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Abstract—While in-network caching is an essential feature
of Information Centric Networks (ICN) for improved content
dissemination and reducing the bandwidth consumption at the
core of the network, it is prone to many privacy threats. For
example, an adversary can passively breach the privacy of a
consumer by simply analyzing the different retrieval times for
the same content. This paper aims to address this problem of
timing analysis attacks by developing privacy-enhancing caching
strategies. The proposed caching strategies use two privacy
metrics, namely mutual information from information theory
and differential privacy, and formulates a privacy enhancing
distributed optimization problem with the objective of optimizing
the network cost incurred. We efficiently solve the optimization
problem by considering it as a n-player, non-cooperative game.
We show that Nash equilibrium exists for this game and compute
it using an iterative best response algorithm. We compare and
validate the performance of our approach on realistic network
topologies by comparing it with the existing approaches in
literature and the global optimal solutions.

Index Terms—Information centric networks, timing attacks,
privacy

I. INTRODUCTION

Cisco visual networking index predicts that the global
multimedia traffic would account for 82% of the total Internet
traffic by 2022 [1], thus, rendering the content distribution
as an important challenge to be addressed. The focus of the
Internet has continually shifted from where is the content to
what is the content, but the communication architecture still
focuses on where the content is. Information Centric Networks
(ICN) have been proposed to address this challenge of efficient
distribution and retrieval of content. ICN are communication
networks built with content as the primary entity of the
network where the content names are used as identifiers (or
addresses) and not the content locations. ICN has the following
unique characteristics which are fundamental for the efficient
dissemination of content: (i) Content’s identity and its location
are decoupled; (ii) Content is cached at the content stores of
the intermediate nodes in the network (in-network caching);
(iii) The content traverses the reverse path of its corresponding
request (also referred to as interest).

In contrast to routers in the traditional Internet, additional
storage is deployed at the ICN routers where the routers cache
the forwarded content. When an interest arrives for a content,
the router checks whether the content is present in its cache
and if so, the content is served from the router’s cache (instead
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Fig. 1. Toy example illustrating timing attacks in ICN.

of the interest being sent to the content producer). Thus, in-
network caching enables faster content retrieval and improves
the bandwidth efficiency of the network.

In the default caching approach of ICN, the routers cache
all the content forwarded by them. This results in the content
leaving a copy everywhere along the path from the content
producer to the consumer. On the one hand this approach
improves the network performance, but on the other hand
it makes the network vulnerable to privacy attacks [2], [3].
The content in ICN traverses the same path as that of the
corresponding interest (unlike TCP/IP networks). If the content
is cached at a router, then it implies that the corresponding in-
terest was forwarded by the router. Thus, when the router is on
the edge of the network, it can be inferred that the requesting
consumer is connected to the router. Timing analysis attacks
leverage this feature of ICN along with its in-network caching
to breach the privacy of the consumers [4].

A. An Example of Timing Analysis Attack in ICN

Consider the toy network in Figure 1. Here, U is a honest
user, A is the adversary, R1 and R2 are ICN routers, and
S is the content producer. U and A are connected to the
same router R1. Let ar and as be the RTT between A and
R1, and, A and S, respectively. First, A sends a request for
some unpopular content cu and by measuring the RTT for
cu, A estimates as. Next, A requests for cu again and as cu
is cached at R1, R1 responds back with cu. By measuring
the RTT for this request, A estimates ar. Once A estimates
the values of as and ar, A can probe the cache of R1 for
various contents, measure the RTT t, and compare it with ar
and as. If t ' ar then A can infer that the content has been
requested by U . Using this attack, A can identify the sensitive
contents being accessed by U . In order to carry out this attack,
A only needs to perform time measurements and does not need
any other special resources or privileges. From the network’s
perspective, the behavior of A is similar to that of any other
honest consumer.
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The timing analysis attack in ICN posses a serious threat 
to the privacy of users. First, individual consumers’ private 
browsing data, Internet usage and behavioral patterns can get 
leaked through such attacks. Furthermore, in scenarios where 
the adversary and the target share the same Internet Service 
Provider and are co-located (e.g. same building or business 
park), these attacks can lead to a business intelligence attack 
where the adversary is is interested to know contents requested 
by a competing company. Second, the adversary behaves ex-
actly like a honest consumer and generates legitimate requests 
for legitimate contents. Therefore, the timing analysis attack 
is difficult to detect. The potential threat to users’ privacy and 
the undetectability of the adversary makes the timing analysis 
attack in ICN an important challenge to be addressed.

B. Threat Model
We consider an adversary who is capable of inferring the 

contents of the cache of the routers in the network. The 
adversary can measure the round trip time of any content it 
requests and the adversary can use these time measurements 
to carry out a timing analysis attack to infer the source of 
the content. We note that such a timing analysis attack is a 
passive attack and the adversary does not modify any of the 
content. To this end, it is difficult t o d istinguish b etween an 
adversary and an honest user. The objective of the adversary 
is to, first, infer the contents of the cache of the routers in the 
network. Next, using this observation, the adversary tries to 
identify the user who had requested for the content, thereby 
breaching the privacy of the user. Organizational networks 
like university campus networks or office networks are easily 
susceptible to such timing attacks as the adversary may have 
sufficient s ide i nformation a bout t he u sers i n t he network 
and the caching routers. We assume that the network oper-
ator stores the caching strategies of all the users. Breaching 
the storage of the network operator requires a very strong 
adversary. Any adversary capable of breaching the network 
operator’s infrastructure can easily breach directly into the 
privacy of users. Such an adversary does not need to infer 
the contents a router caches in order to breach the users’ 
privacy. The assumption that the adversary cannot breach into 
the network operator’s infrastructure is a valid assumption 
here because we consider timing analysis attacks in ICN. 
To perform this attack, an adversary only needs to precisely 
measure the content delivery time. There is a significant 
difference in the amount of resources required for an adversary 
to perform a (passive) timing analysis attack and to breach 
into the network operator’s infrastructure. Thus, an adversary 
with limited capabilities (that are sufficient for timing analysis 
attacks) is unlikely to be able to breach the network operator’s 
hardware infrastructure.

Timing analysis attacks can be deployed to determine the 
location of the consumers as well. Consider that the adver-
sary has the side information about the specific c ontent the 
consumer is interested in. Then, the adversary can request 
for the same content and measure the delay incurred. Based 
on the delay measured, the adversary can infer which router 
has cached the content and hence infer the location of the 
consumer.

While our approach addresses both the above mentioned
threat models, we primarily focus our discussions using the
first model where the adversary aims to figure out details about
the content accessed by a consumer.

C. Contributions

While caching of content at the routers along the path
(as discussed above) is easy to implement, it leads to data
redundancy. Different off-path and co-operative caching mech-
anisms have been proposed in the literature to address this
problem [5]–[9]. We exploit the off-path caching in ICN to
address the timing analysis attack problem. The proposed
solution formulates a non-cooperative game among the con-
sumers (also henceforth referred to as users), where each
consumer probabilistically chooses a router for caching a
given content such that the cost incurred (in terms of network
resources consumed and delay incurred) is minimized and its
privacy requirements (in terms of information theoretic mutual
information) are satisfied. We show that a Nash equilibrium
exists in such a game and it can be computed using an iterative
best response algorithm. Moreover, we formulate another game
which incorporates differential privacy along with the infor-
mation theoretic mutual information bound. This approach
provides a framework for trade-off between the amount of
information gained by an adversary (using a timing analysis
attack) and the cost incurred by the caching strategy to mitigate
it. The contributions of this paper can be summarized as:
• We propose a distributed content caching scheme to mitigate

the impact of timing analysis attacks on ICN routers.
• The proposed privacy framework is based on a non-

cooperative game formulation among the consumers. The
privacy requirements are quantified using information theo-
retic mutual information and differential privacy. The Nash
equilibrium of the game is computed using an iterative best
response algorithm.

