. A collision can
occur in an active slot in one of two ways: (1) the tagged node
transmits and at least one of the other nodes also transmits in
the slot or (2) the tagged node does not transmit in the slot
but two or more of the other nodes do. Now we know that
if an active slot contains a transmission by the tagged node,
it results in a collision i.e., at least one additional node also
transmits in the slot. Then qc is given by

qc = P [collision|slot active] =
P [collision,active]

P [slot active]

=

(

1 − ρ

W

)

[

1 −
(

1 − ρ

W

)N−1

− (N−1)ρ

W

(

1 − ρ

W

)N−2
]

1 −
(

1 − ρ

W

)N−1

+

ρ

W

[

1 −
(

1 − ρ

W

)N−1
]

1 −
(

1 − ρ

W

)N−1

=
1 −

(

1 − ρ

W

)N−1

− (N−1)ρ

W

(

1 − ρ

W

)N−1

1 −
(

1 − ρ

W

)N−1
(15)

Thus the probability that out of j active slots k result in
collisions is given by

P [k collisions|j active slots] =

(

j
k

)

qk
c (1 − qc)

j−k (16)

Now, each collision is of duration TC = DIFS+τRTS where
τRTS is the time required to transmit an RTS packet. Thus
each collision between two transmissions from the tagged
node adds TC slots to the service time at the tagged node.
Note that in situations where RTS-CTS packets are not used
to reserve the channel, the duration of a collision is given by
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TC = DIFS+τpkt where τpkt is the packet transmission time.
Also, each successful transmission by other nodes between the
two successful transmissions of the tagged node adds a time
proportional to the packet length of the transmitted packet to
the service time at the tagged node. In our analysis we allow
for general packet length distributions and the probability that
a packet transmission takes ν slots (which is dependent on the
packet length and the channel rate and includes the duration of
the RTS, CTS and ACK exchange) is denoted by l(ν) with the
corresponding pgf L(z). Then, the contribution of j successful
transmissions to the service time of the tagged node is given
by

P [

j
∑

pkt time = u] = l ∗ l ∗ · · · ∗ l(u) = l(j)(u) (17)

where l(j)() represents the j−fold convolution of l(ν). Note
that in the expression above, we have assumed that the all
nodes have the same packet size distribution. Analysis for
the more general case of arbitrary packet size distributions
at different nodes is presented in Section IV.

Consider a scenario where the tagged packet experiences i
backoff slots of which j are active and among these j active
slots, k slots have collisions. If the j − k successful packet
transmission by the other nodes contribute u slots, then the
pmf of the conditional channel access time for the successful
transmission of the tagged packet, Y , is given by

P [Y = s | i, j, k] =

{

l(j−k)(u) s = i + kTC + u
0 otherwise

(18)

where l(j−k)() represents the j − k-fold convolution of the
packet size distributions of the j−k successful transmissions.
Now, the joint probability distribution of i backoff slots, j
active slots and k collisions, P [i, j, k] can be evaluated using

P [i, j, k] = P [j, k | i]P [i] (19)

The pmf of the backoff slots, i, is P [i] = P [BO = i] and
is given in Equation (12). Also, by combining Equations (14)
and (16) which characterize the number of active slots given i
and the number of collisions in these active slots, respectively,
we have

P [j, k | i] =

(

i
j

)

qj(1 − q)i−j

(

j
k

)

qk
c (1 − qc)

j−k (20)

The probability mass function of the service time Y can now
be obtained by unconditioning Equation (18) on i, j and k
using the expressions for P [j, k | i] and P [i]:

P [Y = s] =
∑

i,j,k

P [Y = s | i, j, k]P [i, j, k]I(s)

=
∞
∑

i

i
∑

j

j
∑

k

l(j−k)(u)P [j, k | i]P [BO = i]I(s)

=

∞
∑

i

i
∑

j

j
∑

k

[

l(j−k)(u)

(

i
j

)

qj(1 − q)i−j

(

j
k

)

qk
c (1 − qc)

j−kP [BO = i]I(s)

]

(21)

where I(s) is an indicator function which equals 1 when
s = u + i + kTC and 0 otherwise. Note that the above
expression needs to be evaluated for all possible values of
i, j and k which result in a given value of s. As described in
the derivation for P [BO = i] in Equation (12), the number
of possible backoff slots i in the expression above extends to
infinity because we have not considered the fact that a packet
may be dropped by the MAC layer after a certain number of
unsuccessful retransmissions. However, as argued before, the
error caused by this is quite negligible since the probability of
a packet experiencing an extremely large number of collisions
and thus backoff slots is extremely small (i.e. pk(1 − p) → 0
as k increases). The pgf of the final service time, B(z), is then
obtained by the convolution of the channel access time (Y (z))
and the length of the packet to be served (l) and is given by

