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Abstract—Continuing the process of improvements made
to TCP through the addition of new algorithms in Tahoe and
Reno, TCP SACK aims to provide robustness to TCP in the
presence of multiple losses from the same window. In this
paper we present analytic models to estimate the latency and
steady-state throughput to TCP Tahoe, Reno and SACK and
validate our models using both simulations and TCP traces
collected from the Internet. In addition to being the first
models for the latency of finite Tahoe and SACK flows, our
model for the latency of TCP Reno gives a more accurate
estimation of the transfer times than existing models. The
improved accuracy is partly due to a more accurate model-
ing of the timeouts, evolution ofcwnd during slow start and
the delayed ACK timer. Our models also show that under
the losses introduced by the droptail queues which dominate
most routers in the Internet, current implementations of
SACK can fail to provide adequate protection against time-
outs and a loss of roughly more than half the packets in a
round will lead to timeouts. We also show that with inde-
pendent losses, SACK performs better than Tahoe and Reno
and as losses become correlated, Tahoe can outperform both
Reno and SACK.

I. INTRODUCTION

Early TCP implementations used a go-back-n model
and required the expiration of a retransmission timer to
recover any loss. TCP Tahoe added the slow-start, con-
gestion avoidance and fast retransmit algorithms to TCP
[8]. TCP Reno retained the new algorithms of TCP Tahoe
while adding fast recovery to the implementations [9].
TCP SACK allows receivers to ACK out of sequence data
and is aimed at eliminating the timeouts which arise in
TCP Reno due to multiple losses from the same window
[1], [2]. The most recent proposal for adding SACK to
TCP is in [15].

In this paper we first present analytic models for esti-
mating the latencies and steady state throughput of TCP
Tahoe, Reno and SACK. Our models are validated using
both traces collected from the Internet as well as simula-
tions. We then compare the performance of these versions
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of TCP under independent and correlated loss scenarios.
Existing analytic models for TCP focus mainly on TCP
Reno [4], [7], [11], [13], [17], [18] as it the most widely
implemented version of TCP. Also, these models are for
the steady state throughput of infinite TCP connections.
In [10], models for the steady state throughput of Tahoe,
Reno and NewReno are presented assuming an indepen-
dent loss model without delayed ACKs. In [3] and [19]
models for estimating the latency of TCP Reno are pre-
sented for correlated and independent losses respectively.
Stability issues with TCP Vegas and its fairness and loss
properties has been analyzed in [12].

Though TCP Reno has been modeled extensively, no
literature exists on modeling the latencies of finite TCP
flows using Tahoe or SACK. This paper, in addition to be-
ing the first to present models for the latency of TCP Tahoe
and SACK, also presents a model for the latency of TCP
Reno which gives more accurate results compared to ex-
isting models for TCP Reno. This enhanced accuracy can
be attributed to the better modeling of the timeouts expe-
rienced by a TCP flow as well as a more accurate model
for the evolution of cwnd during slow start and its interac-
tion with the delayed ACK timer. We also show a serious
drawback in current SACK implementations (which use
a variable pipe) which can lead to severe performance
degradations. We show how TCP SACK can lead to time-
outs even on the receipt of 3 duplicate ACKs and derive
the precise conditions under which these timeouts occur.

Another important contribution of this work is to show
that Tahoe can outperform both Reno and SACK under
correlated losses. In [5] simulation scenarios were used
show that both Tahoe and SACK outperform Reno in the
presence of multiple losses in a window. Also, SACK per-
forms better than Tahoe in the examples considered. How-
ever, as our analysis shows, with correlated losses which
arise from the droptail queues dominating the routers in the
Internet, the performance of the three versions can be quite
different and Tahoe can perform better than both Reno and
SACK. But, using simulations we show that if the loss sce-
nario is changed to an independent model, both SACK and
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Reno outperform Tahoe. This underlines the fact that a
proper determination of the loss model is of utmost impor-
tance in determining TCP performance and the portability
of such models across different environments is limited.

The rest of the paper is organized as follows. In Section
II we present the assumptions made in our models and de-
scribe the three versions of TCP in more detail. Section III
presents the models for the latencies and their validation
while Section IV presents the models for the steady state
throughput. In Section V we compare the performance of
the three versions of TCP in terms of their latencies and
their steady-state throughput. Finally we present a discus-
sion on the results and concluding remarks in Section VI.

II. BACKGROUND AND ASSUMPTIONS

We follow assumptions on the network and the TCP
sender and receiver similar to those in [3], [18], [19].
These assumptions are enumerated below:

1. We account only for the delays arising from TCP’s
performance and ignore the delays arising at the end-
points from factors like buffer limitations.

2. We assume that the sender transmits full sized seg-
ments as fast as its congestion window allows.

3. The receiver advertises a consistent flow control win-
dow, Wmax.

4. We assume that the receiver uses the delayed ac-
knowledgment scheme specified in RFC 2581.

5. As in [3], we do not account for the effects of Nagle’s
algorithm and silly window avoidance.

6. We model the latency of TCP flows in terms of
“rounds” as defined in [18]. A round begins with the
transmission of a window of packets and ends on the
receipt of an ACK for one of these packets.

We note that successive rounds do not overlap and thus our
models are more accurate for wide or metropolitan area
networks.

In this paper we assume the correlated loss model of
[18] which is better suited for the droptail queues currently
prevalent in the Internet. In this model, a packet in a round
is lost independently of losses in other rounds. However,
losses within a round are correlated and all packets follow-
ing the first packet to be lost in round are also assumed to
be lost. We define p to be the probability that a packet is
lost, given that it is either the first packet in its round or the
preceding packet in its round is not lost. We also use the
term loss indication to denote an event, arising either from
a timeout or duplicate ACKs which causes the sender to
infer a packet loss and result in the retransmission of one
or more packets. Note that with correlated losses, multiple
lost packets may be recovered from a single loss indica-
tion. Thus p also represents the frequency of loss indica-

tions. Finally we assume that the time to transmit all the
packets is much smaller than the duration of the round and
that the duration of the round is independent of the win-
dow size. Our models allow for arbitrary amounts of data
to be transferred.

A. TCP Tahoe

Early TCP implementations used a go-back-n model
with cumulative positive acknowledgments and the expi-
ration of the retransmission timer was required before the
flow could retransmit any lost packets. TCP Tahoe added
the slow-start, congestion avoidance and fast recovery al-
gorithms to TCP [8]. With fast retransmit, when a packet is
lost, instead of waiting for the retransmission timer to ex-
pire, if tcprexmtthresh (usually 3) duplicate ACKs are
received, the sender infers a packet loss and retransmits
the lost packet. The sender now sets its ssthresh to half
the current value of cwnd (maintained in bytes) and begins
again in the slow-start mode with an initial window of 1.
The slow start phase lasts till the cwnd reaches ssthresh
and then congestion avoidance takes over. In this phase the
sender increases its cwnd linearly by MSS ∗MSS/cwnd
for every new ACK it receives. Note that with TCP Tahoe,
the sender might retransmit packets which have been re-
ceived correctly. Timeouts are used as the means of last
resort to recover lost packets.