• The performance of the proposed scheme is compared with
the existing approaches in the literature as well as with the
globally optimal solution and the exponential mechanism (for
differential privacy). The proposed approach, in addition to
being distributed, also achieves near optimal cost and better
cache utilization compared to the global solutions.

The rest of the paper is organized as follows. The related
literature is presented in Section II and Section III describes
the system model and the required preliminaries. The proposed
game model is presented in Section IV and Section V presents
the game with differential privacy constraints. The Nash equi-
librium of the game, an iterative best-response algorithm to
solve it, and its convergence are discussed in Section VI. The
performance evaluation of the proposed approach is discussed
in Section VII and Section VIII concludes the paper.

II. RELATED WORK

As any other Internet architecture, ICN too is vulnerable to
security attacks. The surveys in [2], [3], [10]–[12] highlight
the various privacy and security threats present in ICN. The
classical denial of service attack in ICN has been addressed
using various approaches like rate limiting [13], [14], statistical
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modeling [15], and PIT modification [16]. Different routing
related issues like secure content naming [17], secure forward-
ing [18], and secure routing [19] have been discussed in the
literature. The authors in [20] address the content poisoning
attack where the adversary fills a router’s cache with invalid
contents. The authors in [21], [22] discuss the cache pollution
attack where the adversary skews the content popularity by
requesting less popular content frequently.

The timing analysis attack in ICN is an important problem
that is being addressed by the research community. Different
approaches in the literature that aim to address the timing
analysis attack and enhance the cache privacy in ICN can be
classified as follows:

1) Content placement based approaches: The authors in [23]
decide whether to cache the content at a router or not
based on the betweenness-centrality of the router. Sensi-
tive contents are cached at routers with high betweenness-
centrality in order to increase the consumers’ anonymity set
(the number of consumers using a given router). Using this
mechanism, it is possible that the content is cached only
at the upstream routers to achieve the required size of the
anonymity set. Our caching strategy aims to achieve the
same level of privacy by strategically caching the content at
the edge routers of the network. Authors in [24] propose a
caching scheme where the routers are clustered into groups.
Routers in every group collaborate among each other and
cache the content at one of the routers in the group. This
scheme assumes a global privacy requirement of the system
and does not take into account different privacy needs of
the users. Moreover, the caching scheme does not take into
account the effect of the privacy on the network performance.
As our proposed approach too tries to enhance privacy by
intelligent placement of content in the router caches, we
compare our caching strategies with these strategies in our
performance study.

2) Delay based approaches: The authors in [25] propose a
mechanism to add delay to the content being served from
the router’s cache. The amount of delay added is such that
it mimics the delay incurred when the content is served
by one of the upstream routers or the server. In [4], the
authors propose to introduce cache misses at the routers
when the number of requests for the content is less than a
threshold. The threshold chosen is random and is assumed to
be a secret. The authors discuss the privacy corresponding
to the value of this threshold. In [26], authors propose a
detection based approach where detection techniques are
deployed at the router and a delay is introduced only if an
attack is detected. While introducing delays and cache misses
may guarantee privacy for the consumers, they diminish the
efficiency of the caches as the content is redundantly present
in all the on-path routers and yet, consumers still experience
significant delays.

3) Access control based approaches: Access control based
approaches are proposed in [27]–[29]. Access control ap-
proaches do not directly aim to address cache privacy in ICN.
Instead, the main aim here is to ensure that only authorized
users are able to access the content in the network. While

such methods partially enhance the cache privacy in ICN,
they cannot ensure that users’ privacy is maintained. For
example, in scenarios like organizational networks, all the
users including the adversary can have access to the content.
The problem of user privacy and timing analysis attack for

the current Internet in general is a well explored problem.
For example, approaches in [30], [31] enable an adversary to
learn about the different content a user has recently accessed
by reading the cache and cookies of the browser. The authors
of [32] develop a timing analysis attack to gain access to
the browser’s cache (and hence breach the user’s privacy).
Similarly, [33] proposes a scheme to learn the users’ call
history in VoIP networks.

Various countermeasures exist to mitigate the cache privacy
and timing attacks in the Internet. For example, [34] proposes
an approach where the URLs are customized for every user so
that the adversary cannot identify the content accessed by the
user. In [35], the authors introduce a delay based approach to
mitigate timing attacks (similar to [4], [25], [26]). Anonymous
networks like ToR have also been widely studied in the context
of user privacy and timing attacks [36]–[38]. We note that the
cache privacy and timing analysis attack in ICN is different
from that of the current Internet. Unlike the current Internet,
the cache privacy and timing analysis attack in ICN completely
focuses on the in-network caches at the routers.

The existing approaches for cache privacy and timing at-
tacks in ICN preserve privacy by leveraging the uncertainty
arising from the presence of other users using the on-path
routers. In this work, we aim to preserve privacy by using the
uncertainty provided by the other users in the network (on-
path as well as off-path). As there are usually more users in
the network than routers, our approach achieves better privacy
for the same cost. Moreover, our approach inherently leaves
only one copy of the content in the network, thereby improving
the caching efficiency, without sacrificing the content access
delay (although we show that we can easily extend our model
to cache multiple copies of the content as required).

There are mechanisms to deploy off-path caching within a
domain (like an autonomous system, enterprise network, and a
campus network). In [5]–[7], the authors design a distributed
off-path caching mechanism for autonomous system level
networks. The authors in [8] propose techniques to discover
off-path cached content using the trails left by the content. A
survey of caching strategies can be found in [9]. We assume
that an off-path caching mechanism is already available in the
network. Proposing an architecture to achieve off-path caching
is not a goal of this paper. Rather, we focus on making privacy
enhancing caching decisions that can be deployed using the
available mechanisms.

III. PRELIMINARIES

A. Overview

To protect the users from adversaries performing timing
analysis attacks, we aim to design an obscuring caching policy
A for each user, following which the content accessed by
the user is cached at different routers corresponding to the
probability distribution output by A. As we are concerned
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about the quality of service and the incurred network resource
costs, we consider delay and storage resource consumption in
our cost model. While requesting for privacy, the user needs
to decide on the appropriate mechanism A. As the privacy of
a user depends not only on her own mechanism but also on
the mechanisms chosen by other users as well, we formulate
the interactions between the users as a game. Game theory
is an apt analytical tool to capture these strategic interactions
between the users, including the users’ strategies and payoffs.
Solution Approach: We propose two solution approaches
to address the problem of timing analysis attack. The first
approach formulates the problem as a non-cooperative game
among the users. Every user solves an optimization problem
with the objective to minimize the total cost incurred while
achieving a minimum privacy level (different users may have
different privacy levels). We quantify the privacy level of a
user using the Shannon entropy of the system (to be precise,
mutual information). Given the strategies of other users, a
user evaluates her best response by solving the optimization
problem. We show that the Nash equilibrium exists for our
game and that it can be reached using a greedy iterative
approach. While the second approach is similar to the first
one, here, along with the Shannon entropy of the system,
we also consider differential privacy of the users. Therefore,
the optimization problem in this approach minimizes the total
cost incurred subject to differential privacy and system entropy
constraints.