B(z) = Y (z)L(z) (22)

Using standard discrete time queueing theory (Chapter 1,
Equation (1.21), page 14 of [3]), the pgf of the system
occupancy of the G/G/1 queue at random slot boundaries
(beginning of a slot), U(z), is given by

U(z) = [1 − A′(1)B′(1)]
(z − 1)B(A(z))

z − B(A(z))
(23)

and the pgf of the integer part of the system time (where
system time is defined as the total time spent in the system
from the arrival instant to the service completion time) can be
shown to be (Chapter 1, Equation (1.59), page 31 of [3])

Vint(z) =
[1 − A′(1)B′(1)] (z − 1)B(z) [1 − A(B(z))]

A′(1) [1 − B(z)] [z − A(B(z))]
(24)

Allowing arrivals to occur at any point in the slot, we denote
the distance of the arrival point from the start of the slot by F
with mean F . This adds a fractional component to the system
time of Vfrac = 1−F . The total system time is then given by
V = Vint + Vfrac whose mean can be expressed as (Chapter
1, Equation (1.63), page 31 of [3])

V = 1 − F + B′(1) +
[A′(1)]

2
B′′(1) + A′′(1)B′(1)

2A′(1) [1 − A′(1)B′(1)]
(25)

The average queue size at each node can then be obtained
using Little’s law and is given by

Q = A′(1)V (26)

Eqn. (25) can now be solved to obtain the number of nodes
that can be supported for arbitrary arrival traffic patterns while
providing a specified delay guarantee.

Note that the second moment of the time a packet spends
in the system is given by

V 2 = E[(Vint + Vfrac)
2]

= E[V 2
int] + E[V 2

frac] + 2E[Vint]E[Vfrac] (27)

To obtain the terms in the equation above, we note that

E[Vfrac] = 1 − F (28)

E[V 2
frac] = 1 + F 2 − 2F (29)
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Physical Layer 802.11 MAC
Propagation 2 ray gnd RTS size 44 bytes

Channel Wireless CTS size 38 bytes
Rx Threshold 3.652e-10 DIFS 50 µsec

Bandwidth 2 Mbps SIFS 10 µsec
Frequency 914 MHz Slot size 20 µsec

Loss Factor 1.0

TABLE I
SIMULATION SETTINGS

and after differentiating Vint(z) given by Equation (24) once
and twice, respectively, and taking the limit as z → 1, we
obtain

E[Vint] = B′(1) +
[A′(1)]

2
B′′(1) + A′′(1)B′(1)

2A′(1) [1 − A′(1)B′(1)]
(30)

E[V 2
int] =

A′′(1)B′′(1) [1 + A′(1)B′(1)]

2A′(1) [1 − A′(1)B′(1)]
2

+
[A′′(1)]2[B′(1)]3 + [A′(1)]3[B′′(1)]2

2A′(1) [1 − A′(1)B′(1)]
2

+
A′′′(1)[B′(1)]2 + [A′(1)]2B′′′(1)

3A′(1) [1 − A′(1)B′(1)]

+
A′′(1)[B′(1)]2 + A′(1)B′′(1)

A′(1) [1 − A′(1)B′(1)]

+B′(1) +
[A′(1)]

2
B′′(1) + A′′(1)B′(1)

2A′(1) [1 − A′(1)B′(1)]
(31)

Higher order moments of the total time that a packet spends in
the system can similarly be obtained by differentiating Vint(z)
an appropriate number of times and taking the limit as z → 1.

C. Simulation Results

To validate our analytic model, we conducted extensive
simulations using the ns-2 simulator [9] for different network
topologies, number of nodes as well as the load on the
network. In this section, we report on our simulation results for
the case of 10 and 20 nodes and omit the others since they are
similar. The simulations for the results reported in this section
were carried out for a rectangular region of 670× 670 meters
and the nodes were randomly distributed over this region.
The routing protocol used for the simulations was Ad-hoc
On-demand Distance Vector routing (AODV) [14]. We also
verified our results for routing using Destination Sequenced
Distance Vector (DSDV) [13]. The interface queues at each
node used a Droptail policy and the interface queue length
was set at 5000 packets. All sources and receivers have an
omni-directional antenna of height 1.5m with transmitter and
receiver gains of 1 each. The simulations were run for a
simulated time of 1800 seconds. All other parameter settings
for the physical and MAC layers for these simulations are
given in Table 1.