B. TCP Reno

TCP Reno has all the features of TCP Tahoe like slow-
start, fast retransmit and congestion avoidance. It varies
in the subsequent recovery phase which follows a loss
and includes the fast-recovery algorithm which results in
a more efficient transfer. When tcprexmtthresh (usually
3) duplicate ACKs are received, TCP infers a loss and re-
transmits the lost packet and instead of dropping its win-
dow to 1, drops it by half and ssthresh is set to half of
cwnd. During fast-retransmit, the sender infers each du-
plicate ACK as one packet having left the network and in-
creases its window by one resulting in a usable window
of min{Wmax, �Wmax/2� + ndup} where ndup is the
number of duplicate ACKs received. When the retransmit-
ted packet is acknowledged, the sender exits fast-recovery
with ndup = 0 and cwnd = ssthresh. The flow now
enters the congestion avoidance mode and cwnd follows a
linear increase pattern. Note that TCP Reno can retransmit
at most one lost packet per RTT.

C. TCP SACK

TCP Reno’s fast-recovery is optimized for the case
where a single packet is lost from a window. However
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when multiple packets are dropped from the same win-
dow, Reno generally cannot recover all the losses without
going into a timeout. TCP SACK aims at providing ef-
ficient retransmissions in the presence of multiple losses.
The SACK option field in TCP SACK ACKs report non-
contiguous blocks of data which have been received cor-
rectly [15]. In our model we assume that the SACK option
has room for three SACK blocks. As in Reno, TCP SACK
enters fast-retransmit on the receipt of tcprexmtthresh
duplicate ACKs. The sender now retransmits a lost packet
and reduces its cwnd by half and exits fast-recovery only
when an ACK is received acknowledging all the data that
was outstanding when fast-recovery was entered. SACK
implementations use a variable pipe to estimate the num-
ber of packets outstanding in the network [5]. The sender
now sends new or retransmitted packets only if the value
of pipe is less than cwnd. When tcprexmtthresh du-
plicate ACKs are received, pipe is initialized to cwnd −
tcprexmtthresh. The variable pipe is now incremented
by one with the transmission of any new packet or the re-
transmission of a lost packet. When a duplicate ACK is
received with the SACK option reporting that new data
has been received, pipe is decremented by one. How-
ever, on the receipt of a partial ACK (ACK received during
fast-recovery which advances the acknowledgment num-
ber field but does not take the sender out of fast-recovery)
pipe is decremented by two. This ensures that SACK never
recovers more slowly that slow-start. Again, timeouts are
used as the last means of recovery. There are a number of
proposals for congestion control algorithms using SACK
[14], [6] but we assume the implementation of [5].

III. MODELS FOR TCP LATENCY

Our approach towards modeling the latency TCP flows
is to estimate the transfer time given that the flow experi-
ences a given number of loss indications. When multiplied
by the probability that the flow experiences the specified
number of losses, this gives us the expected transfer time.
We break the modeling in three parts: (1) flows with no
losses, (2) flows with a single loss indication and (3) flows
with multiple loss indications. The expressions for the la-
tency are derived as a function of the transfer size N (in
number of packets), the packet loss probability p and the
RTT. We first present the model for estimating the latency
in the connection establishment phase. Next, we present
a model for the number of packets sent during the slow
start phase and then follow it up with the expression for
the transfer time when there are no losses. In the absence
of losses, all the three versions have identical behavior and
the same expression can be used for all three cases.

A. Connection Establishment

A TCP connection begins with a three-way handshake
with the initiating host sending a SYN packet. The re-
ceiver responds with an ACK for the initiating host’s SYN
and also sends a SYN packet of its own. When the initiat-
ing host receives this SYN/ACK packet it assumes that the
connection has been established and confirms this by send-
ing an ACK of its own. During this process, if either host
does not receive the ACK it is expecting within a timeout
period Ts, it retransmits its SYN and then waits twice as
long for an ACK. Following [3], the expected duration of
the connection setup time can be approximated as

tsetup = RTT + 2Ts

(
1 − p

1 − 2p
− 1

)
(1)

B. The Slow-start Phase

TCP starts its transmission in the slow-start phase and
increases its cwnd by one MSS for every ACK it receives.
With delayed acknowledgments, the receives sends one
ACK for every two packets that it receives or if the delayed
acknowledgment timer expires. In most UNIX based sys-
tems the delayed acknowledgment timer is set to 200ms
leading to an expected delay of 100ms before the ACK
for the first packet in the flow is sent (assuming an ini-
tial window of 1). In Windows 95 and Windows NT 4.0
systems this delay is uniformly distributed between 100ms
and 200ms. Since the sender generally sends one ACK for
two packets, with delayed ACKs, the rate of increase in
the cwnd is roughly 1.5 and this is commonly assumed in
TCP modeling papers [3]. However, due to the probability
that the delayed ACK timer may expire before the end of
the current round, the window increase pattern is different
in practice and can make significant differences for short
transfers. To illustrate this, in Fig. 1 we show two pos-
sible ways in which the cwnd may evolve starting from 1
depending on the state of the delayed ACK timer. In the
figure, consider the third round which has cwnd = 3 and
in which packet number 4, 5 and 6 are transmitted. The re-
ceiver sends an acknowledgment for the first two packets
and delays sending the acknowledgment for packet num-
ber 6. If a new packet arrives before the ACK timer ex-
pires, packet number 6 is acknowledged along with the
new packet and the subsequent cwnd increase pattern is
shown in Fig. 1(a). However, if the delayed ACK timer
expires before a new packet arrives, an ACK is sent with
results in a cwnd of 5 as shown in Fig. 1(b).

To account for such complex behavior of the cwnd, we
develop a more accurate model which tries to model the
expected value of the cwnd for any round. This results in
a more accurate representation of the number of packets
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(c) Proposed model
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Fig. 1. Window increase patterns for TCP flows in the slow start
phase.

transmitted in any round as compared to 1.5n for the nth

round as used in [3]. The number of packets transmitted in
the nth round according to our model is given by

w(n) =
⌊
2

n−1
2 + 2

n−2
2

⌋
(2)

Note that our model predicts the number of packets trans-
mitted in the fourth round as 4 (Fig. 1(c)) which is the
average of the packets transmitted in examples (a) and (b).
The number of packets transmitted in the first k rounds of
the slow start phase is then given by

pkt(k) =
k∑

n=1

w(n) =
k∑

n=1

⌊
2

n−1
2 + 2

n−2
2

⌋

=

⌊
2

k+1
2 + 3(2)

4k−3
8 − 2 − 3

√
2

2

⌋
(3)

Also, if the flow starts with a cwnd of one, the re-
ceiver waits for a second packet to arrive before sending
an ACK. The ACK is subsequently sent when the delayed
ACK timer expires and the expected value of this delay is
100ms for UNIX systems and 150ms for Windows [3] and
we denote it by tdack.