B. Mutual Information

Let X and Y be a discrete random variables defined on
sample spaces X and Y with probability mass functions
pX(·) and pY (·), respectively (for simplicity, the subscripts
are dropped whenever they are clear from the context). The
Shannon entropy, H(X), of X is defined as:

H(X) = −
∑
x∈X

pX(x) log pX(x). (1)

The conditional entropy of X given Y is:

H(X|Y ) = −
∑
x∈X

∑
y∈Y

P (x, y) logP (x|y). (2)

Note that 0 ≤ H(X|Y ) ≤ H(X). The mutual information
between X and Y , I(X,Y ), is defined as:

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (3)

C. Differential Privacy

Let us consider two databases D and D′ which differ only
on a single row (i.e., D and D′ are adjacent databases). A
randomized algorithm A is said to be ε-differentially private
if A satisfies the following for all adjacent databases D and
D′ and O ⊆ Range(A):

Pr[A(D′) ∈ O] ≤ eε × Pr[A(D) ∈ O].

We consider the caching strategy of all the users as one
database. Therefore, the adjacent databases in our case vary
just in the strategy of one user.

Symbol Description
R Set of routers in the system
U Set of consumers in the system
pru Probability that consumer u chooses router r for caching
pu Vector of probabilities with which consumer u chooses the routers in R
qu Probability that the content is requested by consumer u
fu Cost function of consumer u
cru Cost incurred by consumer u when using router r for caching
cu Vector of cost incurred by consumer u
U Random variable indicating the requesting user as observed by the

adversary
R Random variable indicating the caching router as observed by the

adversary
H Shanon entropy function of the system
I Mutual information function of the system
Bu Set of best response of consumer u
tu Upper bound on the mutual information of the system required by

consumer u
A Coefficient matrix of the constraints of optimization problem
tmin Minimum mutual information of the system
tmax Maximum mutual information of the system
β, λ Lagrangian multipliers of the optimization problem P0
p∗u,β, λ Optimal points of optimization problem P0 and its dual problem
Q(β, λ) System of equations to be solved to obtain Lagrangian multipliers of

optimization problem P0
εu Differential privacy parameter of consumer u
f∗ Conjugate function of function f
f+ Positive homogeneous extension of function f
α,γ, λ Conjugate dual variables of optimization problem DP1
x, z Auxiliary variables required to construct optimization problem DP1

from optimization problem DP0
P Caching probability matrix of all consumers
Pprev Caching probability matrix of the previous iteration

TABLE I
LIST OF VARIABLES AND SYMBOLS USED

Exponential Mechanism. The exponential mechanism [39]
allows us to use differential privacy on arbitrary domains and
ranges. Let the arbitrary domain and range for a randomized
algorithm A be D and R, respectively. Let A follow the
exponential mechanism. Then, for an input d ∈ D,A outputs
r ∈ R with a probability proportional to exp(εu(d,r)

2∆u ). Here
u : {D × R} → R is the utility function and ∆u is the
sensitivity of u, i.e., is the largest possible difference in the
utility when two inputs differ only on a single user’s value,
for any r.

The list of variables and symbols used in this paper are
presented in Table I.

IV. CACHING STRATEGY GAMES

A. System Model

We consider a network consisting of a set of routers R 
and a set of consumers U . To provide high quality of service, 
we assume that all the routers in the network deploy storage 
and cache the contents forwarded by them. Under the default 
scenario, the content is cached along the path of travel and 
hence, a copy of the content is cached at the first h op router 
of the requesting user. The adversary can target the first hop 
router to gain information about the user’s content preferences. 
Therefore, in our approach the content can be cached at any 
of the routers (of the edge network).

The proposed privacy aware caching approach does not 
require any architectural changes in ICN. We only assume that 
a manager is deployed in the edge network and a mechanism 
like [7] exists to perform off path caching (for the users 
requesting privacy). Here, the authors propose an automatic 
cache management system architecture where the network
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operator specifies the requirements of the caching system and
the architecture ensures that the requirements are satisfied.
We assume that the network operator specifies the caching
strategies of all users to this architecture. The architecture, in
turn, manages the caching at the routers such that the privacy
requirements of all users are satisfied. Initially, we assume that
all the users are aware of the network topology and the other
users’ preferences (this assumption is relaxed subsequently).
A user leverages these information and decides on the level
of privacy required.

Let pru be the probability with which consumer u chooses
router r for caching. Let pu be the vector of probabilities of
consumer u corresponding to every router in the edge network,
pu = [p1

u, p
2
u, · · · , p

|R|
u ]T . The consumer decides on pu based

upon the level of privacy required and the corresponding cost
incurred for it.

Remark. Our proposed approach leverages off-path caching
which allows the content to be cached at any router of the
network. In the absence of off-path caching, our approach
can easily be restricted only to the on-path routers between
a consumer-producer pair.

Let qu be the content request generation rate of user
u. For simplicity, we (i) focus our discussion on a single
content, (ii) assume that all of the user’s content is cached
(therefore, content caching rate and the request generation
rate is the same), and (iii) assume that qus are normalized,
i.e.,

∑
u∈U qu = 1. Therefore, qu can also be viewed as the

probability with which the content is generated by u. We note
that the content caching rate for user u at router r can be
evaluated as qru = pruqu, the total caching rate at a router is
qr =

∑
u∈U q

r
u and we also define qr−u =

∑
u′ 6=u q

r
u′ as the

cumulative content caching rate of all the users except user
u at router r. We also define the vector of content generation
rates as q = [q1, q2, · · · , q|U|]T .

B. Game Model

We define a game G as a three tuple {P,S,F} where P
is the set of players, S is the set of strategies, and F is the
pay-off functions.

Players: The set of players correspond to U , the set of all
the users in the network.

Strategies: The set of strategies for every user is the dif-
ferent possible values of the probability vector pu. Hence, an
instance of the strategies of all the users can be viewed as a
strategy matrix P (P is a |R| × |U| matrix). Also, we denote
the strategy of all users except user u by P−u.

Cost function: Let fu(pu) be the cost incurred for user
u when its strategy is pu. Then, we have fu(pu) =∑
r∈R f

r
u(pru), where fru is the cost function of u corre-

sponding to caching content at router r. The cost function
takes two factors into consideration: first, the network resource
consumed by choosing the router r which intuitively is a
function of the caching capacity of r and second, the delay
incurred due to choosing r. This factor depends on the location
of u and r and is independent of the capacity of r. We
assume that fu is an non-decreasing convex function. We solve

the game for the case when the cost function is affine, i.e.,
fru(pru) = (ĉrq

r
−u+dru)qup

r
u. Here, ĉr corresponds to the total

caching capacity of r and qr−u corresponds to the current traffic
at router r. Therefore, ĉrqr−u represents the cost of caching at
router r given the strategy P−u of other users (expect u).
The factor dru corresponds to the delay cost incurred for user
u while caching at router r. Let cru = (ĉrq−u + dru)qu and
cu = [c1u, c

2
u, · · · , c

|R|
u ]. Then, the cost function can be written

in vector form as cTup. We consider the negative cost to be
the pay-off function of the game.