Each node was the source for one flow as well as the sink for
another flow. Thus the 10 node case corresponds to 10 flows
while the 20 node case had 20 active flows. The arrival process
at each node, (a(n)), was assumed to follow the distribution

a(n) =

{

1 − γ n = 0
γ n = 1

(32)

resulting in an average inter-arrival time of 1/γ. The sources
used UDP as the transport protocol and the packet sizes were
assumed to be 1000 bytes.

In Figure 4 we compare the results for the collision proba-
bilities as obtained from the simulations with those obtained
from our analysis (the expression in Equation (11)). The results
are plotted for both the 10 node as well as the 20 node case.
In both cases, we see the close match between the analytic
and simulation results with a small deviation in the knee
region. We also note that when the nodes become saturated,
the expression for the collision probability p reduces to the
expressions in [17] and [1] (which only consider the saturated
case) and in these scenarios, our results are consistent.

Figure 5 compares the simulation and analytic results for
the average delays for the 10 and 20 node cases. For both
scenarios, we see the close match between the analytic and
the simulation results. As expected, the system saturates more
quickly for the 20 node case, at approximately half the load of
the 10 node case. Similar results were also obtained for other
topologies and network sizes, validating the analytic model for
the delay in an 802.11 based network.

Finally, Figure 6 compares the simulation and analytic
results for the second moment of the delays experienced by
the packets. For both the 10 and 20 node cases, we note the
close match between the simulation and analytic results.

IV. EXTENSION TO HETEROGENEOUS TRAFFIC

In the previous section, we assumed that the traffic arrival
rates and the distribution of the packet sizes were the same
at all nodes. In this section, we now extend this analysis to
consider heterogeneous traffic conditions at the nodes.

We again assume that there are N nodes in the network and
we use the same notation as used in the previous section but
add a subscript to make it node specific. We denote the packet
arrival rate at each node and its utilization by λn and ρn,
1 ≤ n ≤ N , respectively. We also denote by pn, 1 ≤ n ≤ N
the probability that an arbitrary transmissions attempt of node
n experiences a collision. Then, the average backoff window
of node n is given by

Wn =
1 − pn − pn(2pn)m

1 − 2pn

CWmin

2
(33)

Following the derivation of Section III, the probability that
node n does not transmit in an arbitrary slot is given by

Pn[SE] = 1 −
ρn

Wn

(34)

and thus the collision rate experienced by packets from node
n is given by

pn = 1 −

N
∏

i=1
i6=n

(

1 − ρi
(1 − 2pi)

1 − pi − pi(2pi)m

2

CWmin

)

(35)

Similarly, the average time to serve a packet from node n is
given by

1

µn
=

N
∑

i=1
i6=n

ρi

[

TSi
+ TCi

pi

2(1 − pi)

]

+Wn+TSn
+TCn

pn

2(1 − pn)

(36)
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Fig. 4. Comparison of the collision probabilities.
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Fig. 5. Comparison of the average packet delays.

and substituting 1/µn = ρn/λn in the equation above, we
have

ρn =

N
∑

i=1
i6=n

λnρi

[

TSi
+ TCi

pi

2(1 − pi)

]

+λn

[

Wn + TSn
+ TCN

pn

2(1 − pn)

]

(37)

Equations (35) and (37) then give us a set of 2N equation in
terms of 2N unknowns (pn and ρn, 1 ≤ n ≤ N ) which can
be solved numerically.

For the rest of the analysis in this section, consider an
arbitrary node n (1 ≤ n ≤ N ). Following the analysis of
Section III the probability that the tagged node experiences i
backoff slots is given by

P [BOn = i] = ρn

[

(1 − pn)U1,CWmin
(i) + pn(1 − pn)

[

U1,CWmin
∗ U1,2CWmin

(i)
]

+ · · · + pm
n (1 − pn)

[

U1,CWmin
∗ U1,2CWmin

∗ · · · ∗ U1,2mCWmin
(i)

]

+pm+1
n (1 − pn)

[

U1,CWmin
∗ · · · ∗ U1,2mCWmin

∗

U1,2mCWmin
(i)

]

+ · · ·

]