C. Timeouts and Congestion Avoidance

During the slow-start phase, the window increases ex-
ponentially till it transmits all the packets or till it reaches
min{ssthresh, Wmax}. However, if the flow experiences
a loss, the window reduces and starts increasing again ei-
ther in the slow-start or congestion avoidance mode. If the
first packet to be retransmitted following a timeout is also
lost, the retransmission timer backs off exponentially and
we have another timeout period of twice the length. The
average duration of a timeout, accounting for the exponen-
tial backoff of the retransmission timer on the loss of a
retransmitted packet, is given by [18]

E[TO] = To
1 + p + 2p2 + 4p3 + 8p4 + 18p5 + 32p6

1 − p
(4)

where To is the duration of time the sender waits before re-
transmitting the first lost packet. Once the flow reaches the
congestion avoidance phase, the cwnd increases linearly
till it reaches Wmax, increasing by 1 every two RTTs. The
number of rounds required to transmit a packets in the con-
gestion avoidance mode with the initial value of cwnd = b
is obtained by solving a =

∑k
i=1(b + � i−1

2 �) for k. The
solution for this equation (and accounting for the effect of
window limitation) is given by

tlin(a, b) =




⌈
a−x(x+1)+b(b−1)

x+1

⌉
+ 2x if a ≤ Nlin

−2(b − 1)⌈
a−Wmax(Wmax+1)+b(b−1)

Wmax

⌉
otherwise

+2Wmax − 2(b − 1)
(5)

where Nlin = Wmax(Wmax+1)−b(b−1) and denotes the
number of packets that can be sent before cwnd reaches
Wmax and x = �(−1 +

√
1 + 4(a + b(b − 1)))/2�.

D. Flows Without Losses

If the TCP flow does not experience any losses, the be-
havior of all the three versions of TCP under consideration
will be identical. Starting with an initial value (assumed
1), the cwnd increases exponentially till all the packets are
transferred or till it reaches Wmax and stays there till the
transfer is complete. The number of round required by the
TCP flow to reach a cwnd of Wmax can be computed from
Eqn. (2) and is given by

nwm =
⌊
2 log2

(
2Wmax

1 +
√

2

)⌋
(6)

The number of packets transmitted so far when cwnd
reaches Wmax, Nexp, is then given by

Nexp =

⌊
2

nwm+1
2 + 3(2)

4nwm−3
8 − 2 − 3

√
2

2

⌋
+ Wmax

(7)
The time to transfer N packets, N < Nexp, can be ob-
tained by solving N =

∑k
n=1 w(n) for k. The transfer

time for N packets is then

tnl(N) =




⌈
2 log2

(
2N+4+3

√
2

2
√

2+3(2)
5
8

)⌉
RTT, if N ≤ Nexp[

nwm +
⌈

N−Nexp

Wmax

⌉]
RTT, otherwise

(8)

E. TCP Tahoe

We now consider the cases of flows with losses and be-
gin with TCP Tahoe. When a Tahoe flow does not expe-
rience any losses, the time taken to transfer N packets is
given by Eqn. (8). We model the case when a Tahoe flow
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experiences losses by breaking the analysis in two parts:
when there is a single loss indication and when there are
multiple loss indications.

E.1 Single Loss

We first present some expressions which will be used
frequently in the derivations. To find the cwnd of the
round when the ith packet is transmitted, cwnd0

i , we first
find the number of rounds it takes to transmit i packets,
r(i), assuming there is no effect of window limitation. r(i)
can be calculated as in Eqn. (8) and is given by

r(i) =
⌈
2 log2

(
2i + 8.243

7.455

)⌉
(9)

If r(i) ≥ nwm, the number of rounds it takes for cwnd
to reach Wmax, we know that cwnd = Wmax. For all
other cases, cwnd < Wmax and is given by Equation (2).
Then, cwnd0

i , the cwnd of the round when the ith packet
is transmitted, is given by

cwnd0
i =




Wmax if r(i) > nwm⌊
2

r(i)−1
2 + 2

r(i)−2
2

⌋
otherwise

(10)

The sequence number of the last packet transmitted in this
round, nmax(i), can be obtained using Equation (3) and is
given by

nmax(i) =



Nexp +

⌈
max (0,i−Nexp)

Wmax

⌉
Wmax if r(i) > nwm⌊

2
r(i)+1

2 + 3(2)
4r(i)−3

8 − 2 − 3
√

2
2

⌋
otherwise

(11)
From our correlated loss model, if packet i is lost, then

all the packets following it in the same round, i.e., i + 1 to
nmax(i) are also lost and we denote the number of losses
by nloss. Thus, we have nloss = nmax(i)−i+1. Also, in
this round cwnd0

i −nloss = i−nmax(i)+cwnd0
i −1 pack-

ets are transmitted correctly before the ith packet. Since
the receiver sends one ACK for every two packets that
it receives, we can thus expect ACKs for half of these
packets, each of which increases cwnd by one. We de-
note the cwnd in the round which now follows by cwnd1

i

and the number of packets transmitted in it by nrnd1
i .

Since we recieve ACKs for roughly half of the packets sent
correctly in the previous round (cwnd0

i − nloss), cwnd1
i

can increase to at most cwnd0
i + �(cwnd0

i − nloss)/2�
unless limited by Wmax. However, for the round corre-
sponding to the cwnd of cwnd1

i , the nloss packets lost in
the previous round are already backlogged. Thus at most
cwnd1

i − nloss new packets can be sent in this round re-
sulting in nrnd1

i = cwnd1
i −nloss. On the receipt of three

duplicate ACKs or on the expiration of the retransmission

timeout, the sender retransmits the lost packets and sets
its ssthresh to n = max{2, �cwnd1

i /2�}. Let the dura-
tion of the slow start phase following a loss indication in
TCP Tahoe be denoted by r(n) and the number of pack-
ets transmitted in these rounds be denoted by k′. Note that
since k′ corresponds to the number of packets sent in the
slow-start phase, we can use Eqn. (3) to evaluate it. Each
of the quantities defined above is then given by

nloss = nmax(i) − i + 1
cwnd1

i = min{Wmax, cwnd0
i + �(cwnd0

i − nloss)/2�}
nrnd1

i = cwnd1
i − nloss

n = max{2, �cwnd1
i /2�}

k′ =

⌊
2

r(n)+1
2 + 3(2)