Let U be a random variable corresponding to the event that
user u has requested for the content, i.e., P [U = u] = qu. Let
R be a random variable corresponding to the event that the
adversary observes the content cached at router r. Note that
P [R = r|U = u] = pru and thus we have:

P [U = u,R = r] = qup
r
u

P [R = r] =
∑
u′∈U

P [R = r|U = u′]P [U = u′]

=
∑
u′∈U

pru′qu′

P [U = u|R = r] =
P [R = r|U = u]P [U = u]

P [R = r]

=
qup

r
u∑

u′∈U p
r
u′qu′

The mutual information between U and R is then given by:

I(U,R) = H(U)−H(U |R)

= −
∑
u∈U

qu log(qu)

+
∑
u∈U

∑
r∈R

qup
r
u log(

qup
r
u∑

u′∈U qu′p
r
u′

)

The user decides the level of privacy required by constraining
the mutual information of the system to an upper bound. Since
different users may have different privacy requirements, each
user u decides on pu accordingly.

C. Best Response

For any given strategy P−u of other users, the set Bu(P−u)
of the best response of user u is given by

Bu(P−u) = arg min
pu∈Su

fu(pu,P−u). (4)

The best response pu of u in response to P−u minimizes
the total cost incurred for u while subjecting the mutual
information of the system to an upper bound tu. For a given
P−u and q, I(U,R) reduces to a function of pu and for
notational simplicity, we denote I(U,R) as I(pu). The best
response of u can be formulated as the following optimization
problem:

P0 : minimize
pu

cTupu (5)

subject to I(pu) ≤ tu, (6)
Apu = b, (7)
pu ≥ 0. (8)
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Here, constraint (6) is the upper bound on the leaked mutual
information. Constraint (7) includes the constraint 1Tpu = 1
which along with constraint (8) ensures that pu is a probability
distribution. Moreover, constraint (7) allows us to accommo-
date for any additional equality constraints. Here, A is an
m× |R| coefficient matrix and b is a m−dimensional vector.
We assume that m ≤ |R| and that rank(A) = m, i.e., P1
is feasible and has at least one positive feasible solution.
Moreover, we assume that cu does not belong to the column
space of AT , i.e., cu /∈ C(AT ) (if cu = AT y, it would imply
that cTux = yTApu = yTb = constant).

For problem P0, the objective function (5) is affine. Also,
since the function I(U,R) is convex in pu for a given q and
P−u, constraint (6) is convex. Finally, constraints (7) and (8)
are affine. Therefore, P0 is a convex optimization problem.
For completeness, the proof for the convexity of I(U,R) is
presented in Appendix A.

Consider a user u with low privacy requirements and tu
chosen by it is large enough that the constraint (6) is inactive
for all the feasible points. In this case, optimization problem
P1 reduces to the following linear program:

P1 : minimize
pu

cTupu (9)

subject to Apu = b, (10)
pu ≥ 0. (11)

Now, let us decrease the value of tu and at some tmax
u ,

constraint (6) becomes active, and remains active until a point
tmin
u . For any tu less than tmin

u , P1 becomes infeasible. Hence,
when tu ∈ (tmin

u , tmax
u ), constraint (6) is active and this case

is of interest to us. tmax
u is defined as tmax

u = I(pLPu ) =
min{I(pu)|pu is an optimal solution to P1}.

Now, consider the following optimization problem:

P2 : minimize
pu

I(pu) (12)

subject to Apu = b, (13)
pu ≥ 0. (14)

Let pmin
u be an optimal solution of P2. Then I(pmin

u ) is the
minimum possible mutual information. Hence, any tu less than
I(pmin

u ) would make P0 infeasible, i.e., tmin
u = I(pmin

u ). Using
the same arguments as used for P0, we note that P2 is a
convex optimization problem.

Lemma 1. For tmin
u < tu < tmax

u , the optimal solution is
strictly positive, i.e., p∗u > 0.

Proof. Please refer to Appendix C.

Theorem 1. The optimal solution of P1 is given by:
(i) tu ≥ tmax

u : the optimal solution to the linear program-
ming, P1, pLPu ,

(ii) tmin
u < tu < tmax

u : the following solution of P0,

p∗ru =
1

qu

( ∑
v 6=u qvp

r
v

exp((cru + βTar)/quλ)− 1

)
, ∀r ∈ R,

(15)
(iii) tu = tmin

u : the optimal solution to convex problem P2,
pmin
u ,

(iv) tu < tmin
u : no solution,

where β ∈ Rm, λ ≥ 0, and ar is the rth column of A.

Proof. Please refer to Appendix D.

D. Computing the Lagrangian Multipliers

Theorem 1 gives the form of the optimal solution, p∗u, for
P0 in terms of the Lagrangian multipliers. This section focuses
on case (ii) of Theorem 1 and computes the optimal values of
the multipliers. Let p∗u and (β∗, λ∗) be the primal and dual
optimal points. Given that constraint (6) is active, we have the
following from Karush-Kuhn-Tucker conditions:

cru+β∗Tar+λ∗qu

[
log(

qup
r
u
∗

qupru
∗+
∑
v 6=u qvp

r
v

)

]
= 0, ∀r ∈ R,

(16)
I(p∗u)− tu = 0, (17)
Ap∗u − b = 0, (18)

β∗ ∈ Rm, λ∗ > 0. (19)

Solving Equation (16) for pru
∗, we get

p∗ru =
1

qu

( ∑
v 6=u qvp

r
v

exp((cru + β∗Tar)/quλ∗)− 1

)
, ∀r ∈ R. (20)

We have the primal optimal solution p∗u as a function of
the optimal dual solution (β∗, λ∗). As the optimal solution
needs to satisfy the primal feasibility, i.e., Equation (17) and
Equation (18), we determine the optimal dual solution (β∗, λ∗)
by solving the primal feasibility equations. Here, we have (m+
1) equations and (m+ 1) unknown multipliers.

Let us define the mapping Q : Rm+1 → Rm+1 as follows:

Q(β, λ) =

[
Apu − b
I(pu)− tu

]
, (21)

where pu is given by Equation (20). By solving the system
Q(β, λ) = 0, we obtain the optimal dual solution. We solve
Q(β, λ) = 0 using the Newton-Kantorovich method. To guar-
antee local convergence of this method, the Jacobian Q′ needs
to be continuous and non-singular. Let P (β, λ) = Apu − b
and I(β, λ) = I(pu). Then, Q′ is given by:

Q′ =

[
∂P (β,λ)
∂β

∂P (β,λ)
∂λ

∂I(β,λ)
∂β

∂I(β,λ)
∂λ

]
. (22)

Now, we evaluate the partial derivatives as follows:
(i) The ith row of ∂P (β,λ)

∂β can be written as(
−1

quλ

)∑
r

airwra
T
r ,

where wr is given by:

wr =
1

qu
∑
v 6=u

qvprv

qupru(qup
r
u +

∑
v 6=u

qvp
r
v)

 .

Therefore, we get

∂P (β, λ)

∂β
=

(
−1

quλ

)
AWAT (23)

where W = diag([w1, w2, · · · , w|R|]).
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(ii) Similarly, ∂P (β,λ)
∂λ is given as follows:

∂P (β, λ)

∂λ
=

(
−1

quλ

)
Ay (24)

where yr is given by

yr =
1∑

v 6=u
qvprv

[
qup

r
u(qup

r
u+
∑
v 6=u

qvp
r
v)
]
log

[
qup

r
u

qupru+
∑
v 6=u

qvprv

]
.