(38)

with the corresponding pgf BOn(z). Following the analysis
of Section III-B, the probability that any of the backoff slots
experienced by the tagged node is active (i.e. contains a
transmission attempt by at least one of the N nodes and in
case the tagged node transmits it experiences a collision), qn,
is given by

qn = 1 −

N
∏

i=1
i6=n

(

1 −
ρi

W i

)

(39)

Then, given that the tagged node experiences i backoff slots
before it successfully transmits a packet, the pmf of the
number of active slots within the backoff slots is given by

P [j slots active|BOn = i] =

(

i
j

)

qj
n(1 − qn)i−j (40)

for j = 0, · · · , i. The probability that a slot results in a
collision given that it is active, qnc

, is then given by

qnc
=

1 −

N
∏

i=1
i6=n

(

1 −
ρi

W i

)

−

N
∑

i=1
i6=n

ρi

W i

N
∏

j=1

j 6=i,n

(

1 −
ρj

W j

)

1 −

N
∏

i=1
i6=n

(

1 −
ρi

W i

)

(41)
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and the probability that out of j active slots k result in
collisions is given by

P [k collisions|j active slots] =

(

j
k

)

qk
nc

(1−qnc
)j−k (42)

Now each collision adds TC = DIFS + τRTS slots to the
tagged node’s service time. As the next step, we now need
to evaluate the impact of successful transmissions of other
nodes on the service time of the tagged node. We assume that
the packet size distribution at node n, 1 ≤ n ≤ N follows
the pmf ln(ν) (i.e. ln(ν) denotes the probability that a packet
transmission by node n requires ν slots) with corresponding
pgf Ln(z). A successful transmission during the backoff slots
between two successful transmissions of the tagged node does
not involve any transmissions from the tagged node itself.
Then, the probability that an arbitrary backoff slot between
two successful transmissions of the tagged node contains a
successful transmission is given by

P [succ] =

(

1 −
ρn

Wn

) N
∑

i=1
i6=n

ρi

W i

N
∏

j=1

j 6=i,n

(

1 −
ρj

W j

)

(43)

Then, given that a slot contains a successful transmission, the
probability that it belongs to node i, i 6= n, is given by

Rn[i] = P [i | succ] =
P [i, succ]

P [succ]

=

ρi

W i

N
∏

j=1

j 6=i,n

(

1 −
ρj

W j

)

N
∑

i=1
i6=n

ρi

W i

N
∏

j=1

j 6=i,n

(

1 −
ρj

W j

)

(44)

Then the probability that a successful transmission by the other
nodes adds ν slots to the service time of the tagged node is
given by

l̃n(ν) =

N
∑

i=1
i6=n

Rn[i]li(ν) (45)

and the contribution of an arbitrary number of successful
transmissions, say j, is given by

P [

j
∑

pkt time = u] = l̃n ∗ l̃n ∗ · · · ∗ l̃n(u) = l̃(j)n (u) (46)

where l̃
(j)
n () represents the j−fold convolution of l̃n(ν).

As in Section III-B, we again consider a scenario where
the tagged packet experiences i backoff slots of which j are
active and among these j active slots, k slots have collisions.
If the j −k successful packet transmission by the other nodes
contribute u slots, then the pmf of the conditional channel
access time for the successful transmission of the tagged
packet, Y , is given by

P [Yn = s | i, j, k] =

{

l̃
(j−k)
n (u) s = i + kTC + u
0 otherwise

(47)

Now, the joint probability distribution of i backoff slots, j
active slots and k collisions, Pn[i, j, k] can be evaluated using

Pn[i, j, k] = Pn[j, k | i]Pn[i] (48)

The pmf of the backoff slots i is Pn[i] = P [BOn = i] and
is given in Equation (38). Also, by combining Equations (40)
and (42) we have

Pn[j, k | i] =

(

i
j

)

qj
n(1 − qn)i−j

(

j
k

)

qk
nc

(1 − qnc
)j−k

(49)
The probability mass function of the service time Y can now
be obtained by unconditioning Equation (47) on i, j and k
and is given by

P [Yn = s] =
∑

i,j,k

P [Yn = s | i, j, k]P [i, j, k]I(s)

=

∞
∑

i

i
∑

j

j
∑

k

[

l̃(j−k)
n (u)

(

i
j

)

qj
n(1 − qn)i−j

(

j
k

)

qk
nc

(1 − qnc
)j−kP [BOn = i]I(s)

]

(50)

where I(s) is an indicator function which equals 1 when s =
u + i + kTC and 0 otherwise. Again, the expression above
needs to be evaluated for all possible values of i, j and k
which result in a given value of s. The pgf of the final service
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Fig. 7. Collision probabilities and packet delays with heterogeneous loads. T1, T2 and T3 denote nodes with 256, 512 and 1000 byte packets, respectively.