4r(n)−3
8 − 2 − 3

√
2

2

⌋
(12)

and r(n) is obtained from Eqn. (6) with Wmax replaced
by n. Following the round where the loss occurs, we have
another round of size nrnd1

i whose packets result in du-
plicate ACKs. Now if nrnd1

i ≥ 3, the sender will get at
least three duplicate ACKs for packet i and enter the slow
start mode after retransmitting packet i. Otherwise, not
enough duplicate ACKs are received and the connection
times out. In the slow start phase which follows both the
fast-retransmit and the timeout, k′ packets are transmitted
before congestion avoidance takes over. When the conges-
tion avoidance phase begins, nrnd1

i +k′ additional packets
have been correctly transferred. The transfer time for the
remaining a = N − nrnd1

i − k′ − i + 1 packets to be
transmitted in the linear increase phase can be found using
Eqn. (5) with b = n. Also, the time to transmit the first
i − 1 packets can be obtained using the expression for the
no loss case. The time to transmit N packets with a loss
indication at packet i is then given by

tsl(N) =




[tnl(i) + r(n) + 1 if nrnd1
i ≥ 3

+tlin(a, b)] RTT
[tnl(i) + r(n) + tlin(a, b)+ else
I(nrnd1

i > 0) + E[TO]
]
RTT

(13)
The term I(nrnd1

i > 0) is a consequence of the fact the
we have an additional round following the one in which
the packets were lost only if at least some packets from
the original round were transmitted successfully. The ex-
pected duration to transmit the N packets with a single
loss indication can now be obtained by averaging over the
N possible values of i.

E.2 Multiple Losses

We now consider the case when the the flow experiences
multiple loss indications. Let there be M loss indications



REVISION 1 6

t            1_loss t mult_loss

1 Nm

Fig. 2. Modeling a flow by breaking it up into the section which
has the first loss and the remaining section with the rest of
the losses.

in a flow of N packets, the second of which occurs at
packet number m. Please refer to Fig. 2 for an illustra-
tion. The first m − 1 packets have one loss indication and
the time to transmit these packets can be obtained from the
results of the previous subsection. The final N − m + 1
packets contain M − 2 loss indications and the average
number of packets between two successive loss indications
is given by

Dave =
N − m + 1

M − 1
(14)

To obtain the transfer time for the last N −m + 1 packets,
we first compute the average time to transmit Dave pack-
ets. After the first loss, we approximate the possible range
of values of cwnd when the subsequent losses occur by
1, · · · , �−1+

√
1+16Dave
2 �}. This approximation is based on

the following: Firstly, since the average number of pack-
ets between two successive loss indications is Dave, we
approximate the upper limit of the number of packets be-
tween two successive loss indications by 2Dave. We now
note that after the loss is inferred, Tahoe starts with a win-
dow of 1 and even though it is in the slow start phase, the
number of packets transmitted in the first 4 rounds are 1,
2, 3 and 4 respectively as shown in Fig. 1(c) and from
Eqn. (2) and beyond that the increase is not linear. We
also note that it is quite likely that after 4 rounds, the flow
enters the congestion avoidance mode where the window
increase is linear. If we assume that all the 2Dave pack-
ets are transmitted following the pattern just mentioned,
the number of rounds, n, required to transmit the 2Dave

packets is obtained by solving n(n + 1)/2 = 2Dave for

n. The solution n = −1+
√

1+16Dave
2 results in the approx-

imate upper limit for the range of the cwnd for the multi-
ple loss case. To account for the effect of window limita-
tion on the possible values of cwnd, we limit its range to
min{Wmax, �−1+

√
1+16Dave
2 �}. Also, to keep the analysis

tractable, we assume that each of these possible values of
cwnd and the position of the lost packet within a cwnd are
equally likely when the loss occurs.

Now consider the flow with cwnd = h where the loss
indication occurs at the jth packet of the round (see Fig-
ure 3). We want to find the time to transmit Dave packets
correctly following the jth packet. For analytic tractabil-
ity, we now assume that the flow was in the congestion

aveD

1 32 4 5 6 10 11 12 13 14 15 16 177 8 9

h

j

Fig. 3. The parameters h and j and their relation to Dave.

avoidance mode when this loss indication occurred, as it
will subsequently be following the first loss indication.
The number of packets lost in this round is now given by
h− j +1 while j − 1 packets are transmitted successfully.
Each successful packet slides the window forward and we
have another j − 1 packets transmitted in the subsequent
round. When the loss is detected either though duplicate
ACKs or timeout, ssthresh is set to n = max{2, �h/2�}.
In case of a timeout we need r(n) rounds with k′ pack-
ets transmitted in them till the flow enters the congestion
avoidance mode again. Using the same definition for the
quantities nloss, cwnd0

j , cwnd1
j , nrnd1

j , r(n) and k′ as
for the single loss case, we have

cwnd0
j = h

nloss = h − j + 1
cwnd1

j = h

nrnd1
j = cwnd1

j − nloss = j − 1 (15)

and r(n) and k′ are obtained from Eqn. (9) and (12) re-
spectively. Now if nrnd1

j ≥ 3, we get enough duplicate
ACKs to lead to a fast retransmit. In the slow start phase
that follows both the timeouts and the fast retransmit, we
transmit another k′ packets leaving a = Dave − k′ − j + 1
packets to be transmitted in the congestion avoidance
phase. The time to transmit Dave packets after the loss
indication is thus

tM loss(Dave) =




[r(n) + 1 if nrnd1
i ≥ 3

+tlin(a, n)] RTT
[tlin(a, n) + E[TO]+ otherwise
r(n) + I(j − 1 > 0)] RTT

(16)
The expected duration to transmit the Dave packets can
now be obtained by averaging Eqn. (16) for the possible
value of h and j. The time to transmit the N packets with
M loss indications is then

tml(N) = E{tsl(m − 1)} + (M − 2)E{tM loss(Dave)}
(17)

where the expectation operation is carried over all possible
values of m and the number of losses M .
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File p = 0.01 p = 0.05 p = 0.10
Size sim. ana. sim. ana. sim. ana.
1 KB 0.28 0.28 0.47 0.47 0.94 1.04
4 KB 0.39 0.37 0.75 0.76 1.56 1.47
8 KB 0.72 0.68 1.23 1.27 1.78 1.82

16 KB 0.82 0.81 1.69 1.73 2.73 2.68

File p = 0.01 p = 0.05 p = 0.10
Size sim. ana. sim. ana. sim. ana.
1 KB 0.36 0.35 0.63 0.64 1.02 1.17
4 KB 0.63 0.60 1.08 1.12 1.81 1.74
8 KB 0.99 0.94 1.48 1.52 2.62 2.69

16 KB 1.42 1.37 2.16 2.21 3.47 3.49

TABLE I
TCP TAHOE TRANSFER TIMES. RTT = 100ms (TOP) AND

RTT = 200ms (BOTTOM), MSS = 1.4KB , Wmax = 24.