(iii) Along the same lines, we get:

∂I(β, λ)

∂β
=

(
−1

quλ

)
yTAT , (25)

∂I(β, λ)

∂λ
=

(
−1

quλ

)
yTW−1y. (26)

Now, we can write Q′ as follows:

Q′(β, λ) =
−1

quλ

[
AWAT Ay
yTAT yTW−1y

]
(27)

Theorem 2. If c not in the column space of AT , i.e., cu /∈
C(AT ) then Q′(β,λ) is a non-singular matrix.

Proof. Please refer to Appendix E.

Theorem 3. Let (β∗, λ∗) be a solution to Q(β, λ) such that
λ > 0 and cu /∈ C(AT . Then (β∗, λ∗) is a point of attraction
of the following Newton Kantorovich method:[
βi+1 − βi+1

λi+1 − λi
]

=
−1

quλi

[
AWiAT Ayi

(Ayi)T (yi)T [Wi]−1yi

]−1

.

[
Apu

i − b
I(piu)− tu

]
(28)

where

wir =
1

qu
∑
v 6=u

qvprv

qu(pru)i(qu(pru)i +
∑
v 6=u

qvp
r
v)

 (29)

yir =
1∑

v 6=u
qvprv

qu(pru)i(qu(pru)i +
∑
v 6=u

qvp
r
v)



. log

 qu(pru)i

qu(pru)i +
∑
v 6=u

qvprv

 (30)

(pru)i =
1

qu

( ∑
v 6=u qvp

r
v

exp((cru + (βi)Tar)/quλi)− 1

)
(31)

and i represents the ith iteration of the method.

Proof. From Lemma 1 we have pu > 0. We also have λ > 0
and we assume cu /∈ C(AT ). Hence, from Theorem 2, the
Jacobian Q′ is continuous and non-singular. λ > 0 is in a
neighborhood of λ∗ as λ∗ > 0. Then (β∗, λ∗) is a point of
attraction [40].

V. DIFFERENTIALLY PRIVATE CACHING GAMES

This section enhances the caching game discussed in Sec-
tion IV. We add differential privacy constraints to the existing
game model so that for user u, the probability of choosing
two routers with similar cost is similar. As in Section IV-C,
we formulate the differentially private best response of u as
an optimization problem with the objective to minimize the
cost incurred subject to the mutual information and differential
privacy constraints as follows:

DP0 : minimize
pu

cTupu (32)

subject to I(pu) ≤ tu, (33)
pru
pr′u
≤ eεu|cr−cr′ | ∀r, r′ ∈ R, (34)

1Tpu = 1, (35)
pu ≥ 0. (36)

Here, constraint (34) ensures that differential privacy is satis-
fied for the choice of routers for user u. εu is the differential
privacy parameter for user u and the difference of the cost
factors |cr − c′r| is taken as the distinguishing metric between
routers r and r′. From constraint (34), we can see that εu plays
an important role in determining pu. Therefore, assuming εu
as a given input parameter is not ideal. Rather, εu needs to
be chosen such that the constraints of DP0 are satisfied. One
approach to address this problem is to consider both pu and εu
as the decision variables of DP0. In this case, we can observe
that DP0 is no longer a convex optimization problem and is
difficult to solve.

We take the following two step approach to determine
pu: step 1: determine a feasible value of εu by solving the
equation I(pu) = tu and step 2: solve DP0 to obtain the
best response of u using the feasible εu.

A. Determining εu
As the differential privacy constraint (34) holds for any

mechanism that satisfies εu-differential privacy, we use the
exponential mechanism [39] to solve I(pu) = tu and obtain
a feasible εu. According to the exponential mechanism, pru ∝
e−εuc

r/2∆u, i.e., we consider the negative cost coefficient cr

as the utility. Therefore, using constraint (35), we get

pru =
e−εuc

r/2∆u∑
r′∈R

e−εucr
′/2∆u

. (37)

Using pu from Equation (37), we solve I(pu) = tu for εu,
e.g., by using the Netwon-Raphson method. It can be verified
that the corresponding Jacobian is non-zero.

Remark. A vice versa relation also exists, i.e., for a given εu,
we can identify a feasible value of tu. To maintain consistency
with the model in Section IV-C, we evaluate εu for a given tu.
We also note that it is possible that a user has an independent
choice of the differential privacy parameter irrespective of the
mutual information parameter. Let us denote that by ε′u. Then
we can use ε̂s as the differential privacy parameter in DP0
where ε̂u = min(εu, ε

′
u). For notational simplicity, we denote

the differential privacy parameter as εu.
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B. Best Response

Next, we solve DP0 using dual conjugate theory to de-
termine the best response of u. Similar to Section IV-C, we
focus on the case where tmin

u < tu < tmax
u (since a non-linear

constraint exists in this case and the optimization problem
is linearly constrained for other cases). First, we define the
following:

Definition 1. Conjugate function. Let f : Rn → R and dom f
be its domain. Then the conjugate function f∗ : Rn → R is
defined as follows:

f∗(y) = sup
x∈dom f

(yTx− f(x)) (38)

dom f∗ = {y | sup
x∈dom f

(yTx− f(x)) <∞, y ∈ Rn} (39)

Note that f(x) + f∗(y) ≥ yTx, ∀x ∈ dom f, ∀y ∈ dom f∗.
Moreover, the equality occurs for the sub-gradient sets, i.e.,

f(x) + f∗(y) = yTx, if y ∈ G(x) or x ∈ G∗(y) (40)

where G(x) and G∗(y) are the sub-gradient of f and f∗ at x
and y, respectively. Next, we define the positive homogeneous
extension of f∗ as follow:

Definition 2. Positive homogeneous extension. Let f∗ : Rn →
R and dom f∗ be its domain. Then the positive homogeneous
extension f+ : Rn × R→ R is defined as

f+(y, λ) =

 λf∗(y/λ), λ > 0

sup
x∈dom f∗

yTx, λ = 0 (41)

dom f+ = {(y, λ)|λ = 0, sup
x∈dom f∗

(yTx), y ∈ Rn}

∪ {(y, λ)|λ > 0, y/λ ∈ dom f∗}. (42)

In order to compute the dual of DP0, we first formulate
the following equivalent optimization problem:

DP1 : minimize
pu,x,z

cTupu (43)

subject to I(x) ≤ tu, (44)
Apu − z ≥ 0, (45)
z = b, (46)
pu − x = 0, (47)
pu ≥ 0, (48)

where Apu − b ≥ 0 contains constraints (34) and (35) (i.e.,
the differential privacy and probability distribution constraint,
respectively).

The objective function of the dual program is computed as
the sum of the conjugate function of the primal objective,
Equation (43), subject to constraint (46) and the positive
homogeneous extension of constraint (44). The former is given
as

sup
pu
z=b

sTpu + z′
T
z− cTupu = bT z′. (49)

Here s and z′ are conjugate dual variables of pu and z,
respectively. The above holds as the supremum occurs at
s = cu.