time, Bn(z), is then obtained by the convolution of the channel
access time (Yn(z)) and the length of the packet to be served
(ln) and is given by

Bn(z) = Yn(z)Ln(z) (51)

Finally, since arrivals may occur at any point in the slot, we
denote the distance of the arrival point from the start of the
slot at the tagged node by Fn with mean F n. The mean of
the total system time is then given by

V n = 1−Fn+B′
n(1)+

[A′
n(1)]

2
B′′

n(1) + A′′
n(1)B′

n(1)

2A′
n(1) [1 − A′

n(1)B′
n(1)]

(52)

and the average queue size at the tagged node is given by

Qn = A′
n(1)V n (53)

where An(z) denotes the pgf of the packet arrival process at
the tagged node.

A. Simulation Results

We now validate the analysis presented in this section using
simulations carried out using the ns-2 simulator. We use the
same simulation settings as specified in Section III-C except
for the number of nodes and the traffic pattern at each node.
In the simulation results reported here, we have 12 nodes in
the network with each node being the source of one flow and
the the sink of another, resulting in 12 flows. Four of these
flows had packets of 256 bytes, another four had packets of
512 bytes and the remaining four flows had packets of 1000
bytes. In addition, the packet arrival rate at the nodes with 512
and 1000 byte packets was 1.25 and 1.5 times, respectively,
of the packet arrival rate at the nodes with 256 byte packets.

Figure 7 shows the collision probabilities and the average
packet delays of the three types of flows for various average
packet inter-arrival times. The x-axis of the figure marks the
average inter-arrival time at the nodes with 256 byte packets
and the corresponding inter-arrival times at other nodes can
be obtained by multiplying these values by 1.25 and 1.5
respectively. We first note that the analytic results match quite
well with the simulation results. Also, there is not much
of a difference between the collision rates experienced by
flows of different types though nodes with lower arrival rates

experience slightly higher collision rates. This is because
nodes with higher loads often find that the lower load nodes
are not competing with them for transmission slots, resulting in
lower collision rates. Also, the delays at the nodes with larger
packet sizes and arrival rates increases much faster than that
of nodes with smaller packets and lower arrival rates. Since
this is a bit difficult to see in Figure 7(b), in Figure 8 we have
shown the delays for only the nodes with 256 and 1000 byte
packet and zoomed in on the arrival rates to better illustrate
this difference.

V. EXTENSION TO IEEE 802.11E AND COLLISION FREE

BURSTS

The major contributor to the delay in 802.11 based networks
is the delay introduced by the channel contention. Intuitively,
this delay can be reduced if instead of transmitting just one
packet, the node is allowed to transmit a burst of packets once
it successfully accesses and reserves the channel. This reduces
the per packet channel contention delay by a factor of M − 1
where M is the burst size. Considering the fact that multimedia
traffic like VBR video is typically bursty [10], this scheme will
be particularly well suited for real time traffic.

IEEE 802.11e provides an Enhanced DCF (EDCF) mode
which provides differentiated channel access to frames of dif-
ferent priorities. In addition, there is a provision which allows
a station to transmit multiple MAC frames consecutively after
a single channel access as long as the whole transmission
time does not exceed the transmission opportunity (TXOP)
limit. In this section, we extend our model to account for such
scenarios and consider the case where a station may transmit
M consecutive packets for each successful channel access.

To obtain the delay and buffer occupancy characteristics, we
argue that the queue at each node in this case can be modeled
by a discrete time G/G/1 queue with server interruptions. To
justify the model, note that at the MAC layer with collision
free bursts, once the channel is successfully accessed and
reserved, a maximum of M packets can be served contiguously
signifying the time when the server is “available”. However,
once this set of packets has been transmitted, the server is
“interrupted” for a duration equal to the time till the next
successful channel access and reservation by the node. In
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this new server interruption model, the length of each slot
corresponds to the time required to transmit a packet. Note
that in the previous section, the length of each slot was 20µs
which was the duration of a backoff slot. We now term a
20µs slot a “mini-slot” to distinguish it from the “service time
slots” used in the analysis of this section. Since we allow for
variable packet lengths with pmf l(ν) mini-slots, the expected
length of each slot for the interrupted server model is given
by 20E[l]µs. Note that with this model for the slot length,
only the first moment of the delays resulting from our model
is valid.