E.3 The Expected Transfer Time

Combining the results of the previous sections, the ex-
pected transfer time for a flow of N packets is given by

Ttransfer(N) = tsetup + tdack + (1 − p)N tnl(N) +
p(1 − p)N−1E{tsl(N)} + tml(N) (18)

where tsetup, tnl(N), tsl(N) and tml(N) are defined in
Eqns. (1), (8), (13) and (17) respectively.

In Table I we present the comparison of the results from
our model with those from simulations using ns. A 2-state
Markov error model was used to model the correlated loss
process. We note the close agreement between the analytic
and simulation results.

F. TCP Reno

TCP Reno adds the fast-recovery algorithm to TCP
Tahoe which can results in substantial improvements in the
presence of single packet losses. However with multiple
packet losses, TCP Reno has to resort to timeouts to re-
cover the losses and its performance degrades. When the
Reno flow does not experience any losses, the transfer time
is obtained using Eqn. (8). We now present the models for
the single and multiple loss cases.

F.1 Single Loss

We again consider a flow of N packets where the loss
indication occurs at the ith packet. Again, since we have
correlated losses, packets i + 1 to nmax(i) are also lost.
Then, following the notation used for the Tahoe model we
again obtain

nloss = nmax(i) − i + 1
cwnd1

i = min{Wmax, cwnd0
i + �(cwnd0

i − nloss)/2�}
nrnd1

i = cwnd1
i − nloss

where cwnd0
i from Eqn. (10). However, since Reno

can recover multiple lost packets (with one recovery per
round), we can have another round of packets with cwnd
denoted by cwnd2

i before a timeout may be detected. If
nrnd1

i ≥ 3, on the receipt of the third duplicate ACK, the
cwnd drops to half of its current value and then increments
by one for each additional duplicate ACK. Thus cwnd2

i is
given by

cwnd2
i = min{Wmax, �cwnd1

i /2� + nrnd1
i } (19)

The number of packets still unacknowledged at the end of
first round following the round with the losses is cwnd1

i .
Thus if cwnd2

i > cwnd1
i , the number of additional packets

sent in the next round along with the retransmitted packet
is then

nrnd2
i = cwnd2

i − cwnd1
i (20)

The value of the cwnd when the loss is inferred is cwnd1
i .

It is known that a single packet loss in a window of
less than 4 (tcprexmtthresh + 1), two or more losses
in windows between 4 and 8 (tcprexmtthresh + 1 and
2(tcprexmtthresh + 1)) and three or more losses for
higher windows lead to timeouts in TCP Reno [16]. For
all other cases, the losses can be recovered using fast re-
transmissions. Let us first consider the simpler case when
the losses are recovered using fast retransmissions. Since
nrnd1

i +nrnd2
i new packets along with the nloss retrans-

mitted packets are sent before the congestion avoidance
phase begins, we only have a = N − nloss − nrnd1

i −
nrnd2

i − i + 1 packets to send in congestion avoidance
phase. Also, since each recovered loss reduces ssthresh
by half, we have n = max{2, �cwnd1

i /2nloss�}. Since we
need one round to recover each of the nloss losses the time
to transmit the N packets is then

tsl(N) = [tnl(i) + nloss + 1 + tlin(a, n)] RTT (21)

If the flow times out while recovering the losses, we can
have between 0 and 3 additional rounds of packets where
the first couple of losses may be recovered. If the first
packet of the round is lost then we do not have any addi-
tional rounds and the flow directly times out. If nrnd1

i is
one or two, then we have another round with nrnd1

i pack-
ets before the flow times out. In this case all losses are
recovered using timeouts and ssthresh is set to cwnd1

i /2.
For other cases we have at least one packet which is recov-
ered using fast recovery. In this round nrnd2

i additional
packets are sent along with the retransmitted packet and
ssthresh becomes cwnd1

i /4 if the flow times out now.
Also, if nrnd2

i ≥ 3 we have a third additional round with
another fast retransmit. The flow inevitably times out now
with ssthresh set to cwnd1

i /8. We denote the number
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of additional packets transmitted before the timeout by k′′

and during the slow start phase following the timeout by
k′. We also denote the number of rounds before the time-
out starts by tTO and the duration of the slow start phase by
r(n). After some algebraic simplifications we then have

k′′ =




nrnd1
i if nrnd1

i < 3
max{cwnd1

i , cwnd2
i } − nrnd1

1 − 1 if nrnd2
i < 3

max{cwnd1
i , cwnd2

i } − nrnd1
1 otherwise

(22)

tTO =




I(nrnd1
i > 0) if nrnd1

i < 3
2 if nrnd2

i < 3
3 otherwise

(23)

n =




max{2, �cwnd1
i /2�} if nrnd1

i < 3
max{2, �cwnd1

i /4�} if nrnd2
i < 3

max{2, �cwnd1
i /8�} otherwise

(24)

with r(n) and k′ given by Eqns. (9) and (12) respectively.
Since we only have to transmit a = N − k′ − k′′ − i +
1 packets in the congestion avoidance phase, the time to
transmit N packets is then given by

tsl(N) = [tnl(i) + tTO + r(n) + E[TO] + tlin(a, n)] RTT
(25)

and its expected value can be obtained by averaging over
the N possible values of i.

F.2 Multiple Losses

We follow the same approach as used in modeling Tahoe
flows with multiple losses and use the same expressions for
finding Dave and the range of possible cwnd values. We
break up a flow of N packets with M losses into the first
part with m − 1 packets with a single loss indication and
the rest into M−2 chunks of Dave packets. We again limit
the possible range of values of cwnd when the subsequent
losses occur by min{wmax, �−1+

√
1+16Dave
2 �}. Note that

while the upper limit of this range was derived in Section
III-E.2 assuming that the flow starts with a cwnd of 1 fol-
lowing the loss indication, this is not always true for TCP
Reno and SACK. However, this approximation works well
as can be seen from the results and is used due to its ana-
lytic tractability.