Let y be the conjugate dual variable of x. Then, the
conjugate transform of I(x)− tu is given by

−
∑
r∈R

∑
v∈U
v 6=u

qvp
r
v

[
log(1− eyr/qu) + log

(
qvp

r
v∑

v′ 6=u
q′vp
′r
v

)]
+
∑
u∈U

qu log(qu) + tu (50)

which has the positive homogeneous extension as follows:

−λ
∑
r∈R

∑
v∈U
v 6=u

qvp
r
v

[
log(1−eyr/λqu) + log

(
qvp

r
v∑

v′ 6=u
q′vp
′r
v

)]
+tu


(51)

for λ > 0, λ ∈ R (for completeness, we provide the derivation
in Appendix B). The case that λ = 0 renders constraint (44)
inactive. Further, from Equation (40), the primal and dual
variables are related as

xr =

∑
v 6=u qvp

r
v

λqu(1− eyr/λqu)
(52)

and the objective of the dual program is

f(z′,y, λ) = bT z′

− λ
∑
r∈R
v∈U
v 6=u

qvprv[ log

(
qvp

r
v(1− eyr/λqu)∑
v′ 6=u

q′vp
′r
v

)]
+ tu


(53)

subject to s = cu, z = b, λ ≥ 0.
Finally, the feasible set of the dual program is the dual

cone of the primal cone generated by constraints (45), (47),
and (48). Let α,γ and δ be the Lagrangian multipliers for
constraints (45), (47), and (48), respectively. Then, using
Definition 1, we have s = ATα + δ + γ, y = −γ, and
z′ = −α. Here α ≥ 0, γ ∈ R|R|, and δ ≥ 0.

Now, we can form the dual program of DP1 as follows:

DP2 : minimize
α,γ,λ

f(−α,−γ, λ) (54)

subject to ATα− cu + γ ≤ 0, (55)
α ≥ 0, (56)
λ ≥ 0, (57)

γ ∈ R|R|. (58)

DP2 is a linearly constrained convex optimization problem
and as it satisfies Slater’s condition. Thus, strong duality holds
and p∗u can be computed using (52).

Remark. In Equation (7) and Equation (35), we can modify 
the constraint 1T pu = 1 to 1T pu = n. This ensures that 
the expected number of copies of the content in the network 
is n. The caching probabilities at the routers are computed 
such that expected number of copies in the network will be n. 
The computational complexity for a system with n copies of 
the content is the same as the computational complexity for 
scenarios with only one copy. Therefore, our proposed caching
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Algorithm 1: Iterative Best Response (IBR) algorithm

1 Iterative best (IBR) response Input: G
Output: pNEu (Nash Equilibrium solution)

2 Randomly choose a feasible p0
u

3 Update(P)
4 do
5 Get(P−u)
6 Pprev ← P
7 pu OptimalResponse(P−u)
8 Update(P)
9 while P 6= Pprev;

strategy can be easily extended to cache multiple copies of the 
content in the network.

VI. NASH EQUILIBRIUM

This section shows that Nash equilibrium exists for our 
games and presents an iterative best-response algorithm to 
compute it.

Definition 3 . Nash Equilibrium: A caching probability matrix 
P is a Nash equilibrium if and only if

fu(pu, P−u) ≤ fu(p′u, P−u), ∀p′u ∈ Su, ∀u ∈ U . (59)

Theorem 4. For game G, a pure strategy Nash equilibrium 
(PNE) exists.

Proof. We can observe from P 2 and DP 0 that the strategy 
space of G is compact, convex, and non-empty and the cost 
function is convex. Hence, a pure strategy Nash equilibrium 
exists for G [41].

We use Algorithm 1 (IBR) to compute the pure strategy 
Nash equilibrium. Here, during the ith update round, all con-
sumers compute their optimal response based on the strategies 
of other consumers. This procedure is continued until the 
strategies converge to a Nash equilibrium. We observe that the 
optimal response of u does not depend directly on the strategy 
of the other individual ∑consumers. ∑Rather, it depends on a few 
aggregate values (e.g., qvp

r
v and qvp

r
v log(qvp

r
v)).

Theorem 5. The iterative best response algorithm (IBR) 
converges to a pure strategy Nash equilibrium (PNE).

Proof. The optimal response of u is subject to the constraint 
I(pu) < tu. Hence, G is a game of strategic substitutes (with 
convex strategy sets) because if a consumer with lower privacy 
requirement increases the mutual information of the system 
(to minimize its cost), then an another consumer with higher 
privacy requirement substitutes for it (to meet its own privacy 
constraint). Moreover, the computation of best response in 
each round can be performed simultaneously in IBR. Then, 
under the assumption that all best response correspondences 
are single valued, IBR converges to a PNE [42].

Remark. A user using our privacy aware caching strategy 
does not need to know the privacy needs and strategies of every 
other user in the system. Rather, the user only requires to know

a few aggregate values like
∑
qvp

r
v and

∑
qvp

r
v log(qvp

r
v)

(Equations (29)-(31) and Equations (51)-(53)). These aggre-
gate values do not leak the individual privacy requirements
and strategies of other users. We assume that all the users
send their individual strategies to the network operator and
the network operator broadcasts the aggregate values to all
the users.

As an alternative, all the users may provide their privacy
requirements to the network operator. The network operator
then functions as a neutral entity and computes the strategies
of all the users in the network. For both of the above mentioned
approaches, a Nash Equilibrium exists and the communication
overhead is O(n) messages, where n is number of users in the
network.

For the case when a user does not have complete infor-
mation about the other users’ strategies, the user considers a
probability distribution over the possible strategies of other
users. Then, the user aims to minimize her expected cost
(instead of the exact cost). Then, the non-cooperative game
in Section VI becomes a non-cooperative Bayesian game and
a Bayesian Nash Equilibrium exists for such a game.

VII. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
caching strategies. First we compare the performance of our
proposed caching strategies with the approaches proposed in
[23], [24]. The approach in [23] preserves privacy by caching
content only at the routers with a minimum betweenness
centrality. In [24], the routers ensure privacy by collaborating
with each other to increase the uncertainty of the adversary.
For every approach, we plot the cost incurred as a function of
the privacy. The privacy is measured in terms of the anonymity
set size of the router. Anonymity set size is a well studied
privacy metric [43]–[46]. It is a natural choice of privacy
metric for comparing different approaches as the adversary’s
certainty to breach users’ privacy decreases with the increasing
size of the anonymity set.

We abbreviate the solution of the caching game and the dif-
ferentially private caching game as NC and NDC, respectively.
The betweenness centrality approach and the collaborative
caching approach are abbreviated as BC and CC, respectively.
Then, to further validate our caching strategies, we compare
them with the global optimal strategy for caching game, the
differentially private caching game, and the exponential mech-
anism in Equation (37) (abbreviated as GC, GDC and EDC,
respectively). The objective of the global optimal solution is
to minimize the sum of costs of all the consumers subject to
the privacy constraints.

We consider two different network topologies for our evalu-
ation. The first topology is obtained from Rocketfuel network
topology traces for ISP Exodus [47] and the second one is
a campus network topology obtained from the University of
Michigan [48]. The topologies are depicted in Figure 2a and
Figure 2b, respectively. For the Exodus topology in Figure 2a,
the total delay incurred between two backbone routers is
assumed to be 20 ms, a backbone and a gateway router is
10 ms, and two gateway routers is 10 ms. In Figure 2b, the
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(a) Exodus topology (b) University of Michigan campus topology

Fig. 2. Network topologies used for performance study. (a) The blue, green and red nodes are backbone, gateway, and access routers, respectively. (b) The
six routers (grey in color) form the core routers of the network and gateway routers in different parts of the campus network connect to the core routers.
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Fig. 3. Effect of anonymity set size on the cost for Rocketfuel topology.
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Fig. 4. Effect of anonymity set size on the cost for campus topology.

delay between the core routers is assumed to be 6 ms and
the delay between the core and gateway routers is assumed to
be 3 ms. We assume qu to be uniformly distributed. The cost
values presented in our evaluations are the average cost per
consumer and are normalized in the range [0, 1].