We now develop the expressions for the available and
interrupted states. We denote the available and interrupted
states by C and D respectively. The probability that the
available state lasts η slots, C(η), corresponds to the number
of packets scheduled in each burst. The number of packets that
can be scheduled in one burst is bounded above by M and
we now derive an approximate pmf of the size of an arbitrary
burst.

Recall that the probability that there are i arrivals in an
arbitrary slot is given by a(i). The characterization of size
of a scheduled burst is based on the following observations.
When the load is low, the queue sizes are likely to be very
small and the size of the burst scheduled would be dependent
primarily on a(i), though no more than M packets can be
scheduled in a burst, irrespective of a(i). However, for high
load cases, a queue would very likely have M packets queued
up once it gets access to the channel and thus the burst size
would usually be M . Now consider an arbitrary slot with an
arrival. Conditioned on the fact that there is an arrival, the
number of packets in the burst, α, is given by

P [α = i] =
a(i)

1 − a(0)
, i = 1, 2, · · · (54)

For α ≤ M , all the packets are scheduled in a single burst.
However, for α > M , we need dα/Me bursts with the first
dα/Me − 1 bursts being of size M and the last one of
size α − Mdα/Me − M packets. Note that under high load
conditions, the last burst would also most likely be of size M
since additional packets are likely to have queued up during
the transmission of the first dα/Me − 1 bursts. To obtain the
size of an arbitrary burst, we then need to quantify the burst

sizes resulting from each possible value of α. Then, for low
load conditions, the size of an arbitrary burst or the available
time, C, is approximated by

P [β = i] =















∞
∑

j=0

1
j+1α(i + jM) i = 1, · · · ,M − 1

α(M) +
∞
∑

j=1

M−1
∑

k=0

j
j+1α(k + jM) i = M

(55)
Note that the expression above is not exact since it assumes
that at low loads an arrival always sees an empty queue
which may be justified by the fact that at low loads, the
probability that an arbitrary arrival finds the queue non-empty
is quite low. Also, note that at low loads (or equivalently
at low arrival rates) the likelihood of back to back batch
arrivals in successive slots is quite low which further justifies
the approximation in the equation above. Now for high load
conditions where an arbitrary arrival is quite likely to see
a non-empty queue and M packets are likely to accumulate
between two successive transmission from a node, we have

P [β′ = i] =

{

1 i = M
0 otherwise

(56)

Equations (55) and (56) are exact characterizations of the burst
size as ρ → 0 and ρ → 1. Combining the two equations
into one which is exact at these two extreme values, we
approximate the batch size distribution, which is equivalent
to the available time distribution, at arbitrary loads by

P [C = i] = (1 − ρ)P [β = i] + ρ δ(M) i = 1, · · · ,M
(57)

where ρ = E[A]/E[B] is the load on the system and δ(·)
is the delta function. As noted earlier, the expression above
is an approximation which is accurate at low and high loads
and is used here to maintain analytical tractability. As our
simulation results show, because of this approximation, we
marginally overestimate the delay at moderate loads. However,
the magnitude of the errors are well within acceptable limits
justifying the use of this approximation.

With this characterization of the size of a burst we can
now model the interrupted time distribution. The interrupted
time corresponds to the time spent between two successful
transmissions from the tagged node and comprises of the time
spent in backoff and the contributions from the successful
transmissions of other nodes and collisions resulting from its
own as well as other node’s transmissions. As in Section III,
the probability that there are j active mini-slots in i backoff
slots between two successive transmissions of the tagged node,
with k of them resulting in collisions are again given by Equa-
tions (14) and (16). The average backoff window size W and
the collision probability are again obtained using Equations
(5) and (11) respectively. Now, the length the transmissions
resulting from each of these active slots depends on the size
of the scheduled burst and the packet size distribution. With
the pmf of the packet length (in mini-slots) denoted by l(n)
and given that there are k packets scheduled in the burst, the
pmf of the burst length (BL) (in mini-slots) is given by

P [BL = ν | C = k] = l ∗ l ∗ · · · ∗ l(ν) = l(k)(ν) (58)
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Unconditioning on the number of packets in the burst, we have

P [BL = ν] =
M
∑

k=1

P [C = k]l(k)(ν) (59)

We now consider the case when there are j successful trans-
missions from other nodes between the two successive trans-
missions of the tagged node. The pmf of the total contribution
from the bursts of each of these transmissions is then given
by

BL(j)(u) = BL ∗ BL ∗ · · · ∗ BL(u) (60)