Now consider the flow with cwnd = h where the loss
indication occurs at the jth packet of the round. Using the
same definition for the quantities nloss, cwnd0

j , cwnd1
j ,

nrnd1
j as for Tahoe flows, we again have

cwnd0
j = h

nloss = h − j + 1
cwnd1

j = h

nrnd1
j = cwnd1

j − nloss = j − 1

As in the single loss case, if nrnd1
j ≥ 3 we have another

round where one loss is recovered using a fast retransmit.
The cwnd of this round, cwnd2

j is again given by Eqn. (19)
and if cwnd2

i > cwnd1
i , the number of additional packets

sent in this round, nrnd2
1 is given by Eqn. (20). The same

conditions now apply to determine whether the flow has to
resort to timeouts to recover all the losses. Consider the
case when all the losses are successfully recovered using
fast retransmits. In the congestion avoidance mode which
follows, we need to transmit a = Dave−nloss−nrnd1

j −
nrnd2

j packets and the linear increase phase begins with a
cwnd of n = max{2, �cwnd1

i /2nloss�} since ssthresh is
halved by every fast retransmission. The time to transmit
the Dave packets can now be expressed as

tM loss(Dave) = [nloss + 1 + tlin(a, n)] RTT (26)

If the flow resorts to timeouts to recover the losses, we
can again have between 0 and 3 rounds before the time-
out starts and the conditions leading to these cases are the
same as for the single loss case. Using the same notation
for k′′, k′, tTO n and r(n) as in the single loss case, we can
then use Eqns. (22), (12), (23), (24) and (9) respectively to
calculate each of them. In the congestion avoidance phase
we are now left with a = Dave − k′ − k′′ to be trans-
mitted. The time to transmit the Dave packets can now be
expressed as

tM loss(Dave) = [E[TO] + tTO + r(n) + tlin(a, n)]RTT
(27)

The expected duration to transmit the Dave packets can
now be obtained by averaging Eqns. (26) and (27) over
all possible value of h and j. The time to transmit the N
packets with M loss indications is then

tml(N) = E{tsl(m − 1)} + (M − 2)E{tM loss(Dave)}
(28)

F.3 The Expected Transfer Time

Combining the results of the previous sections, the ex-
pected transfer time for a flow of N packets is given by

Ttransfer(N) = tsetup + (1 − p)N tnl(N) + tdack +
p(1 − p)N−1E{tsl(N)} + tml (29)

where tsetup, tnl(N) and tml(N) are defined in Eqns. (1),
(8) and (28) respectively and tsl(N) is defined in Eqns.
(21) and (25).

In Tables II we present the comparison of the results
from our model with those from ns simulations with a 2-
state Markov loss model. Again we have a close agree-
ment between the analytic and simulation results. For TCP
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File p = 0.01 p = 0.05 p = 0.10
Size sim. ana. sim. ana. sim. ana.
1 KB 0.27 0.26 0.53 0.54 0.96 0.96
4 KB 0.42 0.41 0.83 0.85 1.63 1.62
8 KB 0.63 0.62 1.18 1.14 2.05 2.08
16KB 0.80 0.80 1.34 1.37 2.66 2.68

File p = 0.01 p = 0.05 p = 0.10
Size sim. ana. sim. ana. sim. ana.
1 KB 0.38 0.36 0.70 0.65 1.00 1.06
4 KB 0.65 0.63 1.06 1.07 2.08 2.10
8 KB 0.97 0.87 1.62 1.64 2.47 2.52

16 KB 1.41 1.31 2.16 2.17 3.72 3.71

TABLE II
TCP RENO TRANSFER TIMES. RTT = 100ms (TOP) AND

RTT = 200ms (BOTTOM), MSS = 1.4KB , Wmax = 24.

Reno we also validate our model by comparing the de-
lays predicted by our model with measurements of actual
TCP transfers over the Internet. These measurements were
done for files with randomly generated sizes transferred
between machines at RPI Troy, NY and Ohio State Uni-
versity, Columbus OH, MIT, Boston MA, University of
California, Los Angeles CA and University of Pisa, Pisa
Italy. To avoid repetitive graphs, we show the results for
transfers to Ohio and Los Angeles in Fig. 4. The results
for the others are similar. We also plot the results from
the model given in [3]. For short transfers, our results are
clearly much closer to the measured average and the im-
provement in the accuracy is in the order of 15-20%. For
large transfers there is no appreciable difference between
the two models.

G. TCP SACK

TCP SACK is specially aimed at eliminating timeouts
in the presence of multiple losses. However, we now show
that with correlated losses, SACK can fail to achieve this
goal and timeouts can occur quite frequently. For our anal-
ysis, we assume the SACK implementation of [5]. We use
the same definitions from the previous subsections and ob-
tain cwnd0

i from Eqn. (10) and nloss, cwnd1
i and nrnd1

i

from Eqn. (12).
We first identify the cases in which TCP SACK can lead

to a time out. It is easy to see that if nrnd1
i < 3 (i.e.

tcprexmtthresh) the sender does not receive enough du-
plicate acknowledgments and resorts to timeouts. How-
ever, in the presence of correlated losses, there is another
factor which leads to most of the timeouts in current SACK
implementations and this is the variable pipe. Unlike the
fast retransmits of Reno, in TCP SACK, pipe controls the
transmission of new or retransmitted packets during fast

recovery. The sender sends new or retransmitted pack-
ets only if the value of pipe is less than cwnd. Let us
consider a SACK flow where the loss indication occurs
at packet i. When the third duplicate ACK is received
and the first packet is retransmitted, pipe is initialized
to cwnd1

i − 3 and cwnd is set to cwnd1
i /2. For each of the

additional duplicate ACKs resulting from the rest of the
nrnd1

i − 3 packets pipe is decremented by one resulting
in

pipe = cwnd1
i − nrnd1

i = nloss (30)

If pipe ≥ cwnd no more packets are transmitted. When
the partial ACK corresponding to the first retransmitted
packet arrives, pipe is decremented by two. Now if pipe
is still greater than equal to cwnd the flow will timeout.
The condition for timeouts resulting due to the implemen-
tation of pipe can then be expressed as

nloss − 2 ≥ �cwnd1
i /2� (31)

This roughly translates to: if more than half of the packets
in a round are lost, SACK is unable to recover them with-
out a timeout. Thus with correlated losses, Tahoe can out
perform SACK since it is the most conservative and starts
retransmitting all lost packets on the receipt of 3 duplicate
ACKs. This is verified in Section V.

G.1 Single Loss

We again consider a flow of N packets with a single
loss indication occurring at packet i. The variables cwnd0

i

cwnd0
i , nloss, nrnd1 and n are described as in the pre-

vious subsections and are given by Eqn. (12). Once the
duplicate ACKs corresponding to the packets sent in the
round following the round with losses are received, the
current value of pipe is given by Eqn. (30).