The performance evaluations are performed using Named
Data Networks (NDN). We assume a payload size of 1024
bytes, the cache size of each router to be 1 GB, and the number
of requests generated by the consumers is randomly selected
from the range [2, 20] requests per second. We would like
to note that our caching strategy can be used for any ICN
architecture which deploys caches at its routers. The aim of
the adversary is to breach the privacy of the users. To do so,
the adversary observes the cache of the routers and then tries
to identify the user who requested the content. To enhance the
user’s privacy, our proposed caching strategy aims to increase
the uncertainty of the adversary’s inference.

For a uniform and fair comparison, we consider the
anonymity set size as the privacy metric. Here we consider
a network with 40 consumers. To evaluate the impact of
number of consumers in the network, we vary the number of
consumers in the network in our further evaluations. Figure 3
and Figure 4 depict the cost incurred by NC, NDC, BC and CC
as the anonymity set size increases from 10 to 37. In general,
the cost for all the approaches increases with the increasing

anonymity set size. This is because all the approaches cache
content at routers farther away from the consumers to achieve
a bigger anonymity set size. Moreover, as more consumers
start caching at the same router for increasing the anonymity
set size, the cost of caching at that router increases, thereby
increasing the cost for all the consumers. Comparing NC
and NDC with BC and CC, we observe that for the same
anonymity set size, BC and CC incur higher cost than NC and
NDC. For example, in the Exodus case with the anonymity set
size of 14, the cost incurred for NC, NDC, BC and CC are
0.15, 0.28, 0.31 and 0.33, respectively. For the same topology
with a set size of 37, the cost incurred for NC, NDC, BC and
CC are 0.33, 0.40, 1 and 0.76, respectively. We can observe
that the cost difference between our proposed approaches (NC
and NDC) and the existing approaches (BC and CC) increases
significantly as the privacy (anonymity set size) increases. As
BC is a betweenness centrality based approach, BC users the
more centrally placed routers which are expensive. CC is a
collaborative approach which randomly caches at any one of
the router in the network. While such an approach ensures
privacy, it is oblivious to the caching cost. In contrast, NC
and NDC achieve the same level of privacy by leveraging off-
path caching where less expensive and closer routers can be
used to increase the set size.

Here, to increase the anonymity set size of NC and NDC, we
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Fig. 5. Effect of tu on the cost for Rocketfuel topology.
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Fig. 6. Effect of tu on the cost for campus topology.
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Fig. 7. Effect of tu on cache utilization for Rocketfuel topology.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.6 1 1.4 1.8

M
in

-m
ax

 ra
tio

tu

NC GC NDC GDC EDC

Fig. 8. Effect of tu on cache utilization for campus topology.

decrease the tu value from 1.8 to 0.2. Now, we compare NC
and NDC with GC, GDC and EDC as the value of tu varies
from 0.2 to 1.8. Figure 5 and Figure 6 show the cost incurred
for both the topologies. We observe that for all the approaches
the cost incurred decreases as the tu values increases (i.e. the
privacy decreases). For larger values of tu, the consumers can
choose less expensive routers with higher probability, thereby
reducing the average cost incurred. Due to the distributed
and selfish nature of NC and NDC, they incur more cost as
compared to GC and GDC. This is expected as GC and GDC
are global optimal solutions. The difference in cost for NDC
and GDC is smaller compared to the difference between NC
and GC because of the differential privacy constraints which
renders the strategies of NDC and GDC quite similar to each
other. For example, in the Exodus topology with tu = 0.2, NC
and GDC incur a cost of 0.76 and 0.67, respectively while
NDC and GDC incur a cost of 0.97 and 0.93, respectively.
Moreover, as the privacy requirements (i.e., increasing tu) are
relaxed, both NC and NDC tend to converge towards GC
and GDC, respectively. We also observe that NDC performs
significantly better than EDC, especially as tu increases. For
example, NDC, GDC and EDC incur a cost of 0.69, 0.68 and
0.87, respectively, when tu = 1.4.

Efficient usage of network resources is an important ob-
jective of any network operator. Therefore, we study how

balanced are our caching approaches. We plot the ratio of the
minimum (caching) traffic to the maximum (caching) traffic at
the routers. Figure 7 and Figure 8 depict the ratios as the value
of tu increases. We observe that in general, NDC, GDC and
EDC are more balanced when compared to NC and GC. This
is due to the differential privacy constraints where the traffic at
different routers are not independent but are dependent on each
other and on the value of εu. As tu increases, this constraint
relaxes and therefore, the traffic balance in general decreases
for NDC, GDC and EDC. We also see that among NDC, GDC
and EDC, NDC generally achieves a better balance and this
difference is more significant as tu increases. For NC and GC,
it is difficult to observe a pattern because the traffic at different
routers are only required to satisfy the mutual information
constraint and the traffic is independent otherwise.

Next we study impact of the number of consumers on the
performance of our approaches. Figure 9 and Figure 10 depict
the cost incurred by all the approaches as the number of
consumers increase as 20, 40, 60, 80, and 100. Here, the tu
values for the consumers lie in the range [0.9, 1]. We again see
that NC incurs slightly more cost compared to GC owing to its
distributed and selfish approach while NDC incurs cost very
similar to GDC. Interestingly, we observe that the variation in
the costs is small as the number of consumers increases. This
implies that the cost incurred for a consumer depends on the
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Fig. 9. Effect of number of consumers on the cost for Rocketfuel topology.
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Fig. 10. Effect of number of consumers on the cost for campus topology.
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Fig. 11. Effect of number of content copies on the cost for Rocketfuel
topology.
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Fig. 12. Effect of number of content copies on the cost for campus topology.

privacy requirements and not on the number of consumers in
the network.

Next, we study the impact of increasing the number of
copies of the content. Here we consider 40 consumers in the
network with tu ∈ [0.9, 1]. We vary the number of copies
as 1, 2, · · · , 5. We achieve this by slightly modifying P0 and
DP0 by including a constraint that the expected number of
copies of the content is i, i ∈ {1, 2, · · · , 5}. We plot the
average cost incurred per consumer per copy of the content
in Figure 11 and Figure 12. We observe that the cost incurred
per copy increases slightly as the number of copies increases
(evidently for NC and GC). For example, NC incurs a cost of
0.65, 0.66, and 0.70 when the number of copies increases as
2, 3, and 4, respectively. This is because the cost of caching
depends on the traffic at the router and as the number of copies
increases, the traffic increases too. While the slight increase
encourages the network operator to cache multiple copies of
the content, the network operator needs to trade-off between
the quality of experience and redundancy occurring due to the
presence of multiple copies of the same content.

VIII. CONCLUSION

This paper proposed a private off-path caching mechanism
to mitigate the timing analysis attacks in ICN. The caching
strategy is computed in a distributed manner by formulating

a non-cooperative game among the users in the network. The
Nash equilibrium of the game is computed using an iterative
best response-algorithm. Our results show that the proposed
approach significantly outperforms the existing approaches and
achieves near optimal results and better cache utilization when
compared to the global solutions.