Now consider a scenario where the tagged node experiences i
backoff slots between two of its successful transmissions with
j and k denoting the number of active slots and slots with
collision in these i backoff slots. The pmf of j conditioned on
i and that of k conditioned on j are given in Equations (14)
and (16) respectively. Following the arguments of the previous
sections, the pmf of the delay introduced in the service time of
a packet from the tagged node by the collisions and successful
transmissions of other nodes, X , in this case is given by

P [X = s | i, j, k] =

{

BL(j−k)(u) s = i + kTC + u
0 otherwise

(61)
As in Section III-B, the joint probability distribution of i, j
and k, P [i, j, k] can be evaluated using

P [i, j, k] = P [j, k | i]P [i] (62)

where P [i] = P [BO = i] and is given in Equation (12) and
P [j, k | i] is given in Equation (20). The pmf of X can now
be obtained by unconditioning Equation (61) on i, j and k
using the expressions for P [j, k | i] and P [i]:

P [X = s] =
∑

i,j,k

P [X = s | i, j, k]P [i, j, k]I(s)

=

∞
∑

i

i
∑

j

j
∑

k

[

BL(j−k)(u)

(

i
j

)

qj(1 − q)i−j

(

j
k

)

qk
c (1 − qc)

j−kP [BO = i]I(s)

]

(63)

where I(s) is an indicator function which equals 1 when s =
u + i + kTC and 0 otherwise. As in the previous sections, the
above expression needs to be evaluated for all possible values
of i, j and k which result in a given value of s. Note that
the delay characterized by X , which comprises of the backoff
slots (BO) and the delay due to other stations transmitting is
also the interrupt time experienced by the queue at the tagged
node. The pgf of the interrupt time in terms of mini-slots,
B(z), is then

B(z) = X(z) (64)

Aggregating the distribution for b(n) in blocks of E[l], we
can then obtain the interrupted time distribution in terms of
the average service time slots. Then the pmf of the interrupted
time is given by

D(i) =

(2i+1)E[l]/2
∑

j=(2i−1)E[l]/2

b(j), i = 0, 1, · · · (65)

where b(j) = 0 for j < 0. Note that loss of resolution result-
ing from the aggregation in the above expression introduces
some errors in the final calculation, the magnitude of which
increases as the packet sizes increase.

Using the analysis for infinite buffered discrete time queues
with general arrivals, general service time distributions and
general server interruptions presented in Section 3.2 of [3], we
can now derive the queue length characteristics at each node.
Denoting by σ the fraction of time for which the channel is
available, we have

σ =
E[C]

E[C] + E[D]
(66)

and the condition for the stability of the queue is given by
A′(1) < σ. Let UC(z), UD(z) and U(z) denote the pgf of the
equilibrium buffer occupancy as observed just after the end of
an arbitrary available (i.e. service) slot, just after the end of an
arbitrary interrupted slot and just after any slot respectively.
Then

U(z) = σUC(z) + (1 − σ)UD(z) (67)

and using Equation (3.94), page 107 of [3], it can be shown
that

U(z) =
(z − 1)2A(z)

[

1 − D(A(z))
]

Y (A(z)/z)

(E[C] + E[D]) (A(z) − 1) (A(z) − z)W (z)
+

(z − 1)(A(z) − A2(z))[1 − C(A(z)/z)D(A(z))Y (1)]

(E[C] + E[D]) (A(z) − 1) (A(z) − z) W (z)

where W (z) = 1 − C(A(z)/z)D(A(z)), Y (1) = [1 −
A′(1)/σ]E[C] and the methodology for obtaining Y (A(z)/z)
is outlined in Appendix 1. Now, since U(z) denotes the pgf of
the buffer occupancy just after any slot, the expected number
of packets in the queue after an arbitrary slot is given by
U = U ′(1). Also, with F denoting the time of an arrival
relative to the start of the slot in which it arrives, 1−F denotes
the fraction of a slot which includes the new arrivals in the
slot. Then, noting that the average number of arrivals in a slot
is given by A′(1), the average queue length at any arbitrary
instant of time is given by

Q = U + (1 − F )A′(1) (68)

and using Little’s law, the average system time is given by

V = (1 − F ) +
U

A′(1)
(69)

The optimal value of M for a given input load can be obtained
by differentiating Eqn. (69) with respect to M and equating
it to zero. The same expression can also be used to evaluate
the number of connections that can be supported subject to a
delay guarantee.