Let us first consider the case when the flow resorts to a
timeout to recover the losses, which happens if nrnd1

i < 3
or the if the condition of Eqn. (31) is satisfied. If nrnd1

i >
0 we have at least one round following the round with
losses and if nrnd1

i ≥ 3 we have one additional round
where one packet is recovered with a fast retransmit. A
fast retransmit results in the cwnd being halved and the
value of cwnd and the number of packets transmitted in
the next round, nrnd2

i are given by

cwnd2
i = �cwnd1

i /2�
nrnd2

i = 1 + max{0, cwnd2
i − pipe} (32)

Also, when the loss is detected, ssthresh is set to n =
min{2, �cwnd1

i /2�} and the number of packets transmit-
ted in the slow start phase, k′ is obtained from Eqn. (12).
The number of packets remaining to be transmitted in the
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Fig. 4. Comparison of latency of TCP Reno transfer between Troy, NY and Columbus, OH (top) and Los Angeles, CA (bottom).

congestion avoidance mode is thus a = N − nrnd1
i −

nrnd2
i − k′ − i + 1. The time to transmit N packets with

one loss indication resulting in a timeout is thus given by

tsl(N) =
[
tnl(i) + E[TO] + I(nrnd1

i > 0)+

I(nrnd1
i > 3) + tlin(a, n)

]
RTT (33)

In the case that all the losses are recovered without any
timeout, in each round the partial ACKs decrease pipe
by two which ensures that SACK does not recover more
slowly than slow start. Since nrnd2

i packets are retrans-
mitted in the round following the receipt of the duplicate
ACKs, the number of losses which remain to be transmit-
ted, rl, is given by

rl = nloss − nrnd2
i (34)

Also, as pipe decrements by two for each partial ACK
and we start with an initial value of nrnd2

i packets each
of which decrements pipe by two, the number of rounds
spent in this exponential phase till all the losses are re-
covered, r(n) and the packets transmitted in these r(n)
rounds, k′, can be easily shown to be given by

r(n) =

⌈
log2

(
rl

nrnd2
i

+ 1

)⌉

k′ = nrnd2
i (2

r(n) − 1) (35)

We then have a = N − nrnd1
i − nrnd2

i (2)r(n) − i +
1 packets to be transmitted in the congestion avoidance
mode resulting in a total transfer time of

tsl(N) = [tnl(i) + 2 + r(n) + tlin(a, n)]RTT (36)

The expected duration to transmit the N packets with a
single loss indication can now be obtained by averaging
over the N possible values of i.

G.2 Multiple Losses

Following the same approach as used for Tahoe and
Reno and using the same definitions, we can again use
Eqn. (15) to obtain nloss, cwnd0

j , cwnd1
j , nrnd1

j . The
value of pipe after the receipt of the duplicate ACKs can
again be found using Eqn. (30). Again, if nrnd1

j > 0
we have at least one round following the round with losses
and if nrnd1

j ≥ 3 we have one additional round where one
packet is recovered with a fast retransmit. The cwnd of
this round, cwnd2

j , and the number of packets transmitted
in this round, nrnd2

j are now similarly obtained using

cwnd2
j = �cwnd1

j/2�
nrnd2

j = 1 + max{0, cwnd2
j − pipe} (37)

We can now use the same conditions as in the single
loss case to determine the cases in which the SACK flow
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File p = 0.01 p = 0.05 p = 0.10
Size sim. ana. sim. ana. sim. ana.
1 KB 0.31 0.30 0.62 0.62 0.96 1.09
4 KB 0.40 0.41 0.96 0.98 1.88 1.91
8 KB 0.65 0.62 1.12 1.08 2.00 1.04

16 KB 0.82 0.80 1.58 1.56 2.81 2.88

File p = 0.01 p = 0.05 p = 0.10
Size sim. ana. sim. ana. sim. ana.
1 KB 0.37 0.36 0.59 0.61 1.05 1.20
4 KB 0.59 0.59 1.08 1.05 1.81 1.79
8 KB 0.99 0.91 1.50 1.53 2.53 2.56

16 KB 1.43 1.40 2.22 2.36 3.58 3.63

TABLE III
TCP SACK TRANSFER TIMES. RTT = 100ms (TOP) AND

RTT = 200ms (BOTTOM), MSS = 1.4KB , Wmax = 24.

will timeout. We first consider the case when the flow
times outs. When the loss is detected, ssthresh is set
to n = min{2, �cwnd1

i /2�} and the number of packets
transmitted in the slow start phase, k′ is again obtained
from Eqn. (12). The number of packets remaining to
be transmitted in the congestion avoidance mode is then
a = Dave − nrnd1

j − nrnd2
j − k′ and the time to transmit

Dave packets is thus

tM loss(Dave) =
[
E[TO] + r(n) + I(nrnd1

j > 0)

+I(nrnd1
j > 3) + tlin(a, n)

]
RTT(38)

In the case that the losses are recovered without any
timeouts, the number of losses which remain to be trans-
mitted after the first round of retransmissions is rl =
nloss − nrnd2

j . Again, due to the reduction of pipe by
two for every partial ACK, the number of retransmission
increases as a power of two in every round and the time
to transmit the remaining losses, r(n), and the number of
packets transmitted in these rounds, k′ are given by

r(n) =

⌈
log2

(
rl

nrnd2
j

+ 1

)⌉

k′ = nrnd2
j (2

r(n) − 1) (39)

Now, only a = Dave − nrnd1
j − nrnd2

j (2)r(n) packets
remain to be transmitted in the congestion avoidance mode
and the transfer time for Dave packets is given by

tM loss(Dave) = [2 + r(n) + tlin(a, n)]RTT (40)

The expected duration to transmit the Dave packets can
now be obtained by averaging Eqns. (38) and (40) for the
possible value of h and j. The time to transmit the N

packets with M loss indications is given by

tml(N) = E{tsl(m − 1)} + (M − 2)E{tM loss(Dave)}
(41)

where the expectation operation is carried over all possible
values of m and the number of losses M .

G.3 The Expected Transfer Time

Combining the results of the previous sections, the ex-
pected transfer time for a flow of N packets is given by

Ttransfer(N) = tsetup + (1 − p)N tnl(N) + tdack

p(1 − p)N−1E{tsl(N)} + tml(N) (42)

where tsetup, tnl(N) and tml(N) are defined in Eqns. (1),
(8) and (41) respectively and tsl(N) is defined in Eqns.
(33) and (36).

In Table III we present the comparison of the results
from our model with those from simulations using ns.
Again, our results match very well with the simulation re-
sults.