APPENDIX

A. Convexity of I(U,R)

The first order derivative of I(U,R) with respect to pru is
evaluated as

∂I

∂pru
=

∂

∂pru

[
qup

r
u log

(
qup

r
u∑

u′∈U q
′
up
r
u′

)

+
∑
u′ 6=u

qu′p
r
u′ log

(
qu′p

r
u′

qupru +
∑
v 6=u qvp

r
v

)
=

∂

∂pru

qupru( log(qup
r
u)− log(qup

r
u +

∑
v 6=u

qvp
r
v)

)

+
∑
u′ 6=u

qu′p
r
u′

(
log(qu′p

r
u′)− log(qup

r
u +

∑
v 6=u

qvp
r
v)

)
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= qu

log(qup
r
u) + 1− log(qup

r
u +

∑
v 6=u

qvp
r
v)

− qup
r
u

qupru +
∑
v 6=u qvp

r
v

−
∑
u′ 6=u

qu′pu′

qupru +
∑
v 6=u qvp

r
v


= qu

log(qup
r
u)− log(qup

r
u +

∑
v 6=u

qvp
r
v)

 (60)

From Equation (60), we have the following second order
derivatives:

∂2I(U,R)

∂pru
2 =qu

2

(
1

qupru
− 1

qupru +
∑
v 6=u qvp

r
v

)
, ∀r ∈ R

(61)
∂2I(U,R)

∂pru∂p
r′
u

= 0, ∀r 6= r′; r, r′ ∈ R

(62)

As qupu and
∑
v 6=u qvp

r
v are non negative, from Equation (61),

∂2I(U,R)
∂pru

2 is non negative for all r. Therefore, the Hessian
matrix of I(U,R) has non-negative diagonal elements. From
Equation (62), the non-diagonal elements of the Hessian
matrix are 0. Therefore the Hessian matrix is positive semi-
definite and I(U,R) is a convex function of pu.

B. Conjugate function of I(x)− tu
Let I∗(y) be conjugate of I(x) − tu. Then I∗(y)is given

by:

I∗(y) = sup
x

(yTx− (I(x)− tu))

= sup
x

[
yTx−

(
−
∑
u∈U

qu log(qu)

+
∑
u∈U

∑
r∈R

quxr log
( quxr∑

u′∈U qu′p
r
u′

)
− tu

)]
.

(63)

Using the first order derivative, the supremum occurs at

xr =

∑
u′∈U qu′p

r
u′

qu(e−yr/qu − 1)
.

Substituting the value of xr in Equation (63), we get

I∗(y) = −
∑
r∈R

∑
v∈U
v 6=u

qvp
r
v

[
log(1− eyr/qu)

+ log

(
qvp

r
v∑

v′ 6=u
q′vp
′r
v

)]+
∑
u∈U

qu log(qu) + tu.

Computing the positive homogeneous extension is straightfor-
ward by replacing yr with yr/λ for λ > 0.

C. Proof of Lemma 1

As tu < tmax
u , we have cTup

∗
u > cTup

LP
u by construction. Let

us consider y > 0 such that 1Ty = 1. For some k ∈ [0, 1]
and l ∈ [0, 1], we define

s = (1− l)p∗u + l[kpLPu + (1− k)y]. (64)

We can easily see that for k < 1 and l > 0, z > 0. If k
is sufficiently close to 1 and l > 0, then cTu z < cTup

∗
u. As

the slope of I(pu) is infinite at the boundary of the feasible
domain, if pru

∗ = 0 we have I(z) < I(p∗u) for 0 < k < 1
and sufficiently small t > 0. Thus, we can construct a feasible
solution z with cTu z < cTup

∗
u. This is a contradiction as p∗u is

an optimal solution. Hence pru
∗ > 0,∀r ∈ R.

D. Proof of Theorem 1

Case (i). For the case tu > tmax
u , the result is immediate

as constraint (6) is inactive for all the feasible points. For the
case tu = tmax

u , we have I(pLPu ) = tu, i.e., pLPu is feasible as
well as optimal (as cTupu cannot be further minimized even if
constraint (6) is removed) and case (i) follows.
Case (ii). For tmin

u < tu < tmax
u , pmin

u is a feasible solution to
P1 such that I(pmin

u ) < tu. This is immediate as I(pmin
u ) =

tmin
u < tu. As I(pu) is strictly convex, there exists at least

one optimal solution p∗u. For tmin
u < tu < tmax

u , constraint (6)
is active for an optimal solution p∗u. To prove this statement,
assume that I(p∗u) < tu. Then, as the constraint is inactive,
pLPu is an optimal solution. Hence, I(pLPu ) ≤ tu. However,
according to this case’s assumption, I(pLPu ) = tmax

u > tu. This
is a contradiction. Therefore, we conclude that constraint (6)
is active and therefore I(p∗u) = tu.

Now, we prove (15). The Lagrangian L of P0 is given by:

L(pu,β, λ) = cTupu+λ (I(pu)− tu)+βT (Apu−b). (65)

From Lemma 1, we note that constraint (8) is satisfied with
strict inequality (i.e., constraint is inactive) and thus, it is not
included in the Lagrangian. The Lagrange dual function is:

g(β, λ) = inf
pu

cTupu + λ (I(pu)− tu) +βT (Apu −b) (66)

From Lemma 1, we observe that when tmin
u < tu < tmax

u ,
there exists a point in the feasible domain that is strictly
feasible. Therefore Slater’s condition is satisfied. As P0 is
convex and satisfies Slater’s condition, strong duality holds
and the optimal duality gap is zero. Now, using the Karush-
Kuhn-Tucker conditions, the gradient of L vanishes at p∗u.
Therefore,

cru + βTar + λqu

[
log(

qup
r
u

qupru +
∑
v 6=u qvp

r
v

)

]
= 0, (67)

∀r ∈ R. Here β ∈ Rm and λ > 0 since constraint (6) is active.
Solving (67) for pru, we get (15). The Lagrangian multipliers
β and λ in (15) are computed in Section IV-D.
Case(iii) and Case(iv). The results of case (iii) and case (iv)
are immediate.
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E. Proof of Theorem 2

A necessary and sufficient condition for Q′ to be singular is
that any row is a linear combination of the other m rows (or the
rank of Q′ < m+1). Let us assume that Q′ is singular. Then,
as the rows of A are linearly independent, the (m+ 1)th row
of Q′ is a linear combination of the first m rows. Performing
row operations on the (m+ 1)th row of Q′, we get:

s = yT [AT (AWAT )−1A−W−1]y = 0. (68)

Let Â = AW 1/2 and ŷ = W−1/2y, i.e., ŷr =(
qu(qup

r
u(qup

r
u +

∑
v 6=u

qvp
r
v))

)1/2

log

(
qup

r
u

qupru+
∑
v 6=u

qvprv

)
.

From Lemma 1, we have pru > 0 ∀r. Hence,

s = ŷT [ÂT (ÂÂT )−1Â− I]ŷ = −ŷTPŷ. (69)

We note that P is the orthogonal projection onto the nullspace
of Â. Therefore,

s = 0⇔ Pŷ = 0

⇔ ŷ ∈ C(ÂT )

⇔ ŷ = X1/2ATk, for some k. (70)

Simplifying Equation (16) and Equation (70), we get

log

 qup
r
u

qupru +
∑
v 6=u

qvprv

 =
−cru − βTar

quλ
= ar

Tk′. (71)

As βTar = aTr β, we get

cru = ar
T (−β − quλk′), i.e., (72)

cu = AT (−β − quλk′) ∈ C(AT ). (73)

Thus, s = 0 ⇔ cu ∈ C(AT ). However, we have assumed
cu /∈ C(AT ). Therefore, s 6= 0 and Q′ is non-singular.
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