A. Simulation Results

To verify the analytic model of the previous subsection, we
now compare the analytic results with those obtained using
the ns-2 simulator. In Figure 9 we show the results for a
10 node topology for burst sizes of M = 1, M = 2 and
M = 4. The arrival stream at each node was a batch arrival
process with the with fixed batches of size 4. The probability
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Fig. 9. Comparison of the average packet delays for different burst sizes.

of a batch arriving at any slot was modeled by a Bernoulli
process. In the figure, we plot the average delays as a function
of the normalized load. We see the good match between the
simulation and the analysis results. The slight difference in
the analytic and simulation delays for the moderate load cases
is due to the approximation in the burst size characterization.
However, we note that the difference is well within acceptable
limits, justifying the use of the approximation for the sake of
reducing computational complexity.

VI. CONCLUSIONS

The performance of the MAC protocol is critical in order for
a network to support delay sensitive and real time applications
and can easily form the performance bottleneck due to factors
like channel contention delays and collisions. In this paper
we present an analytic model to evaluate the performance
of the IEEE 802.11 MAC in terms of its delays and queue
lengths and evaluate its capability to support delay sensitive
traffic. The performance evaluation is done by developing a
queueing model for each node in the network which accounts
for the intricacies of the MAC protocol and its behavior as a
function of the number of users in the network. The developed
model can be used for a number of purposes like admission
control and determining the number of connections that can
be supported for a given delay or loss constraint.

Each node is modeled as a discrete time G/G/1 queue and
we allow for arbitrary number of nodes, arrival patterns and
packet size distributions. We present a detailed analysis for
the service time distribution which accounts for factors like
the channel access delay due to the shared medium, impact
of packet collisions and the resulting backoffs as well as the
packet size distribution. Our analytic results have been verified
using extensive simulations.

A key observation from the queueing model is that the
primary contributor to the delay is the channel access and
reservation time associated with each packet transmission. We
also extend our model to proposals in IEEE 802.11e to reduce
these delays which allow a node to schedule a burst of packets
once they gain channel access. Each node in now modeled as
a discrete time G/G/1 queue with interruptions. The analytic
results were again verified using simulations.

APPENDIX I: EVALUATING Y(Z)

This appendix outlines a methodology to obtain the function
Y (A(z)/z) in terms of C(z) under the assumption that C(z)
is a rational function of z, and is taken from [3]. Since any
rational function of Z can be expressed as a ratio of two
polynomials and C(z) vanishes at z = 0 (since the length
of an available time is at least 1), C(z) can be written as

C(z) = C1(z) + C2(z) (70)

where C1(z) is a polynomial

C1(z) =

I
∑

i=1

miz
i (71)

and C2(z) is the ratio of two polynomials where the degree
of the numerator is not higher than that of the denominator:

C2(z) =

J
∑

j=1

njz
j

K
∏

k=1

(1 − νkz)wk

(72)

where 1/νk are the zeros of the denominator and wk are the
corresponding multiplicities. Now define the functions

Φ(z) =

I
∑

i=1

mi[A(z)]izI−i (73)

Ψ(z) =

J
∑

j=1

nj [A(z)]jzJ−j (74)

Π(z) =

K
∑

k=1

[z − νkA(z)]wk (75)

X∗(z) =

I
∑

i=1

x∗(i)[A(z)]izI−i (76)

X∗∗(z) =

J
∑

j=1

x∗∗(j)[A(z)]jzJ−j (77)

where x∗(i) and x∗∗(j) are unknown constants to be deter-
mined. Then, Y (A(z)/z) is given by

Y (A(z)/z) =
Π(z)X∗(z) + zIX∗∗(z)

zIΠ(z)
(78)

The unknown quantities x∗(i) and x∗∗(j) can be determined
using the following equation

D0(z) =
(z − 1)

[

Π(z)X∗(z) + zIX∗∗(z)
]

zIΠ(z) − D(A(z))
[

Π(z)Φ(z) + zIΨ(z)
] (79)

and the procedure for doing so is outlined below. When
the condition for stability is satisfied (i.e. A′(1) < σ), the
denominator of Eqn. (79) has exactly I + J zeros inside the
unit disk of the complex plane, one of which equals unity. It
can also be shown that the I +J zeros of the denominator are
the zeros of the numerator as well. This condition provides us
with I + J − 1 linear equations in the unknowns x∗(i) and
x∗∗(j) (no equation is obtained for the zero z = 1), which,
together with the normalizing equation D0(1) = 1, can be used
to determine the unknown parameters and thus Y (A(z)/z).
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