IV. STEADY-STATE THROUGHPUT

In this section, we model the steady state throughput
of infinite Tahoe, Reno and SACK flows by extending the
models of the previous section. As in other steady state
throughput modeling papers, we assume that the sender
always has an unlimited amount of data to send. To ex-
tend the models of the previous section to infinite flows,
we first note that with infinite packets, the probability that
the flow experiences a single or no loss indications is 0 for
p > 0. Also, for a packet loss probability of p, the aver-
age number of packets transmitted between two successive
loss indications, d, is given by 1/p. For the infinite flows,
the time between two successive losses can be obtained us-
ing the equation for tM loss(d) for each of the three TCP
versions. Using the average value of tM loss(d) and the av-
erage distance between two successive losses, we can now
calculate the steady state throughput of the flow. The pos-
sible values of the cwnd in this case is again similar for the
multiple loss cases of the previous section. We assume the
cwnd to vary uniformly between 1 and cwm, where cwm is
given by

cwm = min

{⌈
(−1 +

√
1 + 16/p)/2

⌉
, Wmax

}
(43)

The expected time to transfer d packets can now be ob-
tained by averaging tM loss(d) over all possible values of
the cwnd and all possible positions of the loss indication
within the round. Since the possible values of cwnd vary
uniformly between 1 and cwm, each of these cases (tuple
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Fig. 5. Steady state throughput of TCP Reno connections.

corresponding to the cwnd value and the position of the
loss indication), resulting in a total of cwm(cwm + 1)/2
cases, is equally likely. Thus each case occurs with a prob-
ability of 2/(cwm(cwm+1)). The expected time, as a func-
tion of the loss probability, is then given by

tss(p) =
2

cwm(cwm + 1)

cwm∑
h=1

h∑
j=1

tM loss(d) (44)

with the conditions for determining whether a loss indi-
cation results in a timeout or not is determined as in the
previous section and tM loss(d) is given by Eqn. (16) for
Tahoe, Eqns. (26) and (27) for Reno, and Eqns. (38) and
(40) for SACK. Since d packets corresponding to dMSS
bytes are transmitted on an avegare every tss(p) seconds,
the steady state throughput in bytes per second of a TCP
connection is thus

R =
dMSS

tss(p)
=

MSS

tss(p)p
(45)

We note that though the expression for the steady state
throughput does not have the same closed form as those in
[18], their numerical values are almost the same. In Fig. 5
we show the results of our model extended to calculate the
steady state throughput. The results are for TCP Reno and
we compare our results with the model and traces reported
in [18]. We see that our results are almost exact over the
whole range of loss probabilities.

V. COMPARISON OF TAHOE, RENO AND SACK

In this section we compare the performance of the three
versions of TCP in terms of both their latency and steady-
state throughput and identify some conditions and reasons
due to which one version may outperform the other. In Fig.
6(a) and 6(b) we plot the expected transfer times and the
steady state throughputs of the three versions for different
loss probabilities, transfer sizes and RTTs. We note that

in all cases, Reno performs worse than the others which is
due to the fact that it resorts to timeouts in the presence of
multiple losses. The result of importance here is that Tahoe
outperforms SACK in the presence of correlated losses.
This is explained by considering the fact that with corre-
lated losses, the probability that a loss event leads to the
loss of more than half of the packets of that round is close
to 0.5. Thus SACK flows timeout quite frequently, degrad-
ing their performance. However, Tahoe has a very conser-
vative retransmission policy and assumes that all outstand-
ing packets following a lost packet are also lost. The im-
mediate retransmission of all the losses in the slow start
mode leads to considerable savings and more than makes
up for any unnecessary retransmissions.

The difference in the performance of these versions of
TCP under the influence of a different loss model is high-
lighted in Fig. 6(c) which shows the simulation results of
the transfer times using ns. For these simulations, we used
an independent loss model where all packet losses are as-
sumed to be independent and there is no correlation be-
tween the losses in the same round. This scenario is more
likely for queueing disciplines like RED. With indepen-
dent losses, SACK performs better than both Tahoe and
Reno while Reno performs better than Tahoe. The exam-
ples considered in [5] which show similar results also have
independent losses. SACK performs better with indepen-
dent losses as now the probability of the loss of more than
half the packets from a window is reduced enormously.

VI. CONCLUSION AND DISCUSSIONS

In this paper we presented analytic models for estimat-
ing the latencies and the steady-state throughput of TCP
Tahoe, Reno and SACK. While TCP Reno has been mod-
eled extensively, no models existed for estimating the la-
tency of TCP Tahoe and SACK. Additional, the estimates
of the transfer times predicted by our TCP Reno model
more accurate than existing models (in the range of 15-
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Fig. 6. Transfer times and steady state throughput for Tahoe, Reno and SACK for correlated and independent losses.

20%), particularly for short transfers less than 10KB while
for larger flows the difference are not significant. This can
be attributed to the better modeling of the timeouts expe-
rienced by a TCP flow as well as a more accurate model
for the evolution of cwnd during slow start and the de-
layed ACKs. Our models are based on the assumption of
correlated or bursty losses currently prevalent in the Inter-
net due to the dominance of droptail queues in the routers.
The models were validated using both simulations as well
as traces of TCP transfers over the Internet.

TCP SACK is specially geared towards providing
smaller retransmission times in the presence of multi-
ple losses from the same window. However, we show
that with correlated losses losses SACK is unable to pro-
vide adequate protection against the occurrence of time-
outs. If a SACK flow with a current window of cwnd
loses 2 + cwnd/2 packets then current implementations
of SACK will timeout. Hence with correlated losses, TCP
Tahoe can perform better than SACK because of its conser-
vative retransmission policy. Though Tahoe may unneces-
sarily retransmit some correctly received packets, this is
more than made up the avoidance of timeouts through the
direct retransmission of all the packets which are outstand-
ing at the instant the loss is detected.

It is also of interest to note that the performance of the
three versions of TCP changes when an independent loss
scenario (unrealistic in current Internet scenarios) is used.
With independent losses, the probability of multiple losses

from the same window reduces and SACK is able to re-
cover the losses without going into a timeout in most cases.
Thus in these cases SACK perform better than both Tahoe
and Reno while Reno performs better that Tahoe. Since in-
dependent loss models do not reflect reality, it is apparent
that such assumptions will lead to incorrect conclusions.
These observations underline the fact that buffer manage-
ment policies can make significant differences in protocol
performance.

Though there are various possibilities to provide en-
hanced robustness against timeout to SACK, the most ap-
parent one is to change the implementation of pipe to al-
low retransmission of lost packets on the receipt of partial
ACKs even though pipe may be less than cwnd. Since
SACK times out in the presence of heavy losses compared
to the window size (where the losses need not be back
to back) this change would eliminate timeouts in these
circumstances also. Also, with droptail queues here to
stay in the foreseeable future, providing protection against
bursty losses is necessary to ensure the benefits promised
by SACK.
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